×
24.01.2019
219.016.b377

Результат интеллектуальной деятельности: КАТАЛИЗАТОР И СПОСОБ ПОЛУЧЕНИЯ ОБОГАЩЕННОЙ ПО ВОДОРОДУ ГАЗОВОЙ СМЕСИ ИЗ ДИМЕТИЛОВОГО ЭФИРА И ВОЗДУХА

Вид РИД

Изобретение

Аннотация: Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметилового эфира (ДМЭ). Описано применение медьсодержащей системы, нанесенной на оксид алюминия, в качестве катализатора для получения обогащенной по водороду газовой смеси парциальным окислением диметилового эфира, причем в состав катализатора входит оксид меди в количестве до 20 мас.%, исключая 10 мас.%, остальное AlO. Осуществляют способ получения обогащенной по водороду газовой смеси парциальным окислением диметилового эфира в присутствии оксидного катализатора с вышеописанным применением в качестве катализатора медьсодержащей системы. Технический результат - получение обогащенной по водороду газовой смеси, которая может использоваться для питания топливных элементов различного назначения, в том числе и для топливных элементов. 2 н. и 5 з.п. ф-лы, 8 пр., 4 табл.

Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметилового эфира ДМЭ с целью получения обогащенной по водороду газовой смеси, которая может использоваться в водородной энергетике. Например, в качестве топлива для питания топливных элементов различного назначения, в том числе и для топливных элементов, установленных на передвижных средствах. В настоящее время топливные элементы рассматриваются как альтернативный и экологически чистый источник электрической энергии.

Основным топливом для питания топливных элементов является водород или обогащенная по водороду газовая смесь, которая может быть получена посредством паровой и воздушной конверсии природного газа, бензина (ископаемые топлива) и спиртов. Несмотря на развитую инфраструктуру и относительно низкую цену ископаемых топлив, их использование имеет такие недостатки, как высокая температура конверсии (выше 600°С для природного газа и выше 800°С для бензина). В отличие от ископаемых топлив ДМЭ может легко конвертироваться в водородсодержащий газ при относительно низкой температуре (около 300°С). Важно отметить, что ДМЭ является коррозионно-инертным и нетоксичным соединением. ДМЭ по физико-химическим свойствам близок к сжиженному нефтяному газу и легко хранится и транспортируется. Указанные факты позволяют рассматривать ДМЭ как перспективное сырье для получения водорода для питания топливных элементов.

Исследованию процесса парциального окисления ДМЭ в водородсодержащий газ посвящено немного работ. Согласно этим литературным данным, реакция наиболее эффективно протекает на катализаторах, представляющих собой металлы VIII группы, нанесенные на различные оксидные носители.

Известны следующие системы, представляющие металлы VIII группы, нанесенные на оксидные носители. В работе (Sh. Wang, Т. Ishihara, Y. Takita. Partial oxidation of dimethyl ether over various supported metal catalysts, Appl. Catal. A: Gen, vol. 228 (2002) p.167-176) проведено сопоставительное исследование каталитической активности металлов VIII группы (Rh, Ru, Pt, Со, Ni, Fe), нанесенные на различные носители, такие как оксиды алюминия, кремния, магния, а также смешанных оксиды в парциальном окислении ДМЭ в водородсодержащий газ. В работе (Y. Chen, Z. Shao, N. Xu, Partial oxidation of dimethyl ether to H2/syngas over supported Pt catalyst, J. Natural Gas Chem, vol. - 17 (2008). p. 75-80.) для проведения парциального окисления ДМЭ предложены катализаторы, представляющие собой металлы Pt, нанесенные на церий-циркониевые оксидные носители. Недостатками катализаторов на основе благородных металлов является их высокая себестоимость и высокая температура проведения процесса с использованием этих катализаторов.

Предполагается, что реакция парциального окисления ДМЭ может протекать по последовательной схеме, согласно которой часть ДМЭ окисляется кислородом до H2O и CO2 (реакция 1), затем протекает паровая конверсия ДМЭ (реакция 2) путем взаимодействия оставшегося ДМЭ и образовавшихся по реакции 1 паров воды:

Известно, что реакция паровой конверсии ДМЭ протекает по двухстадийной схеме через гидратацию ДМЭ в метанол (реакция 3) и паровую конверсию образовавшегося метанола в водородсодержащий газ (реакция 4):

Кроме того, в ходе реакции может образовываться моноксид углерода, например, по обратной реакции паровой конверсии СО:

Известно, что реакции 1, 4 и 5 могут протекать на медьсодержащих центрах, а реакция 3 протекает на кислотных центрах. Следовательно, парциальное окисление ДМЭ в водородсодержащий газ может быть осуществлено на катализаторах, содержащих кислотные и медьсодержащие центры.

Задачей, на решение которой направлено настоящее изобретение, является разработка новой бифункциональной каталитической системы, не содержащей благородные металлы и обладающей высокой каталитической активностью в отношении парциального окисления ДМЭ при низкой температуре, а также разработка процесса получения из ДМЭ газовой смеси, обогащенной по водороду, с использованием этой каталитической системы.

Задача решается разработкой катализатора получения обогащенной по водороду газовой смеси взаимодействием ДМЭ и воздуха или кислорода, представляющего собой бифункциональный катализатор, содержащий кислотные для гидратации ДМЭ (реакция 3) и медьсодержащие центры для глубокого окисления ДМЭ (реакция 1), паровой конверсии метанола (реакция 4) и обратной реакции паровой конверсии СО (реакция 5).

В состав катализатора парциального окисления ДМЭ входит оксид меди до 20 мас. %, предпочтительно, 5-20, остальное - оксид алюминия Al2O3.

В состав катализатора парциального окисления ДМЭ входят оксиды меди и церия до 40 мас. %, предпочтительно, 10-40, остальное - оксид алюминия Al2O3. Медно-цериевые оксиды применяют с весовым соотношением Cu-Се=1:2-2:1.

В состав катализатора парциального окисления ДМЭ входят оксиды меди и цинка до 40 мас. %, предпочтительно, 10-40, остальное - оксид алюминия Al2O3. Медно-цинкоые оксиды применяют с весовым соотношением Cu-Zn=1:2-2:1.

Задача также решается разработкой способа получения обогащенной по водороду газовой смеси взаимодействием ДМЭ и воздуха в присутствии катализатора, представляющего собой нанесенный оксид меди на оксид алюминия. Реакцию осуществляют при 200-350°С, 1-100 атм и мольном соотношении воздух / диметиловый эфир=1-5.

Отличительными признаками предлагаемой каталитической системы является то, что в качестве активных компонентов используется соединения, не содержащие благородные металлы, а также низкая температура процесса 200-350°С.

В предлагаемой каталитической системе активные компоненты гидратации ДМЭ, глубокого окисления ДМЭ, паровой конверсии метанола и обратной реакции паровой конверсии СО находятся на поверхности одного катализатора и, таким образом, обеспечивают бифункциональность катализатора.

Бифункциональные катализаторы CuO-СеО2/γ-Al2O3 и CuO-ZnO/y-Al2O3 готовили пропиткой гранул γ-Al2O3 (Sуд=200 м2/г, объем пор 0,7 см3/г, суммарная концентрация льюисовских и бренстедовских поверхностных кислотных центров 600 мкмоль/г) раствором азотнокислых солей меди и церия/цинка, взятых в заданном соотношении. Полученные образцы сушили на воздухе и затем в течение 2 ч прокаливали при 400°С.

Отличительным признаком предлагаемого способа получения обогащенной по водороду газовой смеси путем взаимодействия ДМЭ и воздуха является использование вышеописанного бифункционального катализатора.

Сущность изобретения иллюстрируются следующими примерами.

Пример 1.

Парциальное окисление ДМЭ осуществляют в установке проточного типа в кварцевом реакторе с внутренним диаметром 4 мм на навеске катализатора 0,5 мл при соотношении воздух : ДМЭ=5:1 или N22:ДМЭ=4:1:1, времени контакта 5000 ч-1, температуре 200°С и давлении 1 атм. Состав оксидного катализатора составляет, мас. %: оксид меди - 20, остальное - оксид алюминия. Полученные результаты приведены в таблице 1.

Пример 2.

Аналогично примеру 1, но реакцию проводят при температуре 250°С, результаты приведены в таблице 1.

Пример 3.

Аналогично примеру 1, но реакцию проводят при температуре 300°С, результаты приведены в таблице 1.

Пример 4.

Аналогично примеру 1, но состав оксидного катализатора составляет, мас. %: оксид меди - 20, оксид церия - 10, остальное - оксид алюминия. Полученные результаты приведены в таблице 2.

Пример 5.

Аналогично примеру 4, но реакцию проводят при температуре 250°С, результаты приведены в таблице 2.

Пример 6.

Аналогично примеру 4, но реакцию проводят при температуре 300°С, результаты приведены в таблице 2.

Пример 7.

Аналогично примеру 1, но время контакта 10000 ч-1, а состав оксидного катализатора составляет, мас. %: оксид меди - 10, оксид цинка - 5, остальное - оксид алюминия. Полученные результаты приведены в таблице 3.

Пример 8.

Аналогично примеру 1, но соотношение воздух : ДМЭ=5:2 или N2:O2:ДМЭ=4:1:2, время контакта 10000 ч-1, а состав оксидного катализатора составляет, мас. %: оксид меди - 10, оксид цинка - 5, остальное - оксид алюминия. Полученные результаты приведены в таблице 4.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 60.
20.01.2018
№218.016.1abe

Способ получения 5-гидроксиметилфурфурола и этанола из целлюлозы

Изобретение относится к биотехнологии и гидролизной промышленности. Предложен способ получения этанола и 5-гидроксиметилфурфурола из целлюлозы. Способ включает каталитическую гидролиз-дегидратацию механически активированной микроскопической целлюлозы с использованием модифицированного...
Тип: Изобретение
Номер охранного документа: 0002636004
Дата охранного документа: 17.11.2017
13.02.2018
№218.016.21b1

Установка каталитической ароматизации легкого углеводородного сырья и способ ее работы

Изобретение относится к установке каталитической ароматизации легкого углеводородного сырья, включающей расположенные на линии подачи сырья по меньшей мере один блок каталитической переработки и блок выделения концентрата ароматических углеводородов с линией подачи циркулирующего газа в блок...
Тип: Изобретение
Номер охранного документа: 0002641692
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.2630

Реактор для проведения реакций гидролиза

Изобретение относится к химическим реакторам для проведения реакций гидролиза в гидротермальных условиях, например, для гидролиза неорганических солей, получения оксидов и гидроксидов путем гидролиза солей металлов. Реактор для проведения процессов гидролиза в гидротермальных условиях включает...
Тип: Изобретение
Номер охранного документа: 0002643976
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.2f40

Катализатор гидроочистки сырья гидрокрекинга

Изобретение относится к катализаторам предварительной гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга. Описан катализатор, содержащий, мас.%: [Ni(HO)][MoO(CHO)]...
Тип: Изобретение
Номер охранного документа: 0002644563
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.30ee

Способ подготовки попутных нефтяных газов селективной паровой конверсией

Изобретение относится к способам подготовки углеводородных газов паровой конверсией и может быть применено, например, для подготовки попутного нефтяного газа к использованию или трубопроводному транспорту в нефтяной и газовой промышленности. Способ подготовки попутных нефтяных газов селективной...
Тип: Изобретение
Номер охранного документа: 0002644890
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3438

Способ получения системы доставки фрагментов нуклеиновых кислот в клетки млекопитающих

44 Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Предложен способ получения системы доставки фрагментов нуклеиновых кислот (ФНК) в клетки млекопитающих. Осуществляют синтез основы для доставки ФНК. В качестве основы используют аминозамещенный силанол...
Тип: Изобретение
Номер охранного документа: 0002646113
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.3bf5

Способ сжигания топлива

Изобретение относится к способам сжигания газообразных жидких и твердых топлив для нагрева газов, жидкостей и твердых тел, а также обезвреживания газообразных, жидких и твердых отходов. Способ сжигания топлива в псевдоожиженном слое заключается в подаче воздуха через газораспределительную...
Тип: Изобретение
Номер охранного документа: 0002647744
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3c84

Катализатор, способ его приготовления и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газовых выбросов от оксидов азота в окислительных условиях в присутствии аммиака. Катализатор для очистки отходящих газов от оксидов азота методом селективного каталитического восстановления аммиаком в...
Тип: Изобретение
Номер охранного документа: 0002647847
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.43c0

Способ сжигания топлива

Изобретение относится к области энергетики, способам сжигания топлива в псевдоожиженном слое твердого теплоносителя для нагрева газов, жидкостей и твердых тел, а также обезвреживания газообразных, жидких и твердых отходов. Способ сжигания топлива в псевдоожиженном слое дисперсных частиц...
Тип: Изобретение
Номер охранного документа: 0002649729
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.441b

Способ гидроочистки сырья гидрокрекинга

Изобретение относится к способам получения сырья гидрокрекинга. Описан способ гидроочистки, заключающийся в превращении нефтяных фракций, имеющих температуру начала кипения выше 360°С, содержащих до 3,5% серы и до 0,2% азота при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья...
Тип: Изобретение
Номер охранного документа: 0002649384
Дата охранного документа: 05.04.2018
Показаны записи 21-22 из 22.
27.06.2019
№219.017.9941

Способ работы устройства для переработки попутных нефтяных газов

Изобретение относится к нефтяной и газовой промышленности, в частности к системам утилизации и использования попутных нефтяных и сырых природных газов в энергетике. Устройство для переработки попутных нефтяных или сырых природных газов состоит из системы запуска, системы подачи и дозирования...
Тип: Изобретение
Номер охранного документа: 0002442819
Дата охранного документа: 20.02.2012
06.12.2019
№219.017.e9bb

Катализатор и способ получения обогащенной по водороду газовой смеси из диметоксиметана и воздуха

Изобретение относится к каталитическому способу осуществления реакции парциального окисления диметоксиметана (ДММ) с целью получения обогащенной по водороду газовой смеси, которая может использоваться для питания топливных элементов различного назначения, в том числе и для топливных элементов,...
Тип: Изобретение
Номер охранного документа: 0002707880
Дата охранного документа: 02.12.2019
+ добавить свой РИД