×
07.02.2019
219.016.b7e0

Результат интеллектуальной деятельности: Способ коррекции траектории снарядов реактивных систем залпового огня

Вид РИД

Изобретение

№ охранного документа
0002678922
Дата охранного документа
04.02.2019
Аннотация: Изобретение относится к артиллерийскому вооружению и более конкретно к снарядам систем залпового огня. Перед выстрелом в устройство управления снарядом вводят данные для выполнения команд управления, угол возвышения α. С помощью встроенного таймера, с момента выстрела, регистрируют время полета. По заданному алгоритму в установленные моменты времени выполняют операции управления и коррекции. В зоне полета снаряда непрерывно измеряют и фиксируют в функции времени давление и температуру воздуха, фиксируют момент времени t, при котором прекращает работать реактивный двигатель снаряда. С учетом давления и температуры воздуха в зоне полета снаряда вычисляют параметры полета. Определяют фактическую траекторию полета снаряда. С помощью вычислительного устройства формируют команды на устройства управления полетом снаряда. Тем самым выполняют коррекцию траектории движения и сокращают эллипс разброса снарядов по дальности. 1 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к артиллерийскому вооружению и более конкретно к снарядам систем залпового огня.

Реактивные системы залпового огня (РСЗО) остаются одним из самых востребованных видов вооружений в большинстве армий мира, в том числе, и в Российской армии. Как известно основным недостатком РСЗО является значительное рассеивание снарядов. Разработчики этих систем стремятся снабжать боеприпасы различными навигационными устройствами для проведения коррекции движения снарядов на траектории, с целью снижения эллипса рассеивания снарядов. При этом в снаряд перед выстрелом, в качестве полетного задания, закладывается алгоритм функционирования снаряда на траектории, а именно, закладывается время отстрела двигателя, время включения тормозов и прочее (НПО ПРОГРЕСС, изделие ГЛИССАДА-БЗМ - http://www.mriprogress.ru/_files/G6.pdf).

Однако эти системы не позволяют надежно выполнять коррекцию из-за воздействия внешних условий и воздействия искусственных и естественных помех, что приводит к неточной установке времени срабатывания. Кроме того, применяемые навигационные системы не позволяют точно измерять скорость снаряда.

Предлагаемое техническое решение свободно от этих недостатков, так как предлагаемая навигационная система не связана с внешними устройствами и учитывает состояние атмосферы в зоне полета снаряда.

Описание технического решения поясняется схемой, которая приведена на фиг.1 и таблицей 1.

Фиг.1. Схема движения реактивного снаряда РСЗО: буквами О-А-В-С- D обозначена траектория движения снаряда; α - угол возвышения орудия при стрельбе; V0 - скорость движения снаряда в момент выключения реактивного двигателя; h1 - высота, на которой реактивный двигатель прекращает работать; t1 - время полета снаряда с работающим двигателем; S1 - дальность, на которую пролетел снаряд с работающим реактивным двигателем; t2 - время полета снаряда с момента выключения двигателя до достижения снарядом максимальной высоты; S2 - дальность, на которую пролетел снаряд с момента выключения реактивного двигателя до достижения им максимальной высоты hmax; Sp - расчетные дальности, которые определяются алгоритмом управления снаряда; tp - расчетные времена; h, t и S - координаты соответственно высоты, времени и дальности. Таблица 1.

Для объяснения предлагаемого технического решения проведем анализ схемы, приведенной на фиг. 1. Цель анализа - получение аналитических соотношений для описания закономерностей состояния снаряда на различных высотах траектории. При этом проанализируем изменение давления, температуры и плотности воздуха в зоне движения снаряда. Определим характерные точки на различных участках движения и предложим аналитические соотношения, которые могут быть использованы для выполнения коррекции движения снаряда для уменьшения эллипса рассеивания снарядов. Траектория снаряда обозначена буквами O-A-B-C-D.

На участке О-А (активный участок траектории) снаряд движется под действием реактивной тяги двигателя. Данный участок с определенными допущениями можно считать линейным, при котором снаряд движется под углом α к горизонту. В точке А (на высоте от поверхности местности h1) активный участок заканчивается и далее снаряд движется, подчиняясь законам движения тела, брошенного под углом α к горизонту со скоростью V0. Рассмотрим участок А-В-С. На этом участке снаряд будет двигаться по параболе, пройдя точку В, соответствующую максимальной высоте подъема снаряда (hmax). Рассматриваемый участок траектории снаряда находится на значительной высоте от поверхности земли (километры). Как известно в этой зоне плотность ρ воздуха существенно ниже, чем вблизи поверхности, например, на высоте 6 километров она более чем в два раза меньше. В таблице 1 приведены данные, показывающие, как изменяется плотность воздуха с высотой.

Как известно плотность воздуха ρ является одним из основных факторов, влияющим на сопротивление движению снаряда. Силу лобового сопротивления D, оказываемого движению снаряда в воздухе можно оценить с помощью известного соотношения:

где ρ - плотность воздуха, S - площадь поперечного сечения снаряда, ν - скорость движения, a CD(M) - безразмерная функция числа Маха (равного отношению скорости снаряда к скорости звука в среде, в которой движется снаряд), называемая коэффициентом лобового сопротивления. Как видно из (1) сила лобового сопротивления пропорциональна плотности воздуха ρ.

В связи с тем, что на высоте плотность воздуха существенно меньше, чем в приповерхностных слоях, для упрощения расчетов воспользуемся соотношениями для описания траектории тела, брошенного под углом к горизонту, как при движении в вакууме. Хотя на практике это далеко не так. На практике путем отстрелов могут быть получены уточняющие коэффициенты.

Для тела, брошенного под углом α к горизонту с начальной скоростью V0 максимальную высоту подъема h можно оценить с помощью известного соотношения:

где g - ускорение свободного падения, t - время подъема тела.

Тогда на рассматриваемом участке траектории А-В-С высоту Δh (см. фиг.1) можно определить из соотношения:

где t2 - время, за которое снаряд переместился из точки А в точку В. Символ t в параметре высоты показывает, что высота определена на основе данных измерения величины времени t2.

Для определения этого времени t2 воспользуемся данными по измерению давления Р в зоне снаряда, например, в точках А (PA) и С (PC). Эти точки находятся на одной и той же высоте, и давления в них должны быть одинаковы, т.е. PA=PC. С помощью миниатюрного датчика для измерения давлений представляется возможным получить характеристики давления в виде электрического напряжения U. Например, с помощью датчика абсолютного давления серии Board Mount Trustability.

С помощью таймера, установленного в снаряде в реальном масштабе времени определяется время t1 при котором давление в точке А равно PA и t3, при котором давление равно PC. Тогда промежуток времени t2 можно определить из соотношения:

Подставив полученное значение t2 в соотношение (3), можно вычислить высоту Δh.

Кроме того, при известном значение угла α можно вычислить значение скорости V0 в точке А, с помощью известного соотношения:

Значение этой скорости можно использовать для определения дальности полета снаряда в каждый момент времени. При этом необходимо использовать различные математические формулы, полученные эмпирическим путем для конкретных снарядов с учетом сопротивления воздуха.

Для определения фактической дальности полета снаряда необходимо знать конкретные высоты h1, hmax, разность высот Δh и горизонтальную скорость снаряда VS. Знание высот и расстояний позволит определить времена, соответствующие нахождению снаряда в расчетных точках. Дальности, при которых должны выполняться конкретные функции снарядом рассчитываются и вводятся перед выстрелом в вычислительное устройство снаряда. Одновременно со значениями нужных дальностей в вычислительное устройство снаряда должно вводиться значение угла α.

В соответствии с закономерностями, известными для тела брошенного под углом к горизонту, на участке траектории A-B-C-D горизонтальную скорость снаряда VS можно определить из соотношения:

Это соотношение не учитывает сопротивление воздуха. Для точного определения величины VS необходимо вводить поправочные коэффициенты, которые определяются эмпирически при составлении таблиц стрельбы. Однако для прослеживания методологии расчета параметров движения формула (6) вполне может быть применима.

Для определения высот воспользуемся данными измерения давлений в начальной точке траектории О (PO), в точке А (PA) на высоте h1 ив точке В (PB) на высоте hmax. А для вычисления значений высот по величине давления воспользуемся так называемой барометрической формулой, которая имеет вид:

где Р - атмосферное давление на высоте h, P0 - атмосферное давление на высоте h0, М - молярная масса воздуха, g - ускорение свободного падения, R - универсальная газовая постоянная, Т- температура воздуха.

Для определения разности высот Ah (см. фиг.1) эта формула будет иметь вид:

где Ра - атмосферное давление на высоте hi, Рв- атмосферное давление на высоте hmax, М - молярная масса воздуха, g - ускорение свободного падения, Rc - универсальная газовая постоянная, Тс - средняя температура воздуха на высотах h1 и hmax (М=29 грамм/моль, Rc=8,31 Джоуль/моль*К, g=9,81 м/с2). Символ р в параметре высоты показывает, что высота определена на основе данных измерения величины давления р.

А для определения разности высот между точками О и В (определение hmax) эта формула будет иметь вид:

где - Tc2 - средняя температура воздуха на высотах h0 и hmax.

Разность высот между точками О и А (определение h1) можно определить из соотношения:

где - Tc1 - средняя температура воздуха на высотах h0 и h1.

При измерении давлений с помощью датчиков давления проводится фиксация напряжения U в цепи пьезорезистивного элемента, являющегося основным компонентом датчика давления. Элемент развивает на выходе напряжение U, прямо пропорциональное приложенному давлению Р и имеет очень высокие показатели линейности, повторяемости, воспроизводимости, чувствительности и отношения сигнал/шум. Одна пара выводов датчика служит для подачи напряжения питания, а со второй снимается разность потенциалов U, линейно зависящая от напряжения питания (пропорциональный выход) и приложенного давления (усилия).

Из соотношений (8)-(10) видно, что для определения высот используется натуральный логарифм отношения давлений, что при отмеченной выше линейной связи давления с напряжением, позволяет в эти соотношения вместо значений давлений подставлять соответствующие значения напряжений, а именно, вместо PO⇒UO, вместо PA⇒UA, вместо PB⇒UB, где UO, UA UB - напряжения на выходе датчика давления в точках О, А, В соответственно.

Кроме того, использование в расчетах отношения напряжений существенно снижает требования к метрологическим характеристикам конкретного датчика давления, так как ошибка измерения давления (напряжения) для конкретного датчика одинакова в разных точках.

Как видно из формул для определения высот, в них входит параметр T, характеризующий температуру воздуха в зоне измерения. Из таблицы 1 видно, что температура воздуха с ростом высоты (в зоне полета снарядов) падает. Для точного определения высот по величине давления в снаряд устанавливается малогабаритный полупроводниковый датчик температуры.

С целью повышения точности измерения высот при отсутствии калибровки датчиков давления можно ввести поправочный коэффициент k. Этот коэффициент предлагается определять на основе применения расчета высоты по формулам для свободно падающего тела, как, по-видимому, наиболее точного, и расчета на основании измерения давлений. Выше приведены данные для определения высоты Δh с помощью соотношений (3) и соотношения (8). На основе этого предлагается определять поправочный коэффициент k, исходя из соотношения:

С учетом вышеизложенного, в данные расчета высот по формулам (8)-(10) необходимо ввести коэффициент, определяемый из соотношения (11).

На практике для выполнения боевой задачи необходимо обеспечивать снарядом выполнение заданной функции на установленных расстояниях от точки выстрела. На фиг. 1 некоторые из этих функций обозначены, и для них проставлены расстояния. Команды управления от вычислительного устройства снаряда будут происходить через вычисленные промежутки времени в соответствии с алгоритмом расчета, заложенным в память снаряда перед выстрелом в виде полетного задания.

Приведем ряд соотношений для вычисления различных расстояний.

Расстояние S1, пройденное снарядом под действием силы тяги реактивного двигателя, определим с помощью соотношения:

Расстояние S2 определим с помощью соотношения:

Для схемы, приведенной на фиг. 1 расстояние S3=S2.

Минимальное время падения снаряда Tn с высоты hmax можно оценить с помощью соотношения:

Максимальное время падения можно определить путем подстановки поправочных коэффициентов в соотношение (14), которые будут учитывать сопротивление воздуха ƒ А величину сопротивления можно оценить на основе измерения давления воздуха в конкретной зоне полета снаряда. С помощью соотношения

где ƒ - эмпирический коэффициент, который учитывает влияние сопротивление воздуха на высоте нахождения снаряда (определяется по величине давления воздуха на высоте нахождения снаряда), Sp - расчетная дальность, в соответствии с алгоритмом работы снаряда, вычисляют время tp, за которое снаряд пройдет расчетную дальность Sp. На расчетной дальности Sp (в моменты времени tp) включают исполнительные устройства снаряда в соответствии с алгоритмом работы, заложенным в снаряд перед выстрелом, и за счет этого, выполняют коррекцию траектории снаряда.

С помощью основных элементов соотношения (14), можно определить все интервалы времени. Для этого необходимо измерять разности высот при конкретных давлениях.

Для вычисления конкретных значений вышеотмеченных параметров, с учетом введенных исходных данных, достаточно микроконтроллера малой мощности. Такие контроллеры выпускаются нашей промышленностью, например, микроконтроллер на микросхеме 1886ВЕ71.

Для физического уменьшения эллипса рассеивания могут быть использованы тормозные устройства, по аналогии с применяемыми в артиллерийских снарядах, а также устройства на основе применения различных парашютных систем. При этом, установленные в снаряд датчики и алгоритм обработки информации, позволят это сделать с высокой точностью.

Таким образом, приведенные материалы позволяют создать простую миниатюрную навигационную систему для снарядов РСЗО, которая не будет зависеть от внешних устройств, и, тем самым, будет независима от средств радиоэлектронной борьбы противника. Эта система может быть реализована в составе устройства управления снарядом и взрывателя снаряда. Ее применение позволит существенно сократить эллипс рассеивания снарядов, в том числе при стрельбе на значительные дальности.

Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.


Способ коррекции траектории снарядов реактивных систем залпового огня
Способ коррекции траектории снарядов реактивных систем залпового огня
Способ коррекции траектории снарядов реактивных систем залпового огня
Способ коррекции траектории снарядов реактивных систем залпового огня
Способ коррекции траектории снарядов реактивных систем залпового огня
Источник поступления информации: Роспатент

Показаны записи 11-20 из 54.
03.10.2018
№218.016.8dad

Способ поверхностной закалки стволов орудий

Изобретение относится к технологии изготовления стволов артиллерийских орудий. Способ поверхностной закалки внутренней поверхности ствола артиллерийского орудия заключается в том, что на контрольный участок внутренней поверхности ствола воздействуют импульсами лазерного излучателя для нагрева...
Тип: Изобретение
Номер охранного документа: 0002668531
Дата охранного документа: 01.10.2018
04.10.2018
№218.016.8f13

Бронебойный оперенный подкалиберный снаряд

Изобретение относится к артиллерийским боеприпасам и, в частности, к бронебойным снарядам для гладкоствольных или нарезных артиллерийских систем среднего или крупного калибра унитарного, раздельно-гильзового или картузного заряжания. Технический результат - повышение бронепробития без изменения...
Тип: Изобретение
Номер охранного документа: 0002668580
Дата охранного документа: 02.10.2018
15.10.2018
№218.016.928c

Способ коррекции стрельбы из артиллерийских орудий

Изобретение относится к методам и средствам артиллерийской разведки на основе получения и анализа фотоизображений местности с объектами из зоны прицеливания. Способ коррекции стрельбы из артиллерийских орудий основан на предварительном определении параметров стрельбы боевыми снарядами. По этим...
Тип: Изобретение
Номер охранного документа: 0002669690
Дата охранного документа: 12.10.2018
23.10.2018
№218.016.9527

Способ введения в вычислительное устройство снаряда значения его дульной скорости

Изобретение относится к области создания артиллерийского вооружения и боеприпасов. Датчик ионизирующего излучения, расположенный в снаряде, при движении вдоль ствола регистрирует импульсы ионизирующего излучения от двух источников излучения, установленных в дульном устройстве. Значение...
Тип: Изобретение
Номер охранного документа: 0002670314
Дата охранного документа: 22.10.2018
14.11.2018
№218.016.9d0d

Способ наблюдения объектов

Изобретение относится к различным областям промышленности, где с помощью оптико-электронных систем производят обработку наблюдаемой информации, в частности к авиационной и морской технике (бортовые системы наблюдения). Заявленный способ наблюдения объектов заключается в том, что излучение от...
Тип: Изобретение
Номер охранного документа: 0002672161
Дата охранного документа: 12.11.2018
06.12.2018
№218.016.a40d

Способ стрельбы зенитными снарядами по воздушным целям

Изобретение относится к военной технике, а именно к способам ведения борьбы с воздушными целями с помощью артиллерийских боеприпасов. Изобретение может быть использовано также при создании дистанционных взрывателей для зенитных ракет и снарядов. Реализация способа стрельбы зенитными снарядами...
Тип: Изобретение
Номер охранного документа: 0002674037
Дата охранного документа: 04.12.2018
29.12.2018
№218.016.accd

Способ стрельбы зенитными снарядами

Изобретение относится к военной технике, а именно к способам ведения борьбы с воздушными целями с помощью артиллерийских боеприпасов. Изобретение может быть использовано также при создании дистанционных взрывателей для зенитных ракет и снарядов. Реализация предлагаемого способа стрельбы...
Тип: Изобретение
Номер охранного документа: 0002676301
Дата охранного документа: 27.12.2018
13.01.2019
№219.016.af46

Способ управления планирующей авиабомбой

Изобретение относится к военной технике и может быть использовано для построения систем управления авиабомбами различного назначения. Способ управления планирующей авиабомбой основан на измерении скорости полета авиабомбы с помощью датчиков давления и температуры, установленных в носовой части...
Тип: Изобретение
Номер охранного документа: 0002676775
Дата охранного документа: 11.01.2019
14.03.2019
№219.016.df45

Способ управления планирующей авиабомбой при ветре

Изобретение относится к военной технике и может быть использовано для построения систем управления авиабомбами различного назначения. Способ основан на измерении скорости полета авиабомбы с помощью датчиков давления и температуры, установленных в носовой и боковых частях бомбы. По информации от...
Тип: Изобретение
Номер охранного документа: 0002681749
Дата охранного документа: 12.03.2019
23.04.2019
№219.017.3684

Способ защиты радиовзрывателя снаряда от радиопомех

Изобретение относится к военной технике и может быть использовано при создании помехозащищенных взрывателей, применяемых в различных боеприпасах. Во взрыватель снаряда устанавливают датчик, позволяющий непрерывно в процессе полета снаряда измерять давление в зоне снаряда. Информативный параметр...
Тип: Изобретение
Номер охранного документа: 0002685593
Дата охранного документа: 22.04.2019
Показаны записи 11-20 из 61.
09.09.2018
№218.016.8551

Способ дистанционного подрыва снаряда

Изобретение относится к боеприпасам ствольной артиллерии и может быть использовано во взрывателях артиллерийских снарядов. Способ дистанционного подрыва снаряда заключается в том, что во взрыватель снаряда устанавливают несколько датчиков и с их помощью определяют параметры полета конкретного...
Тип: Изобретение
Номер охранного документа: 0002666378
Дата охранного документа: 07.09.2018
19.09.2018
№218.016.888f

Способ коррекции траектории дальнобойного артиллерийского снаряда с донным газогенератором и головным электромеханическим взрывателем с тормозным устройством

Изобретение относится к боеприпасам, в частности к способам коррекции области рассеивания осколочно-фугасных дальнобойных снарядов. Технический результат – повышение точности поражения. По способу вычисляют время включения тормозного устройства взрывателя. Вводят это значение времени в...
Тип: Изобретение
Номер охранного документа: 0002667168
Дата охранного документа: 17.09.2018
19.09.2018
№218.016.88a6

Способ коррекции артиллерийских снарядов

Изобретение относится к артиллерийским боеприпасам и может быть использовано для коррекции управляемых артиллерийских снарядов. Технический результат – повышение эффективности применения ствольной артиллерии. По способу перед выстрелом боевым снарядом производят выстрел снарядом-разведчиком,...
Тип: Изобретение
Номер охранного документа: 0002667167
Дата охранного документа: 17.09.2018
03.10.2018
№218.016.8dad

Способ поверхностной закалки стволов орудий

Изобретение относится к технологии изготовления стволов артиллерийских орудий. Способ поверхностной закалки внутренней поверхности ствола артиллерийского орудия заключается в том, что на контрольный участок внутренней поверхности ствола воздействуют импульсами лазерного излучателя для нагрева...
Тип: Изобретение
Номер охранного документа: 0002668531
Дата охранного документа: 01.10.2018
04.10.2018
№218.016.8f13

Бронебойный оперенный подкалиберный снаряд

Изобретение относится к артиллерийским боеприпасам и, в частности, к бронебойным снарядам для гладкоствольных или нарезных артиллерийских систем среднего или крупного калибра унитарного, раздельно-гильзового или картузного заряжания. Технический результат - повышение бронепробития без изменения...
Тип: Изобретение
Номер охранного документа: 0002668580
Дата охранного документа: 02.10.2018
15.10.2018
№218.016.928c

Способ коррекции стрельбы из артиллерийских орудий

Изобретение относится к методам и средствам артиллерийской разведки на основе получения и анализа фотоизображений местности с объектами из зоны прицеливания. Способ коррекции стрельбы из артиллерийских орудий основан на предварительном определении параметров стрельбы боевыми снарядами. По этим...
Тип: Изобретение
Номер охранного документа: 0002669690
Дата охранного документа: 12.10.2018
23.10.2018
№218.016.9527

Способ введения в вычислительное устройство снаряда значения его дульной скорости

Изобретение относится к области создания артиллерийского вооружения и боеприпасов. Датчик ионизирующего излучения, расположенный в снаряде, при движении вдоль ствола регистрирует импульсы ионизирующего излучения от двух источников излучения, установленных в дульном устройстве. Значение...
Тип: Изобретение
Номер охранного документа: 0002670314
Дата охранного документа: 22.10.2018
14.11.2018
№218.016.9d0d

Способ наблюдения объектов

Изобретение относится к различным областям промышленности, где с помощью оптико-электронных систем производят обработку наблюдаемой информации, в частности к авиационной и морской технике (бортовые системы наблюдения). Заявленный способ наблюдения объектов заключается в том, что излучение от...
Тип: Изобретение
Номер охранного документа: 0002672161
Дата охранного документа: 12.11.2018
06.12.2018
№218.016.a40d

Способ стрельбы зенитными снарядами по воздушным целям

Изобретение относится к военной технике, а именно к способам ведения борьбы с воздушными целями с помощью артиллерийских боеприпасов. Изобретение может быть использовано также при создании дистанционных взрывателей для зенитных ракет и снарядов. Реализация способа стрельбы зенитными снарядами...
Тип: Изобретение
Номер охранного документа: 0002674037
Дата охранного документа: 04.12.2018
29.12.2018
№218.016.accd

Способ стрельбы зенитными снарядами

Изобретение относится к военной технике, а именно к способам ведения борьбы с воздушными целями с помощью артиллерийских боеприпасов. Изобретение может быть использовано также при создании дистанционных взрывателей для зенитных ракет и снарядов. Реализация предлагаемого способа стрельбы...
Тип: Изобретение
Номер охранного документа: 0002676301
Дата охранного документа: 27.12.2018
+ добавить свой РИД