×
02.02.2019
219.016.b5cc

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КАТАЛИЗАТОРА ГИДРООЧИСТКИ

Вид РИД

Изобретение

Аннотация: 65 Изобретение относится к способу изготовления катализатора гидроочистки и к способу гидроочистки серосодержащего углеводородного сырья. Способ изготовления катализатора гидроочистки заключается в том, что подложку из оксида алюминия пропитывают раствором, содержащим от 14% вес. до 40% вес. молибдена, от 2% вес. до 12% вес. никеля, от 1,5 до 3,5% вес. фосфора и глюконовую кислоту в количестве от 1 до 60% вес. относительно веса подложки. При необходимости, обработанную подложку сушат при температуре от 40 до 200°С. Далее обработанную подложку обжигают при температуре от 200 до 650°С. Отношение веса глюконовой кислоты к общему весу никеля и молибдена, нанесенных на подложку, составляет до обжига от 0,7 до 1,5. Глюконовую кислоту используют в форме глюконовой кислоты, или соли глюконовой кислоты, или эфира глюконовой кислоты. В качестве соединения фосфора используют ортофосфорную кислоту. Способ гидроочистки серосодержащего углеводородного сырья заключается в том, что углеводородное сырье приводят в контакт с вышеуказанным катализатором при парциальном давлении водорода от 1 до 70 бар и температуре от 200 до 420°С. Изобретение позволяет получить катализатор гидроочистки с высокой активностью. 2 н. и 3 з.п. ф-лы, 3 табл., 2 пр.

ОПИСАНИЕ

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу изготовления катализатора гидроочистки.

Уровень техники

При каталитической гидроочистке углеводородного сырья, такого как сырая нефть, дистилляты и хвостовые фракции сырой нефти, используют каталитические композиции, содержащие металлы, способствующие гидрированию, для ускорения реакций обессеривания и деазотирования и, тем самым, удаления органических соединений серы и органических соединений азота из углеводородного сырья. Этот процесс включает приведение частиц катализатора в контакт с углеводородным сырьем в условиях повышенных температуры и давления в присутствии водорода с целью превращения соединений серы сырья в сероводород и соединений азота сырья в аммиак. Сероводород и аммиак затем удаляют, получая гидроочищенный продукт.

Катализаторы гидроочистки содержат в качестве компонентов способствующие гидрированию металлы на тугоплавком оксиде. Как правило, способствующие гидрированию металлы представляют собой металлы VI группы, такие как молибден и/или вольфрам, и металлы группы VIII, такие как никель и/или кобальт. Материал подложки в виде пористого тугоплавкого оксида обычно может представлять собой оксид алюминия. Промоторы, такие как фосфор, также могут быть использованы в качестве компонента катализатора гидроочистки.

Имеется не спадающий интерес к дальнейшему усовершенствованию рабочих характеристик этих катализаторов.

Способ, который может привести к улучшению рабочих характеристик, заключается в обработке подложки раствором, содержащим каталитически активный металл и органический лиганд, и последующей сушке обработанной подложки. Как указывается в публикациях, таких как ЕР-А-0482818, WO-А-96/41848, WO 2009/020913 и WO 2012/021389, если не проводить обжиг такого высушенного катализатора, может быть достигнуто улучшение параметров. Изготовление катализаторов, которые только сушат, но не обжигают, относительно сложное и трудоемкое для реальных условий серийного производства.

Целью настоящего изобретения является отыскание способа, относительно простого в реализации, но позволяющего получить обладающий высокой активностью катализатор гидроочистки, предназначенный для производства топлива с низким содержанием серы и азота, такого как дизельное топливо с низким содержанием серы.

Сущность изобретения

Было обнаружено, что эта цель может быть достигнута путем обработки подложки содержащим металл пропиточным раствором, дополнительно содержащим глюконовую кислоту.

Следовательно, настоящее изобретение направленно на способ изготовления катализатора гидроочистки, содержащего от 5% вес. до 50% вес. молибдена, от 0,5% вес. до 20% вес. никеля и от 0 до 5% вес. фосфора относительно общего сухого веса катализатора, включающий:

(а) обработку подложки из оксида алюминия молибденом, никелем и от 1 до 60% вес. глюконовой кислоты относительно веса подложки и, необязательно, фосфором,

(b) необязательную сушку обработанной подложки при температуре от 40 до 200°С и

(с) обжиг обработанной и, необязательно, высушенной подложки при температуре от 200 до 650°С с получением обожженной обработанной подложки.

В соответствии с данным способом, катализаторы гидроочистки могут быть изготовлены при помощи относительно простого процесса, включающего ограниченное число технологических стадий. Помимо простоты изготовления, изобретению свойственно преимущество, заключающееся в том, что полученные катализаторы, как было установлено, обладают высокой активностью в отношении гидрообессеривания.

Подробное описание изобретения

Катализатор настоящего изобретения изготавливают с использованием подложки из оксида алюминия. Предпочтительно, подложка состоит из оксида алюминия. Более предпочтительно, подложка состоит из гамма-оксида алюминия.

Пористая подложка катализатора может характеризоваться средним диаметром пор в диапазоне от 5 до 35 нм, измеренным в соответствии с испытанием ASTM D-4222. Общий объем пор тугоплавкого оксида, предпочтительно, лежит в диапазоне от 0,2 до 2 мл/г.

Площадь поверхности пористого тугоплавкого оксида, измеренная методом ВЕТ (Брунауэра-Эммета-Теллера), как правило, превышает 100 м2/г, и обычно лежит в диапазоне от 100 до 400 м2/г. Площадь поверхности следует измерять методом ВЕТ в соответствии с испытанием ASTM D3663-03.

Катализатор содержит каталитически активные металлы, нанесенные на подложку. Этими каталитически активными металлами являются молибден в сочетании с никелем. Предпочтительно дополнительное присутствие фосфора. Следовательно, обработанная подложка из оксида алюминия, предпочтительно, содержит молибден, фосфор, глюконовую кислоту и никель.

Металлический компонент может представлять собой металл как таковой или любой содержащий металл компонент, включая, помимо прочего, оксиды металла, гидроксиды металла, карбонаты металла и соли металла.

Что касается никеля, металлический компонент, предпочтительно, выбран из группы, состоящей из ацетатов, формиатов, цитратов, оксидов, гидроксидов, карбонатов, нитратов, сульфатов и двух или нескольких соединений из перечисленных. Предпочтительно, содержащий никель компонент представляет собой нитрат металла.

Что касается молибдена, предпочтительными солями металлов являются оксиды молибдена и сульфиды молибдена. Более предпочтительны соли, дополнительно содержащие аммоний, такие как гептамолибдат аммония и димолибдат аммония.

Используемое соединение фосфора, предпочтительно, выбрано из группы, состоящей из кислот фосфора, таких как метафосфорная кислота, пирофосфорная кислота, ортофосфорная кислота и фосфорная кислота, и прекурсоров любой кислоты фосфора. Прекурсором является фосфорсодержащее соединение, которое в присутствии воды может образовывать, по меньшей мере, один кислотообразующий атом водорода. Предпочтительными прекурсорами являются оксид фосфора и фосфор. Предпочтительной кислотой фосфора является ортофосфорная кислота (Н3РО4).

Никель может присутствовать в катализаторе гидроочистки в количестве, лежащем в диапазоне от 0,5% вес. до 20% вес., предпочтительно, от 1% вес. до 15% вес., наиболее предпочтительно, от 2% вес. до 12% вес. металла относительно общего сухого веса катализатора гидроочистки.

Молибден может присутствовать в катализаторе гидроочистки в количестве, лежащем в диапазоне от 5% вес. до 50% вес., предпочтительно, от 8% вес. до 40% вес., наиболее предпочтительно, от 10% вес. до 30% вес. металла относительно общего сухого веса катализатора. Наиболее предпочтительно, количество молибдена составляет, по меньшей мере, 11% вес., более конкретно, по меньшей мере, 12% вес., более конкретно, по меньшей мере, 13% вес., более конкретно, по меньшей мере, 14% вес.

Фосфор, предпочтительно, присутствует в катализаторе гидроочистки в количестве, лежащем в диапазоне от 0,1 до 5% вес., предпочтительно, от 0,2% вес. до 5% вес., наиболее предпочтительно, от 0,5 до 4,5% вес. фосфора относительно общего сухого веса катализатора. Наиболее предпочтительно, количество фосфора составляет от 1,5 до 3,5% вес. относительно общего сухого веса катализатора.

Металлы, как правило, присутствуют в форме оксида или сульфида. Для определения содержания металла принимается, что они присутствуют в форе металла как такового вне зависимости от их реальной формы или состояния. Сухой вес - это вес при условии, что все летучие соединения, такие как вода и глюконовая кислота, были удалены. Сухой вес может быть определен путем выдерживания катализатора при температуре 400°С в речении, по меньшей мере, 2 часов. Для расчета содержания фосфора принимается, что фосфор присутствует как элемент вне зависимости от его реальной формы.

Количество глюконовой кислоты, предпочтительно, составляет от 2 до 40% вес. глюконовой кислоты относительно веса сухой подложки, более предпочтительно, от 3 до 30% вес., более конкретно, от 4 до 20% вес.

Предпочтительно, катализатор гидроочистки состоит из: от 0,5% вес. до 20% вес. никеля, от 5% вес. до 50% вес. молибдена и от 0,1% вес. до 5% вес. фосфора, содержание всех металлов дано относительно общего сухого веса катализатора, нанесенных на подложку из оксида алюминия, более предпочтительно, подложку, состоящую из гамма-оксида алюминия.

Каталитически активные металлы, глюконовую кислоту и фосфор, предпочтительно, вводят в подложку путем обработки подложки раствором, содержащим эти компоненты. Наиболее предпочтительно, эти компоненты вводят путем пропитки порового объема раствором, содержащим эти компоненты. Является предпочтительным, чтобы все компоненты присутствовали в одном растворе, наиболее предпочтительно, в водном растворе. Может случиться, что не все компоненты можно сочетать в одном пропиточном растворе, например, из-за проблем стабильности. В таком случае может быть предпочтительным использование двух или более растворов с необязательной стадией сушки между ними.

Настоящим изобретением предусматривается обработка подложки глюконовой кислотой. Это может быть либо глюконовая кислота, либо соль глюконовой кислоты, либо сложный эфир глюконовой кислоты, который в растворе образует глюконат. Если для обработки подложки используют раствор, этот раствор, вообще, содержит соль глюконовой кислоты, возможно, сверх того, и глюконовую кислоту как таковую. В контексте настоящего изобретения обработка подложки солью глюконовой кислоты также рассматривается как обработка подложки глюконовой кислотой. Предпочтительно, раствор для обработки подложки готовят путем добавления глюконовой кислоты в растворитель.

Предпочтительно, отношение веса глюконовой кислоты к общему весу никеля и молибдена, нанесенных на подложку, составляет от 0,1 до 5, более конкретно, от 0,1 до 3, более конкретно, от 0,2 до 3, более предпочтительно, от 0,3 до 2,5, более предпочтительно, от 0,5 до 2, более предпочтительно, от 0,6 до 1,8, наиболее предпочтительно, от 0,7 до 1,5.

На стадии (b) обработанная подложка может быть высушена перед стадией (с) обжига. Действительно ли сушка должна быть проведена и, если так, при каких условиях, зависит от количества присутствующих летучих компонентов и от условий последующего обжига. Вообще, сушку проводят в течении от 0,1 до 6 часов при температуре от 40 до 200°С, более конкретно, в течении от 0,5 до 4 часов при температуре от 100 до 200°С. Наиболее предпочтительно, сушку проводят путем косвенного нагрева, что означает, что нагревают среду, окружающую композицию. Косвенный нагрев включает использование микроволн.

Стадию (с) обжига, предпочтительно осуществляют в течении от 0,1 до 6 часов при температуре от 200 до 650°С, более конкретно, в течении от 0,5 до 4 часов при температуре от 250 до 600°С, более конкретно, от 280 до 550°С.

Без связи с какой-либо теорией полагают, что улучшение рабочих характеристик происходит за счет взаимодействия между каталитически активным металлом, подложкой и глюконовой кислотой. Считается, что такое взаимодействие ведет к уменьшению частиц оксида металла при обжиге, при этом, этот размер частиц сохраняется во время сульфидирования.

Обожженную обработанную подложку перед использованием для гидроочистки, предпочтительно, сульфидируют. Следовательно, способ настоящего изобретения, предпочтительно, дополнительно включает (d) сульфидирование обожженной обработанной подложки с получением катализатора гидроочистки.

После сульфидирования, которое может быть осуществлено на месте или вовне, катализатор считается готовым для использования в промышленности.

Настоящим изобретением также обеспечивается способ гидроочистки серосодержащего углеводородного сырья, каковой способ включает приведение углеводородного сырья при парциальном давлении водорода от 1 до 70 бар и температуре от 200 до 420°С в контакт с катализатором, полученным в соответствии с настоящим изобретением.

Сульфидирование обожженной обработанной подложки может быть проведено с использованием любого обычного способа, известного специалистам в данной области. Так, обожженная обработанная подложка может быть приведена в контакт с газообразным потоком, содержащим сероводород и водород. В другом варианте осуществления, обожженную обработанную подложку приводят в контакт с серосодержащим соединением, которое при разложении выделяет сероводород, в условиях контакта настоящего изобретения. Примерами разлагающихся таким образом соединений являются меркаптаны, CS2, тиофены, диметилсульфид (DMS) и диметилдисульфид (DMDS). Еще одним предпочтительным вариантом является проведение сульфидирования путем приведения композиции в надлежащих условиях сульфирования в контакт с углеводородным сырьем, в котором имеется серосодержащее соединение. Серосодержащее соединение углеводородного сырья может представлять собой органическое соединение серы, в частности, соединение, которое обычно содержится в дистиллятах нефти, подвергаемых обработке способами гидрообессеривания. Обычно, температура сульфидирования лежит в диапазоне от 150 до 450°С, предпочтительно, от 175 до 425°С, наиболее предпочтительно, от 200 до 400°С.

Давление сульфидирования может лежать в диапазоне от 1 бар до 70 бар, предпочтительно, от 1,5 бар до 55 бар, наиболее предпочтительно, от 2 бар до 45 бар.

Более подробно настоящее изобретение поясняется нижеследующими примерами.

Примеры

Пример 1 - Катализатор, содержащий никель/молибден

Выпускаемую серийно подложку подготовили путем экструдирования псевдобомита с получением трехлольчатых частиц размером 1,3 мм и их сушки и обжига с получением подложки из оксида алюминия, как описано в таблице 1.

Средний диаметр пор измеряли в соответствии с испытанием ASTM D-4222. Площадь поверхности измеряли в соответствии с испытанием ASTM D-366303.

Таблица 1 - Свойства подложки из оксида алюминия

Таблица 1
Свойство Подложка
Температура обжига, °С 535
Площадь поверхности по ВЕТ, м2 300
Средний диаметр пор, нм 9

Металлические компоненты катализатора вносили в указанную подложку путем пропитки порового объема с получением следующего содержания металлов (вес металла относительно сухого веса всего катализатора): 15% Мо, 3,5% Ni, 2,2% Р. Пропиточный раствор содержал фосфорную кислоту, оксид никеля, триоксид молибдена и глюконовую кислоту. Общий объем готового раствора был равен 98% объема водяных пор подложки из оксида алюминия. Концентрация глюконовой кислоты в пропиточном растворе составила 20% вес., что соответствует содержанию глюконовой кислоты 12,5% вес. относительно подложки.

Затем пропитанную подложку сушили при 110°С 2 часа, после чего подвергли обжигу в течении 2 часов при 400°С для удаления глюконовой кислоты.

Был получен следующий катализатор.

Таблица 2 - Катализатор Ni/Mo

Таблица 2
Катализатор Количество глюконовой кислоты (%вес. относительно подложки) Температура обжига Объемный вес уплотненного материала (г/мл)
1 12,5 400 0,72

Пример 2 - Активность катализатора

Для испытания активности катализатора, соответствующего изобретению, в отношении обессеривания по сравнению с серийным контрольным катализатором использовали микрореакторы с орошаемым слоем.

Доведение композиций до требуемых параметров и сульфидирование проводили путем их приведения в контакт с жидкими углеводородами, содержащими серу в количестве 2,5% вес. Условия проведения этих испытаний были следующими: отношение газ/нефть 300 л при н.у./кг, давление 40 бар, часовая объемная скорость жидкости 1 ч-1. Средневесовую температуру слоя поддерживали в диапазоне от 340 до 380°С.

Сырье, используемое для испытаний, представляло собой не разделенный на фракции газойль, содержащий 1,28% вес. серы.

Условия процесса и свойства сырья типичны для обычных операций, проводимых с дизельным топливом с низким содержанием серы.

Константы скорости определяли исходя из порядка реакции 1,25. Температура, необходимая для получения продукта, содержащего 10 частей на миллион серы, приведена в таблице 3. Более низкая температура для получения такого содержания серы и более высокая RVA (relative volumetric activity - относительная объемная активность) указывают на то, что катализаторы, соответствующие настоящему изобретению, обладают усовершенствованными рабочими характеристиками.

Относительную объемную активность (RVA) катализатора 1 определяли относительно серийного контрольного катализатора, содержавшего аналогичные количества никеля, молибдена и фосфора и имевшего объемный вес уплотненного материала 0,74 мл/г, далее именуемого «контрольный катализатор».

В таблице 3 приведена температура, необходимая для получения продукта, содержащего 10 частей на миллион серы. Более низкая температура для получения такого содержания серы и более высокая RVA указывают на то, что катализатор, соответствующий настоящему изобретению, обладает усовершенствованными параметрами по сравнению с контрольным катализатором.

Таблица 3 - Активность в отношении гидрообессеривания

Таблица 3
Температура для получения 10 частей на миллион S в продукте (°С) RVA (%)
Контрольный катализатор 368,5 100
1 363,9 115

Источник поступления информации: Роспатент

Показаны записи 281-290 из 389.
01.05.2019
№219.017.47bd

Изолированные проводники, сформированные с использованием стадии окончательного уменьшения размера после термической обработки

Изобретение относится к устройствам и способам, применяемым для нагревания формаций. Технический результат заключается в уменьшении или исключении потенциальных проблем в ходе производства, компоновки и/или монтажа изолированных проводников. Изолированный электрический проводник (MI кабель)...
Тип: Изобретение
Номер охранного документа: 0002686564
Дата охранного документа: 29.04.2019
09.05.2019
№219.017.4ff3

Стойкий к отравляющему действию серы, содержащий благородный металл катализатор гидрирования ароматических соединений и способ получения и применения такого катализатора

Настоящее изобретение относится к стойкому к отравляющему действию серы, содержащему благородный металл катализатору гидрирования ароматических соединений, способу его получения и способу гидрирования ароматических соединений. Описан способ получения композиции катализатора гидрирования...
Тип: Изобретение
Номер охранного документа: 0002430778
Дата охранного документа: 10.10.2011
09.05.2019
№219.017.5007

Способ для обработки потока углеводородов и устройство для его осуществления

Способ обработки потока природного газа включает стадии подачи частично сконденсированного сырьевого потока (10), имеющего давление свыше 50 бар, в первый аппарат (2) для разделения газа/жидкости, разделения сырьевого потока (10) в первом аппарате (2) для разделения газа/жидкости на первый...
Тип: Изобретение
Номер охранного документа: 0002446370
Дата охранного документа: 27.03.2012
09.05.2019
№219.017.5043

Выделение и очистка гликоля

Изобретение относится к способу отделения раствора гомогенного катализатора от неочищенного моноэтиленгликоля (MEG) и очистки MEG, для применения в процессе каталитического превращения этиленоксида (ЕО) в MEG, причем способ включает этапы, на которых: отделяют раствор катализатора в секции...
Тип: Изобретение
Номер охранного документа: 0002440964
Дата охранного документа: 27.01.2012
18.05.2019
№219.017.57fc

Способ дегидрирования ненасыщенного углеводорода

Изобретение относится к способу каталитического дегидрирования первого ненасыщенного углеводорода для образования второго ненасыщенного углеводорода, который имеет на одну олефиновую ненасыщенную связь больше, чем первый ненасыщенный углеводород. Также изобретение относится к промышленной...
Тип: Изобретение
Номер охранного документа: 0002335485
Дата охранного документа: 10.10.2008
18.05.2019
№219.017.58f6

Композиция электроизоляционного масла

Сущность: композиция электроизоляционного масла содержит компонент базового масла, по меньшей мере, 80 мас.% которого представляет собой парафиновое базовое масло, полученное путем гидроизомеризации воска, произведенного в синтезе Фишера-Тропша, с последующей депарафинизацией, содержащее...
Тип: Изобретение
Номер охранного документа: 0002418847
Дата охранного документа: 20.05.2011
18.05.2019
№219.017.593f

Стабильное к окислению масло, содержащее базовое масло и присадки

Сущность: композиция содержит масло, включающее нафтеновое базовое масло на минеральной основе, парафиновое базовое масло на минеральной основе и/или парафиновое базовое масло, полученное синтезом Фишера-Тропша, пассиватор меди и от 0,001 до менее чем 0,1 мас.% органического соединения на...
Тип: Изобретение
Номер охранного документа: 0002416628
Дата охранного документа: 20.04.2011
26.05.2019
№219.017.618a

Способ получения фурана и его производных

Изобретение относится к способу обработки первого жидкого потока фурана, содержащего фуран и монооксид углерода, причем указанный способ включает этапы: i) контакт упомянутого первого жидкого потока фурана с первым СО-обедненным газообразным потоком, содержащим один или более газов из группы,...
Тип: Изобретение
Номер охранного документа: 0002689115
Дата охранного документа: 24.05.2019
29.05.2019
№219.017.64d3

Катализатор и способ получения углеводородов

Изобретение относится к способу получения преимущественно С углеводородов. Способ заключается в контактировании монооксида углерода с водородом при температуре 180-270°С и повышенном давлении в присутствии каталитической композиции, содержащей в расчете на общую массу каталитической композиции...
Тип: Изобретение
Номер охранного документа: 0002259988
Дата охранного документа: 10.09.2005
29.05.2019
№219.017.6514

Способ получения эластичных пенополиуретанов

Изобретение относится к способу получения эластичных пенополиуретанов, в котором в качестве вспенивающего вещества используется жидкий диоксид углерода. Описывается способ получения эластичных пенополиуретанов, включающий (а) взаимодействие полиольного компонента, полиизоцианатного компонента,...
Тип: Изобретение
Номер охранного документа: 0002222552
Дата охранного документа: 27.01.2004
Показаны записи 1-8 из 8.
20.08.2015
№216.013.6fc7

Способ и интегрированная система для приготовления низшего олефинового продукта

Настоящее изобретение относится к способу приготовления олефинового продукта, содержащего этилен и/или пропилен, который содержит следующие этапы: a) выполняют паровой крекинг парафинового сырья, содержащего C2-C5 парафины, в условиях крекинга, включающих температуру в диапазоне от 650 до...
Тип: Изобретение
Номер охранного документа: 0002560185
Дата охранного документа: 20.08.2015
26.08.2017
№217.015.d42f

Способ получения композиций катализатора гидрокрекинга

Изобретение относится к способу получения селективного в отношении нафты катализатора гидрокрекинга, содержащего от 3 до 4,8 мас.% молибдена в расчете на металл и от 1,5 до 3 мас.% никеля в расчете на металл, который включает введение в тугоплавкий оксидный носитель, содержащий алюминийоксидный...
Тип: Изобретение
Номер охранного документа: 0002622382
Дата охранного документа: 15.06.2017
26.08.2017
№217.015.d8ba

Способ приготовления катализатора гидрокрекинга

Изобретение относится к способу приготовления сульфидированного катализатора гидрокрекинга, содержащему этапы, где (a) пропитывают аморфный алюмосиликатный носитель раствором, содержащим компоненты с одним или более металлами VIB группы, компоненты с одним или более металлами VIII группы и С-С...
Тип: Изобретение
Номер охранного документа: 0002623429
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e24a

Каталитическая композиция цеолита eu-2 с диоксидтитановым связующим и способ получения и применения такой композиции

Изобретение относится к каталитической композиции для депарафинизации углеводородного нефтяного сырья, содержащей смесь диоксида титана и цеолита EU-2, имеющего молярное соотношение диоксида кремния к оксиду алюминия (SAR) более 100:1 в объеме. Цеолит EU-2 присутствует в указанной композиции в...
Тип: Изобретение
Номер охранного документа: 0002625792
Дата охранного документа: 19.07.2017
13.02.2018
№218.016.2107

Способ получения катализатора гидрокрекинга

Изобретение относится к способу получения катализатора гидрокрекинга, который включает стадии: (а) перемешивания цеолита Y, характеризующегося размером элементарной ячейки в диапазоне от 24,42 до 24,52 Å, валовым молярным соотношением между диоксидом кремния и оксидом алюминия (SAR) в диапазоне...
Тип: Изобретение
Номер охранного документа: 0002640804
Дата охранного документа: 18.01.2018
10.05.2018
№218.016.4ffc

Способ приготовления сульфидированного катализатора

Изобретение относится к способу приготовления сульфидированного катализатора, содержащему стадии, на которых: (а) обрабатывают носитель катализатора одним или более компонентами металлов Группы VIB, одним или более компонентами металлов Группы VIII и соединением этоксилата простого эфира...
Тип: Изобретение
Номер охранного документа: 0002652800
Дата охранного документа: 03.05.2018
09.06.2018
№218.016.5f56

Приготовление катализатора конверсии углеводородов

Изобретение относится к способу приготовления катализатора конверсии углеводородов, который включает в себя специально изготовленную алюмосиликатную композицию и металл или соединение металла, выбираемого из металлов группы VIB и VIII, и к способу гидрокрекинга углеводородного сырья в...
Тип: Изобретение
Номер охранного документа: 0002656594
Дата охранного документа: 06.06.2018
31.01.2019
№219.016.b55b

Способ изготовления катализатора гидроочистки

Изобретение относится к способу изготовления катализатора гидроочистки и к способу гидроочистки серосодержащего углеводородного сырья. Способ изготовления катализатора гидроочистки заключается в том, что вначале получают никельсодержащую подложку, сформованную экструзией смеси оксида алюминия и...
Тип: Изобретение
Номер охранного документа: 0002678456
Дата охранного документа: 29.01.2019
+ добавить свой РИД