×
18.01.2019
219.016.b08e

Результат интеллектуальной деятельности: Способ электрохимического получения компактных слоев металлического рения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электрохимического получения компактных слоев элементарного металлического рения из его соединений путем электролиза расплавов. Проводят электролиз ренийсодержащего компонента в расплаве солей, где в качестве ренийсодержащего компонента используют перренат калия. Электролиз ведут в расплаве, содержащем смесь солей из 16,85-37,28 мас.% фторида калия, 73,05-40,39 мас.% фторбората калия и 10,1-22,33 мас.% оксида бора при введении в эту смесь перрената калия в количестве 9-15 мас.%. Процесс ведут в атмосфере воздуха при температуре от 500 до 600°С и катодной плотности тока от 20 до 100 мА/см. Способ позволяет достичь снижения температуры электролиза и исключения использования защитной атмосферы инертного газа. 5 пр.

Изобретение относится к области электрохимического получения компактных слоев элементарного металлического рения из его соединений путем электролиза расплавов.

К неэлектрохимическим способам получения металлического рения из ренийсодержащего сырья относятся способы, включающие восстановление перрената аммония путем восстановления водородом, где процесс протекает согласно уравнению:

Так, в такого рода способе получения рения [1], перренат аммония перед восстановлением измельчают в барабанных мельницах с мелющими телами из обломков рениевых штабиков. Далее тонкий слой перената аммония (6-8 мм) восстанавливают водородом в трубчатых печах. При этом обеспечивают движение лодочек в печи в противоток подаче водорода. Восстановление проводят в две стадии. Первая - при 350-370°С до образования ReO2, вторая - при 950-970°С до получения металлического рения. При этом полученный в результате восстановления порошок рения является крупнозернистым, поэтому его приходится размалывать в шаровых мельницах.

Такие приемы, как измельчение ренийсодержащего сырья в барабанных мельницах, размол полученного в результате восстановления крупнозернистого порошка рения усложняет технологию получения металлического рения. Получение рения в две стадии увеличивает время, энергозатраты и количество требуемых реагентов.

Известен одностадийный способ получения мелкозернистого порошка металлического рения [2]. В данном способе восстановление перрената аммония осуществляют противотоком остро осушенного водорода с непрерывным продвижением лодочки с перренатом аммония в трубчатой печи при температуре 300-330°С. Перед восстановлением проводят продувку порошка перрената аммония аргоном с нагревом в трубчатой печи до температуры 200°С.

Помимо того, что вышеописанные способы требуют механической подготовки сырьевого компонента, использования газообразного водорода, получение рения в виде порошков требует их дальнейшего компактирования методами порошковой металлургии. Электрохимические способы получения металлического рения лишены этих недостатков.

Наиболее близким к заявляемому является способ электролитического получения сплошных слоев рения из расплавов хлоридов щелочных металлов, описанный в источниках [3, 4]. Согласно данному способу в качестве источника рения используют гексахлорренат щелочного металла (Me2ReCl6 где Me - K, Na, Cs). Растворенный в расплаве хлоридов щелочных металлов гексахлорренат щелочного металла подвергают электролизу при температуре 700-850°С и получают компактный рениевый слой. Недостатками данного способа являются необходимость подготовки гексахлоррената щелочного металла из порошкового рения или из перрената щелочного металла, а также относительно высокие температуры электролиза. Используемые соли гигроскопичны и при наличии контакта с кислородом при таких температурах процесса способны переходить в оксихлориды, что нарушает процесс получения компактного осадка. Поэтому данный известный электрохимический способ требует использования защитной атмосферы с контролируемым содержанием влаги и кислорода и его проводят в атмосфере аргона. Следует отметить и то, что гексахлорренат щелочного металла, используемый в данном способе в качестве ренийсодержащего сырья, синтезируют из металлического рения, получаемого восстановлением перрената аммония водородом по вышеописанной реакции (1). Иными словами, гексахлорренат щелочного металла не является первичным источником ренийсодержащего сырья, технология его получения достаточно сложна, что отражается на стоимости этого компонента.

Задачей изобретения является удешевление электрохимического получения компактных слоев металлического рения за счет исключения использования защитной атмосферы инертного газа, а также возможности использования экономически более выгодного источника ренийсодержащего сырья.

Для этого предложен способ электрохимического получения компактных слоев металлического рения, который, как и способ - прототип, включает электролиз ренийсодержащего компонента в расплаве солей. Способ отличается тем, что в качестве ренийсодержащего компонента используют перренат калия, электролиз которого ведут в расплаве, содержащим смесь солей из 16,85-37,28 мас. % фторида калия, 73,05-40,39 мас. % фторбората калия и 10,1-22,33 мас. % оксида бора при введении в эту смесь перрената калия в количестве 9-15 мас. %, при этом процесс ведут в атмосфере воздуха в интервале температур от 500 до 600°С, при варьировании катодной плотности тока от 20 мА/см2 до 100 мА/см2.

В отличие способа-прототипа, в котором в качестве ренийсодержащего компонента используют требующий подготовки гексахлорренат щелочного металла, электролиз гексахлоррената щелочного металла ведут в расплаве хлоридов щелочных металлов в атмосфере аргона, в предлагаемом способе в качестве ренийсодержащего используют экономически более доступный источник первичного сырья - перренат калия. Электролиз перрената калия ведут в расплаве солей, представляющих собой легкоплавкий электролит системы KF-KBF4-B2O3. Данный электролит позволяет достигать температур до 600°С и ниже. При таких значениях температур возможно проводить электролиз в гомогенном жидком электролите. Используемый в качестве ренийсодержащего компонента перренат калия химически растворим при температурах процесса в достаточных для электролиза и получения компактных слоев рения металлического количествах. В отличие от используемых в прототипе гексахлорренатов, переходящих в оксихлориды, в заявленном способе рений в структуре материала остается окруженным атомами кислорода. Это приводит к тому, что равновесие кислород в расплаве/кислород в воздухе не оказывает значительного влияния на структуру электролита и дает возможность отказаться от использования защитной атмосферы из инертного газа с контролируемыми параметрами содержания кислорода и влаги. Граничные количественные значения компонентов состава солей, а также перрената калия определены экспериментальным путем. Таким образом, заявляемый способ можно охарактеризовать, как электролиз перрената калия в расплавах на основе KF-KBF4-B2O3; проводимый в атмосфере воздуха.

Использование сочетания KF-KBF4-B2O3+KReO4 при электролизе имеет значительные преимущества по сравнению с прототипом. Перренат калия не требуется предварительно измельчать, не требуется также преобразовывать рений и/или перренат щелочного металла в хлорид. Способ проводят при снижении температуры электролиза, при этом использование защитной атмосферы не требуется. Использование перрената калия в качестве первичного источника ренийсодержащего сырья является экономически более выгодным по сравнению с получаемым из него гексахлорренатом щелочного металла.

Новый технический результат, достигаемый заявленным изобретением, заключается в снижении температуры электролиза и исключении использования защитной атмосферы инертного газа.

Предложенный способ иллюстрируется примерами электролиза перрената калия в расплаве солей, осуществляемого в атмосфере воздуха.

Пример 1

В стеклоуглеродный тигель-анод в атмосфере воздуха загружали смесь солей следующего состава: KF(37,28)-KBF4(40,39)-B2O3 (22,33) мас. % и доводили до плавления при 500°С. Затем добавляли 15 мас. % KReO4. Электролиз проводили на графитовом катоде, погруженном в центр тигля в гальваностатическом режиме при катодной плотности тока ik=20 мА/см2. Выход определяли весовым методом. В результате на электроде получен компактный слой рения. Выход по току катодного продукта составил ~97%.

Пример 2

Процедура опыта по примеру 2, как и всех последующих опытов, аналогична процедуре опыта по примеру 1. Состав электролита: KF(37,28)-KBF4(40,39)-В2O3(22,33) мас. %, рабочая температура процесса электролиза 600°С. Добавка 15 мас. % KReO4. Катод - графитовый стержень. Катодная плотность тока ik=20 мА/см2. В результате на электроде получен компактный слой рения. Выход по току катодного продукта ~99,8%.

Пример 3

Состав электролита: KF(37,28)-KBF4(40,39)-B2O3(22,33) мac. %, рабочая температура процесса электролиза 600°С. Добавка 15 мас. % KReO4. Катод - графитовый стержень. Катодная плотность тока ik=50 мА/см2. В результате на электроде получен компактный слой рения. Выход по току катодного продукта ~99,0%.

Пример 4

Состав электролита: KF(16,85)-KBF4(73,05)-B2O3(10,1) мac. %, рабочая температура процесса электролиза 500°С. Добавка 15 мас. % KReO4. Катод - графитовый стержень. Катодная плотность тока ik=100 мА/см2. В результате на электроде получен компактный слой рения. Выход по току катодного продукта ~98,5%.

Пример 5

Состав электролита: KF(16,85)-KBF4(73,05)-B2O3(10,1) мac. %, рабочая температура процесса электролиза 500°С. Добавка 9 мас. % KReO4. Катод - графитовый стержень. Катодная плотность тока ik=100 мА/см2. В результате на электроде получен компактный слой рения. Выход по току катодного продукта ~96,5%.

Таким образом, заявленный способ позволяет удешевить электрохимическое получение компактных слоев металлического рения за счет исключения использования защитной атмосферы инертного газа, а также возможности использования экономически более доступного в сравнении с гексахлорренатом щелочного металла, первичного сырья.

Источники информации:

1. Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов // Металлургия. - 1991 г. - С. 233;

2. Патент RU 2511549, публ. 10.04.2014;

3. Исаков А.В., Аписаров А.П., Никитина А.О. Электролитическое получение и отжиг материала Ir-Re-Ir // Цветные металлы. - 2017. - №11. - С. 55-60;

4. Молчанов A.M., Фазлутдинов К.К., Минченко Л.М., Исаков А.В., Зайков Ю.П. Изучение влияния кислорода в расплавленном электролите CsCl - Cs2ReCl6 на текстуру иморфологию рениевых покрытий // Вестник Казанского технологического университета. - 2012. - Т. 15. №16. - С. 78-81.

Способ электрохимического получения компактных слоев металлического рения, включающий электролиз в расплаве солей с ренийсодержащим компонентом, отличающийся тем, что в качестве ренийсодержащего компонента используют перренат калия, при этом электролиз ведут в расплаве, содержащем смесь солей из 16,85-37,28 мас.% фторида калия, 73,05-40,39 мас.% фторбората калия и 10,1-22,33 мас.% оксида бора при введении в эту смесь перрената калия в количестве 9-15 мас.%, процесс ведут в атмосфере воздуха при температуре от 500 до 600°С и катодной плотности тока от 20 до 100 мА/см.
Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
Показаны записи 11-20 из 59.
10.03.2016
№216.014.bf06

Способ тонкослойного электролитического получения свинца

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца. При этом электролиз ведут с использованием пропитанной расплавом галогенидов солей керамической диафрагмы,...
Тип: Изобретение
Номер охранного документа: 0002576409
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.dd29

Электрохимический способ получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы

Изобретение относится к электрохимическому способу получения сложных гибридных каталитических систем на основе модифицированного углерода, содержащих на поверхности оксидные вольфрамовые бронзы, в котором каталитические системы получают из расплава 30 мол.% KWO, 25 мол.% LiWO и 45 мол.% WO в...
Тип: Изобретение
Номер охранного документа: 0002579119
Дата охранного документа: 27.03.2016
10.08.2016
№216.015.5626

Способ получения лигатуры алюминий-скандий

Изобретение относится к области металлургии цветных металлов и может быть использовано для получения лигатуры алюминий-скандий. Способ включает приготовление и расплавление смеси, содержащей фториды алюминия, фториды натрия и алюминий, подачу оксида скандия, алюмотермическое восстановление...
Тип: Изобретение
Номер охранного документа: 0002593246
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.79b0

Электролитический способ непрерывного получения алюминиевого сплава со скандием

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас. % скандия в условиях промышленного производства алюминия. Способ электролитического...
Тип: Изобретение
Номер охранного документа: 0002599312
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7a9b

Способ электрохимического получения порошка иридия с удельной поверхностью более 5 м/г

Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы. Электролиз ведут в...
Тип: Изобретение
Номер охранного документа: 0002600305
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.86ff

Способ электролитического алитирования изделий из низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитного покрытия на изделия из низкоуглеродистой стали, которые могут эксплуатироваться при высоких температурах. Способ включает электролиз галогенидного алюминийсодержащего расплава при использовании...
Тип: Изобретение
Номер охранного документа: 0002603744
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.90cc

Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного...
Тип: Изобретение
Номер охранного документа: 0002603844
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9b31

Способ получения лигатурного сплава алюминий-бор

Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в...
Тип: Изобретение
Номер охранного документа: 0002610182
Дата охранного документа: 08.02.2017
25.08.2017
№217.015.a7dd

Способ обработки проволоки для катализатора, выполненной из металла платиновой группы

Изобретение относится к области электрохимической обработки металлов и может быть использовано при изготовлении катализаторов химических реакций. Способ обработки проволоки для катализатора, выполненной из металла платиновой группы, осуществляют переменным током в водном растворе минеральной...
Тип: Изобретение
Номер охранного документа: 0002611463
Дата охранного документа: 22.02.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
+ добавить свой РИД