×
24.01.2019
219.016.b374

Результат интеллектуальной деятельности: Люминесцирующие металлсодержащие полимерные композиции

Вид РИД

Изобретение

Аннотация: Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение, которые могут быть использованы для светотехники, опто- и микроэлектроники. Люминесцирующая композиция на основе эфиров (мет)акриловой кислоты содержит сульфид цинка и ионы меди в концентрации от 0,00010 до 0,010 моль/(л полимеризуемой композиции). Изобретение обеспечивает получение оптически прозрачного материала, люминесцирующего в области 400-550 нм с максимумом в области синего спектрального диапазона. 1 ил.

Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение. Оно используется для получения оптически прозрачных люминесцирующих металлсодержащих полимерных композиций для светотехники, опто- и микроэлектроники.

Известны (Аналог 1) композиции на основе полимеров акрилового ряда, стирола и его производных, содержащие галогенацетаты металлов и органические гетероциклические соединения в качестве фотоактивных добавок (Смагин В.П., Майер Р.А., Мокроусов Г.М., Чупахина Р.А. Полимеризуемый состав для получения прозрачных полимерных материалов / Патент СССР №1806152 A3, опубл. 30.03.93 г., бюл. №12.). Композиции получают растворением солей галогенуксусных кислот s-, р-, d- и f-металлов Периодической системы Д.И. Менделеева или их смеси в мономерах акрилового ряда, стироле и его производных, или в смеси мономеров. После полимеризации мономеров образуются прозрачные металлсодержащие полимерные композиции, преобразующие электромагнитное излучение. В процессе синтеза взаимодействие солей металлов с фотоактивными добавками, в том числе с серосодержащими органическими соединениями, проводят при комнатной температуре. Оно ограничивается комплексообразованием. Композиции не люминесцируют в спектральном диапазоне 400-550 нм, так как при данных условиях синтеза сульфиды цинка и меди не образуются. Следовательно, их нет в составе полимерных композиций.

Известны композиции (Аналог 2) на основе полиметилметакрилата, содержащие сульфиды кадмия, свинца и цинка (Смагин В.П., Еремина Н.С., Давыдов Д.А., Назарова К.В., Мокроусов Г.М. Фотолюминесценция сульфида кадмия в композициях на основе полиметилметакрилата // Неорганические материалы. 2016. Т. 52. №6. С. 664-671). Композиции получены взаимодействием трифторацетатов металлов с тиоацетамидом в метилметакрилате. Отверждение композиций проведено радикальной полимеризацией метилметакрилата в блоке. Композиции поглощают электромагнитное излучение видимой области спектра и люминесцируют в спектральном диапазоне >600 нм.

Композиции (Аналога 2) не люминесцируют в спектральном диапазоне 400-550 нм. Это объясняется отсутствием в их составе ионов меди, выступающих в качестве компонента, легирующего ZnS, придающего способность композициям люминесцировать в данном спектральном диапазоне. Наличие в составе композиции сульфидов кадмия и свинца усложняет цвет свечения композиций за счет характерной для них люминесценции в спектральном диапазоне >600 нм.

Известны композиции (Аналог 3) на основе полиметилметакрилата и/или полистирола, содержащие сульфиды кадмия, свинца и цинка, ионы лантаноидов, а также фотоактивные добавки (2,2'-дипиридил, 1,10-фенантролин), являющиеся сенсибилизаторами люминесценции лантаноидов (Смагин В.П., Исаева А.А. Светопреобразующие металлсодержащие полимерные композиции и способ их получения. Патент РФ №2610614 С2, опубл. 14.02.2017. Бюл. №5; Смагин В.П., Исаева А.А., Еремина Н.С. Люминесцирующие металлсодержащие полимеризуемые композиции и способ их получения. Патент РФ №2615701, опубл. 06.04.2017. Бюл. №10). Композиции получены взаимодействием трифторацетатов кадмия, свинца, цинка с тиоацетамидом в среде метилметакрилата. Последующим введением в их состав трифторацетатов лантаноидов и, при необходимости, одновременным с трифторацетатами лантаноидов или последующим введением 2,2'-дипиридила и/или 1,10-фенантролина для увеличения интенсивности люминесценции лантаноидов. Отверждение композиций до стеклообразного состояния проводят радикальной полимеризацией метилметакрилата в блоке.

Недостатком данных композиций (Аналог 3), как и композиций аналога 2, является отсутствие в их составе ионов меди, легирующих сульфид цинка. Следовательно, композиции не способны проявлять люминесценцию в спектральной области 400-550 нм, которая характерна для сульфида цинка, легированного ионами меди. Также, их недостатком является сложность состава, приводящая к уменьшению светопропускания в видимой области спектра, включая область 400-550 нм.

Известны композиции (Прототип) на основе полистирола и/или полимеров эфиров (мет)акриловой кислоты, содержащие сульфиды кадмия, свинца и цинка (Смагин В.П., Давыдов Д.А., Унжакова Н.М. Способ получения прозрачных металлсодержащих полимеризуемых композиций. Патент РФ №2561278 С1. Опубл. 27.08.2015. Бюл. №24). Композиции получены взаимодействием растворимых солей металлов или их смесей с органическими серосодержащими соединениями, взятых в мольных соотношениях, не превышающих 1:1,5, в среде стирола и/или эфиров (мет)акриловой кислоты при мольном отношении в смеси стирола к эфирам (мет)акриловой кислоты от 0 до 1, при нагревании в интервале температур 70-90°С в течение 5-20 минут. В качестве растворимых солей металлов для проведения синтеза взяты соли тригалогенуксусных кислот, из которых преимущественно используются соли трифторуксусной и/или трихлоруксусной кислот. В качестве органических серосодержащих соединений преимущественно применяется тиоацетамид. В результате проведения синтеза в указанных условиях образуются полимеризуемые композиции содержащие сульфиды кадмия, свинца и цинка. Отверждение композиций проведено радикальной полимеризацией стирола и/или эфиров (мет)акриловой кислоты в блоке.

Недостатком композиций является то, что они не люминесцируют в спектральном диапазоне 400-550 нм. Также недостатком является сложность состава композиций. Нахождение в составе композиций сульфидов кадмия и свинца приводит к возникновению характерной для них люминесценции в спектральном диапазоне >600 нм. Это усложняет цвет свечения композиций.

Целью настоящего изобретения является разработка оптически прозрачных металлсодержащих полимерных композиций, люминесцирующих в интервале длин волн 400-550 нм с максимумом люминесценции в области синего спектрального диапазона. Поставленная цель достигается тем, что в качестве основы композиций используются полимеры эфиров (мет)акриловой кислоты (полиалкил(мет)акрилаты), а в качестве люминесцирующего компонента сульфид цинка, легированный ионами меди.

Синтез сульфида цинка, легированного ионами меди, проводится непосредственно в среде мономера - эфира (мет)акриловой кислоты или их смеси, взаимодействием трифторацетатов и/или трихлорацетатов цинка и меди с тиоацетамидом при нагревании в интервале температур 70-90°С в течение 5-20 минут. Концентрация сульфида цинка в полимеризуемой смеси не должна превышать 0,10 моль/л, а концентрация ионов меди находиться в интервале от 0,00010 моль/л до 0,010 моль/л. Отверждение композиций проводится полимеризацией мономера в блоке одним из известных способов.

Синтез композиций проводится по следующей прописи:

1. В предварительно очищенном мономере - эфире (мет)акриловой кислоты или их смеси, являющимся одновременно реакционной средой синтеза легированного ионами меди сульфида цинка и предшественником основы стеклообразной композиции (полиалкил(мет)такрилата), растворяют заданное количество трифторацетата и/или трихлорацетата цинка и меди.

2. В раствор, полученный по п. 1, добавляют тиоацетамид (ТАА) в мольном соотношении Zn : TAA непревышающем 1:1,5.

3. Раствор, полученный по п. 2., нагревают в интервале температур 70-90°С в течение 5-20 минут, обеспечивая образование в растворе сульфида цинка, легированного ионами меди.

4. В раствор, полученный по п. 3, при необходимости, добавляют инициатор полимеризации.

5. Полученный по п. 4 раствор переводят в стеклообразное состояние полимеризацией мономера в блоке одним из известных способов.

Существенными отличиями предлагаемого решения от Прототипа являются:

- Присутствие в составе композиций ионов меди, которые выступают в качестве компонента, легирующего сульфид цинка, обеспечивающего люминесценцию в диапазоне длин волн 400-550 нм с максимумом полосы в синей области спектра.

- Отсутствие в составе композиций сульфидов кадмия и свинца с характерной для них люминесценцией в спектральной области >600 нм, отрицательно влияющей на цвет люминесцентного свечения.

Для получения композиций используются.

а). Эфиры (мет)акриловой кислоты в качестве основы жидкой композиций. Одновременно они являются реакционной средой, в которой происходит химическая реакция между трифторацетатами и/или трихлорацетатами цинка, меди и тиоацетамидом с образованием легированного ионами меди сульфида цинка, а также предшественником основы стеклообразной композиции, которая образуется при полимеризации эфиров (мет)акриловой кислоты в блоке одним из известных способов. Выбор эфиров (мет)акриловой кислоты в качестве основы жидких композиций обусловлен их высокой прозрачностью в оптической области спектра (250-1000 нм). Они являются мономерами наиболее прозрачных полимеров (полиалкил(мет)акрилаты). В качестве мономера предпочтительнее использовать метилметакрилат. Метилметакрилат и получаемый при его полимеризации полимер - полиметилметакрилат по сравнению с известными оптическими мономерами и полимерами характеризуются наибольшим светопропусканием в оптической области спектра. Применение этих соединений позволяет до минимума уменьшить влияние основы (мономер, полимер) на спектральные свойства в области прозрачности композиций. Метилметакрилат является коммерчески доступным, технология получения его полимеров хорошо изучена и широко применяется в промышленности. Применение алкил(мет)акрилатов и, в частности метилметакрилата, позволяет получать прозрачные в оптической области спектра люминесцирующие металлсодержащие композиции.

б). Трифторацетат и/или трихлорацетат цинка являются предшественниками сульфида цинка. Трифторацетат и/или трихлорацетат меди обеспечивают доставку ионов меди в реакционную смесь и легирование образующегося в растворе сульфида цинка. Использование в качестве металлсодержащих соединений солей трифторуксусной и трихлоруксусной кислот обусловлено их хорошей растворимостью в эфирах (мет)акриловой кислоты (Смагин В.П., Майер Р.А., Мокроусов Г.М., Чупахина Р.А. Полимеризуемый состав для получения прозрачных полимерных материалов / Патент СССР №1806152 A3, опубл. 30.03.93 г., бюл. №12.). Предпочтительнее использовать трифторацетаты металлов. Они характеризуются большей растворимостью в эфирах (мет)акриловых кислот. Трифторуксусная кислота, в отличие от других тригалогенуксусных кислот, при нормальных условиях находится в жидком агрегатном состоянии, что облегчает синтез солей. Выбор солей цинка и меди, кроме их хорошей растворимости в эфирах (мет)акриловой кислоты, связан с их способностью образовывать сульфиды и сульфид-содержащие композиции, люминесцирующие в диапазоне длин волн 400-550 нм с максимумом в синей области спектра.

в). Тиоацетамид в качестве источника сульфид-ионов. Выбор тиоацетамида в качестве источника сульфид-ионов обусловлен его технологичностью (не газообразное состояние), растворимостью в эфирах (мет)криловых кислот, способностью при взаимодействии с трифторацетатами и трихлорацетатами металлов в среде эфиров (мет)акриловых кислот при нагревании образовывать устойчивые композиции, содержащие сульфиды металлов. Тиоацетамид является коммерчески доступным соединением. При температуре окружающей среды находится в твердом агрегатном состоянии. Его применение позволяет получать оптически прозрачные люминесцирующие металлсодержащие полимерные композиции.

Примеры заявляемых люминесцирующих металлсодержащих полимерных композиций с описанием способа их получения:

Пример 1.

1. B 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,00029 г (0,00010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1: 0,01.

2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоина в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°С в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, спектр 1). Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 2.

1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.

2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, раствор подвергают термической полимеризации в блоке при температуре 60-70°С в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, спектр 2). Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 3.

1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0290 г (0,010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:1.

2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоина в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, спектр 3). Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 4.

1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,291 г (0,10 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,01.

2. В раствор, полученный по п. 1, добавляют 0,075 г (0,10 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 5.

1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.

2. В раствор, полученный по п. 1, добавляют 0,0113 г (0,015 моль/л) (тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1,5.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, спектр 4). Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 6.

1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0015 г (0,00050 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,05.

2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 70°С в течение 5 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 7.

1. В 10,0 мл предварительно очищенного этилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.

2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 8.

1. В 10,0 мл смеси, состоящей из 5,0 мл предварительно очищенного метилметакрилата и 5,0 мл предварительно очищенного этилакрилата, растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0029 г (0,0010 моль/л) трифторацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.

2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 9.

1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0390 г (0,010 моль/л) трихлорацетата цинка и 0,0039 г (0,0010 моль/л) трихлорацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.

2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трихлорацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Пример 10.

1. В 10,0 мл предварительно очищенного метилметакрилата растворяют 0,0291 г (0,010 моль/л) трифторацетата цинка и 0,0039 г (0,0010 моль/л) трихлорацетата меди, обеспечивая мольное соотношение Zn : Cu=1:0,1.

2. В раствор, полученный по п. 1, добавляют 0,0075 г (0,010 моль/л) тиоацетамида, обеспечивающего мольное соотношение с трифторацетатом цинка 1:1.

3. Раствор, полученный по п. 2., нагревают при температуре 90°C в течение 20 минут.

4. В раствор, полученный по п. 3, добавляют перекись бензоила в количестве 0,10% от массы мономера.

5. Раствор, полученный по п. 4, подвергают термической полимеризации в блоке при температуре 60-70°C в течение 24 часов.

Получают люминесцирующую металлсодержащую полимерную композицию состава ПММА/ZnS : Cu в стеклообразном состоянии. В спектре люминесценции композиции присутствует спектральная полоса в интервале длин волн 400-550 нм с максимумом в синей области спектра. Светопропускание композиции при длинах волн >400 нм достигает 90-92%.

Анализ примеров показывает, что люминесцирующие металлсодержащие оптически прозрачные полимерные композиции образуются после введения в мономеры оптических полимеров (эфиры (мет)акриловых кислот, предпочтительнее метилметакрилат) трифтор- и/или трихлорацетатов цинка и меди (предпочтительнее трифторацетатов цинка и меди), а также тиоацетамида в качестве источника сульфид-ионов. При этом, концентрация трифтор- и/или трихлорацетата цинка в полимеризуемой смеси не должна превышать 0,10 моль/л, концентрация трифтор- и/или трихлорацетата меди должна находиться в интервале от 0,00010 моль/л до 0,010 моль/л. Мольное соотношение трифтор- и/или трихлорацетата цинка и тиоацетамида в растворе не должно превышать 1:1,5. Далее, проведение химической реакции между трифтор- и/или трихлорацетатами металлов и тиоацетамидом в растворе при температуре 70-90°C в течение 5-20 минут и отверждение растворов полимеризацией эфиров (мет)акриловых кислот в блоке одним из известных способов. В итоге, образуются стеклообразные полимерные композиции. Светопропускание композиций при длинах волн >400 нм достигает 90-92% при их толщине до 5 мм. Способность композиций люминесцировать в интервале длин волн 400-550 нм с максимумом в синей области спектра (фиг. 1, 434-450 нм) связана с протеканием в среде эфиров (мет)акриловых кислот при нагревании химической реакции между трифтор- и/или трихлорацетатами металлов и тиоацетамидом с образованием легированного ионами меди сульфида цинка, находящегося после отверждения растворов в стеклообразной полимерной матрице. Нагревание при температуре больше 90°C или меньше 70°C не приводит к желаемому результату. Композиции разрушаются или люминесцирующий продукт реакции не образуется. Нагревание растворов менее 5 и более 20 мин не приводит к желаемому результату. В первом случае люминесцирующий продукт не образуется, во втором случае нагревание является не эффективным или композиции разрушаются. При нагревании растворов, содержащих трифтор- и/или трихлорацетат цинка в концентрации больше 0,10 моль/л и при мольном соотношении Zn : TAA>1:1,5, сульфид цинка выделяется в виде грубодисперсной фазы. При содержании трифтор- и/или трихлорацетата меди в концентрации меньше 0,00010 моль/л заявляемый результат не проявляется, при его содержании больше 0,010 моль/л легирование сульфида цинка не происходит, сульфид меди выделяется в виде грубодисперсной фазы.

Таким образом, при использовании трифтор- и/или трихлорацетатов цинка, меди и тиоацетамида в заявляемом концентрационном диапазоне и мольных отношениях для приготовления растворов, проведения синтеза в соответствии с приведенной прописью, образуются прозрачные металлсодержащие полимерные композиции, люминесцирующие в спектральном диапазоне 400-550 нм с максимумом в синей области спектра (фиг. 1). Высокое светопропускание композиций подчеркивает их однородность. Неизменность спектральных свойств в течение длительного времени характеризует их стабильность. Возможность получения в стеклообразном состоянии и изготовления из них изделий различной формы и размера подчеркивает их технологичность. Доступность исходных соединений, незначительный расход на единицу продукции, простота способа получения, а также совокупность получаемых свойств позволяет использовать металлсодержащие полимерные композиции для изготовления люминесцирующих прозрачных полимерных материалов для светотехники, опто- и микроэлектроники.

Люминесцирующая металлсодержащая полимерная композиция, предназначенная для преобразования электромагнитного излучения, на основе эфиров (мет)акриловой кислоты и сульфида цинка, отличающаяся тем, что содержит ионы меди в концентрации от 0,00010 моль/(л полимеризуемой композиции) до 0,010 моль/(л полимеризуемой композиции).
Люминесцирующие металлсодержащие полимерные композиции
Источник поступления информации: Роспатент

Показаны записи 51-60 из 78.
05.02.2020
№220.017.fe9d

Способ выделения бактерий p. bacillus из ризопланы и ризосферы прикорневой зоны растений

Изобретение относится к биотехнологии. Предложен способ выделения бактерий p. Bacillus из ризопланы и ризосферы прикорневой зоны растений. Способ включает выдерживание измельченных корней растений совместно с прилегающими частичками почвы в серной кислоте с концентрацией от 75% до 96% и...
Тип: Изобретение
Номер охранного документа: 0002713120
Дата охранного документа: 03.02.2020
17.02.2020
№220.018.0351

Способ борирования стальных деталей под давлением и контейнер с плавким затвором для его осуществления

Изобретение относится к металлургии, а именно к способам нанесения боридных покрытий на стальные детали при химико-термической обработке в условиях индукционного нагрева, и может найти применение в машиностроении для повышения долговечности деталей машин, работающих в условиях интенсивного...
Тип: Изобретение
Номер охранного документа: 0002714267
Дата охранного документа: 13.02.2020
24.03.2020
№220.018.0f17

Двуоболочечная бронебойная пуля для нарезного и гладкоствольного огнестрельного оружия

Изобретение относится к области огнестрельного оружия, в частности к производству метательных снарядов (пуль), предназначенных для поражения легкобронированных целей. Техническим результатом является создание двуоболочечной бронебойной пули, которая может быть выполнена в бронебойном,...
Тип: Изобретение
Номер охранного документа: 0002717325
Дата охранного документа: 20.03.2020
23.05.2020
№220.018.2012

Способ получения галлатов неодима ndgao, ndgao и ndgao

Изобретение относится к области твердофазных химических превращений неорганических веществ, а именно синтезу тройных соединений галлатов неодима, и может быть использовано в химической промышленности, микроэлектронике и оптоэлектронике. Способ получения галлатов неодима NdGaO, NdGaO и NdGaO...
Тип: Изобретение
Номер охранного документа: 0002721700
Дата охранного документа: 21.05.2020
29.05.2020
№220.018.21c6

Питательная среда для культивирования bacillus subtilis вкпм в-12079

Настоящее изобретение относится к биотехнологии и может быть использовано для культивирования бактерий Bacillus subtilis ВКПМ В-12079. Питательная среда для культивирования бактерий Bacillus subtilis ВКПМ В-12079 содержит пептон ферментативный, дрожжевой экстракт, натрий хлористый, горох...
Тип: Изобретение
Номер охранного документа: 0002722071
Дата охранного документа: 26.05.2020
05.06.2020
№220.018.2428

Набор синтетических олигонуклеотидов для выявления днк представителей семейства оленевые

Изобретение относится к биотехнологии, в частности к области молекулярной генетики, геносистематики. Использование набора синтетических олигонуклеотидов позволяет достоверно идентифицировать представителей семейства Оленевые. Изобретение может быть использовано для выявления фальсификата...
Тип: Изобретение
Номер охранного документа: 0002722758
Дата охранного документа: 03.06.2020
21.06.2020
№220.018.28cd

Способ контроля структурного состояния алмазоподобных тонких пленок

Изобретение относится к технологии производства тонких алмазных пленок и может быть использовано для оперативного контроля структурного состояния (распределения sp- и sp-связей). Способ контроля структурного состояния алмазоподобных тонких пленок включает сканирование поверхности пленок зондом...
Тип: Изобретение
Номер охранного документа: 0002723893
Дата охранного документа: 18.06.2020
24.06.2020
№220.018.29e3

Способ пластической деформации алюминия и его сплавов

Изобретение относится к области пластической обработки металлов, в частности к способу пластической деформации алюминия и его сплавов, заключающийся в одновременном термомеханическом и ультразвуковом воздействии. Ультразвуковое воздействие на металл или сплав осуществляется в ходе всего...
Тип: Изобретение
Номер охранного документа: 0002724209
Дата охранного документа: 22.06.2020
27.06.2020
№220.018.2bb8

Способ термомеханической обработки сплавов на основе никелида титана для реализации эффекта памяти формы

Изобретение относится к металлургии, а именно к термомеханической обработке никелида титана и может быть использовано при подготовке сплавов для получения стабильного значения обратимого деформационного ресурса в изделиях типа силового элемента, используемого в автоматике или медицинских...
Тип: Изобретение
Номер охранного документа: 0002724747
Дата охранного документа: 25.06.2020
08.08.2020
№220.018.3df3

Рекомбинантная плазмида pet32-trex vic, обеспечивающая синтез химерного белка прохимозина vicugna pacos, и штамм escherichia coli bl21(de3)plyse pet32-trx vic-продуцент химерного белка прохимозина vicugna pacos

Группа изобретений относится к рекомбинантной плазмиде pET32-TrexVic, обеспечивающей синтез химерного белка прохимозина Vicugna pacos, а также рекомбинантному штамму Escherichia coli, продуцирующему указанный белок. Рекомбинантная плазмида pET32-TrexVic имеет размер 6826 пар оснований (п.о.) и...
Тип: Изобретение
Номер охранного документа: 0002729403
Дата охранного документа: 06.08.2020
Показаны записи 1-5 из 5.
10.05.2015
№216.013.4958

Способ определения типа психики индивидуума

Изобретение относится к области психологии и медицины и может быть использовано для определения типа психики индивидуума с более высокой надежностью определения их результатов. Формируют выборку индивидуумов с различными известными типами психики. Выбирают и измеряют внешние параметры...
Тип: Изобретение
Номер охранного документа: 0002550283
Дата охранного документа: 10.05.2015
27.08.2015
№216.013.7407

Способ получения прозрачных металлсодержащих полимеризуемых композиций

Изобретение относится к технологии материалов, преобразующих электромагнитное излучение. Способ получения прозрачных металлсодержащих полимеризуемых композиций, предназначенных для изготовления избирательно поглощающих электромагнитное излучение материалов для светотехники, опто- и...
Тип: Изобретение
Номер охранного документа: 0002561278
Дата охранного документа: 27.08.2015
25.08.2017
№217.015.9de7

Светопреобразующие металлсодержащие полимеризуемые композиции и способ их получения

Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение. Оно используется для получения селективно поглощающих или пропускающих электромагнитное излучение и люминесцирующих металлсодержащих полимерных композиций для светотехники, опто- и микроэлектроники....
Тип: Изобретение
Номер охранного документа: 0002610614
Дата охранного документа: 14.02.2017
25.08.2017
№217.015.bad9

Люминесцирующие металлсодержащие полимеризуемые композиции и способ их получения

Изобретение относится к химии и технологии материалов, преобразующих электромагнитное излучение, и используется для получения люминесцирующих и избирательно поглощающих электромагнитное излучение металлсодержащих полимерных композиций для светотехники, опто- и микроэлектроники. Основой...
Тип: Изобретение
Номер охранного документа: 0002615701
Дата охранного документа: 06.04.2017
16.01.2019
№219.016.afa0

Светопреобразующие полимерные композиции

Изобретение относится к светопреобразующим полимерным материалам для светотехники, опто- и микроэлектроники. Светопреобразующий полимерный материал получен термической полимеризацией раствора метилметакрилата, содержащего трифторацетат цинка, трифторацетат меди, тиоацетамид (ТАА) и...
Тип: Изобретение
Номер охранного документа: 0002676986
Дата охранного документа: 14.01.2019
+ добавить свой РИД