×
13.01.2019
219.016.af6b

Результат интеллектуальной деятельности: Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса

Вид РИД

Изобретение

Аннотация: Система восстановления курсовой ориентации (ВО) космического аппарата (КА) с использованием орбитального гирокомпаса (ОГК) содержит прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей (БИУС), навигационно-баллистический блок (НББ), содержащий центральный бортовой компьютер (ЦБК) и аппаратуру спутниковой навигации (АСН), девять сумматоров, три модуля усиления и преобразования (МУП, МУП, МУП), косинусный (КПУ) и синусный (СПУ) преобразователи углов, четыре блока компенсации взаимовлияния каналов ориентации (БКВК), три интегратора, модуль логического нуля (МЛН), модуль вычисления курсового угла (МВКУ), модуль формирования команды (МФК), модуль расчета программного поворота (МРПП), пять нормально-замкнутых ключей (К1÷К5), пять нормально-разомкнутых ключей (К1÷К5), систему стабилизации (СС). Обеспечивается повышение качества и уменьшение времени переходного процесса при восстановлении курсовой ориентации КА с применением ОГК бесплатформенного типа. 3 ил.

Предлагаемое изобретение относится к области космической техники и может быть использовано для восстановления курсовой ориентации космического аппарата (КА) относительно орбитальной системы координат (ОСК) с применением орбитального гирокомпаса (ОГК) бесплатформенного типа.

В известных системах ориентации, построенных по принципу орбитального гирокомпасирования, восстановление курсовой ориентации выполняется путем простого включения режима ОГК после того как вертикаль КА построена с помощью прибора ориентации по Земле (ПОЗ), см. например, книгу [1] авторов Бесекерского В.А., Иванова В.А., Самотокина Б.Б. «Орбитальное гирокомпасирование». СПб. 251 с. 1993.

В книге рассмотрено устройство восстановления курсовой ориентации КА с помощью гироорбитанта (гироорбиты). К недостаткам работы устройства следует отнести большое время на восстановление курсовой ориентации и низкое качество переходного процесса, выражающееся в большой величине перерегулирования в каналах угловой ориентации КА порядка 5÷10°. Аналогичными недостатками обладают все, без исключения, известные типы ОГК, например, [3-6]. Это связано с тем, что в классическом ОГК восстановление курсовой ориентации осуществляется путем непосредственного включения режима гирокомпасирования, который принципиально не приспособлен к работе в таком режиме. При этом движение КА в сторону устойчивого полюса (плоскость орбиты) происходит слишком долго, некоординированно, с большим ошибками по каналам ориентации. Крайне негативно этот недостаток проявляется в системах управления орбитальных КА с релейным режимом стабилизации на реактивных двигателях.

Близким аналогом может служить техническое решение, представленное в патенте 2509690 RU, которое имеет указанные выше недостатки, но имеет возможности для их устранения.

Техническим результатом является повышение качества и существенное уменьшение времени переходного процесса при восстановлении курсовой ориентации КА с применением ОГК бесплатформенного типа.

В отличие от известного устройства, которое содержит прибор ориентации по Земле (ПОЗ), а так же последовательно включенные в канале крена первый сумматор, первый модуль усиления и преобразования (МУП), второй сумматор, третий сумматор, первый интегратор, выход и вход которого являются входами в контур системы стабилизации (СС) КА по крену соответственно по углу и угловой скорости, при этом выход первого интегратора одновременно подключен ко второму входу первого сумматора, содержащее в канале тангажа последовательно включенные четвертый сумматор, второй МУП, пятый и шестой сумматоры, второй интегратор, выход и вход которого являются входами в контур СС КА по тангажу соответственно по углу и угловой скорости, при этом выход второго интегратора одновременно подключен ко второму входу четвертого сумматора, содержащее в канале курса косинусный (КПУ) и синусный преобразователи углов (СПУ), вход первого из которых соединен со входом первого МУП, а вход второго соединен со входом второго МУП, при этом выходы обоих преобразователей подключены соответственно к первому и второму входам седьмого сумматора, который включен в цепь последовательно соединенных самого седьмого сумматора, третьего МУП, восьмого и девятого сумматоров и третьего интегратора, выход и вход которого являются входами в контур СС КА по курсу соответственно по углу и угловой скорости, содержащая четыре блока компенсации взаимовлияния каналов ориентации (БКВК), входы первого и второго из которых подключены к выходу третьего интегратора, а их выходы подключены ко вторым входам третьего и шестого сумматоров соответственно, вход третьего БКВК подключен к выходу первого интегратора, а выход подключен ко второму входу девятого сумматора, вход четвертого БКВК подключен к выходу второго интегратора, а выход подключен к третьему входу девятого сумматора, содержащая так же блок гироскопических измерителей угловых скоростей (БИУС), датчики которого установлены по связанным осям КА и навигационно-баллистический блок (НББ), в систему дополнительно введены модуль логического нуля (МЛН) с функцией «пересечения» сигналов , где ε заданное малое значение сигналов ПОЗ, например 0,1°, модуль вычисления курсового угла (МВКУ) с вычислительной функцией , где ωXi, ωZi - измеренные БИУС абсолютные угловые скорость КА в каналах крена и тангажа соответственно, модуль формирования команды (МФК) на подключение БИУС и ПОЗ к ОГК, модуль расчета программного поворота (МРПП), пять нормально-замкнутых ключей (КНЗ) и пять нормально разомкнутых ключей (КНР), при этом входы первого и второго КНЗ подключены к выходам ПОЗ по крену и тангажу, а их выходы - ко входам ИО в каналах крена и тангажа соответственно, входы третьего, четвертого и пятого КНЗ соединены с выходами БИУС в каналах крена, курса и тангажа, а их выходы подключены ко входам ИО в каналах крена, курса и тангажа соответственно, входы первого и второго КНР соединены с выходами ПОЗ по крену и тангажу, а их выходы подключены к первым входам первого и четвертого сумматоров соответственно, входы третьего, четвертого и пятого КНP соединены с выходами БИУС по крену, курсу и тангажу, а их выходы подключены ко вторым входам второго, восьмого и пятого сумматоров соответственно, первый и второй вход МЛН соединены с выходами ПОЗ соответственно по крену и тангажу, а его выход подключен к первому входу МВКУ, второй и третий входы которого подключены к выходам БИУС в каналах крена и тангажа соответственно, а выход подключен одновременно ко входам МФК и МРПП, при этом выход МФК подключен ко вторым входам всех КНЗ и всех КНР, а так же к первому входу МРПП, второй вход которого подключен к НББ, а его первый, второй и третий выходы подключены к третьим входам второго, восьмого и пятого сумматоров, а четвертый - ко вторым входам первого, второго, третьего и четвертого БКВК и вторым входам КПУ и СПУ.

На фигурах 1÷3 показан пример практической реализации предлагаемого устройства.

На фиг. 1 обозначено:

1 - ПОЗ прибор ориентации по Земле;

2 - БИУС блок гироскопических измерителей угловой скорости;

3 - НББ навигационно-баллистический блок, содержащий, центральный бортовой компьютер (ЦБК) и аппаратуру спутниковой навигации (АСН);

4÷12 - сумматоры;

13÷15 - МУП1, МУП2 МУП3 первый, второй и третий модули усиления и преобразования;

16÷17 - КПУ и СПУ косинусный и синусный преобразователи;

18÷21 - БКВК блоки компенсации взаимовлияния каналов ориентации;;

22÷24 - интеграторы;

25 - МЛН модуль логического нуля;

26 - МВКУ модуль вычисления угла курса;

27 - МФК модуль формирования команд;

28 - МРПП модуль расчета программного поворота;

КНЗ1÷КHP5 - нормально-замкнутые ключи;

КНР1÷КНР5 - нормально-разомкнутые ключи;

γП, ϑП - выходные сигналы ПОЗ по крену и тангажу соответственно;

ωX, ωY, ωZ - выходные сигналы БИУС в каналах крена, курса и тангажа соответственно;

СС - система стабилизации;

- орбитальная угловая скорость КА, выдаваемая НББ;

- орбитальная угловая скорость КА, реализуемая в ОГК;

- вычисленное и запомненное значение курсового угла на момент времени ti;

- текущее программное значение угла курса и скорость его изменения;

τ - относительное время программного движения КА;

- аргумент разности начального запомненного угла курса и текущего программного значения λ(τ);

- выходные сигналы ОГК в систему стабилизации КА по углам и угловым скоростям в каналах крена, курса и тангажа соответственно;

На фигурах 2 и 3 приведены результаты моделирования работы системы восстановления курсовой ориентации КА для известной системы (фиг. 2) и предложенной (фиг. 3).

На фигурах обозначено:

γgrad, ψgrad, θgrad - угловое положение КА относительно ОСК по крену, курсу и тангажу соответственно;

- абсолютные угловые скорости КА в проекциях на собственные оси крена, курса и тангажа.

Система ВО работает следующим образом.

В начальный момент времени выполняется приведение КА к местной вертикали, для чего сигналы ПОЗ по крену γП и тангажу γП через нормально-замкнутые ключи КНЗ1 и КНЗ 2 поступают в СС на исполнительные органы (ИО), например маховики. Одновременно с этим сигналы БИУС ωХ, ωY, ωZ в каналах крена, курса и тангажа через нормально-замкнутые ключи КНЗ 3, КНЗ 4 и КНЗ 5 так же подключены к СС для обеспечения устойчивости процесса стабилизации КА.

После приведения КА к местной вертикали, ориентация КА по курсу оказывается в некотором произвольном и неопределенном положении. При этом текущее курсовое положение КА задемпфировано по сигналу БИУС в канале курса и удерживается относительно ОСК достаточно стабильно - изменение курсового положения КА происходит очень медленно и ограничено дрейфом гироскопа на уровне ≤0,1°/час.

С этого момента начинается восстановление курсового положения КА - приведение КА в плоскость орбиты.

Как только в МЛН выполнится условие «пересечения» сигналов т.е. КА будет приведен к вертикали места с заданной погрешностью ε, МЛН выдает сигнал в МВКУ, для расчета текущего курсового положения . Расчет выполняется по формуле: как функция осредненных на момент времени ti показаний БИУС в каналах крена ωXi и тангажа ωZi. Данное значение угла запоминается и принимается за программный угол, на который надо повернуть КА для его перевода в плоскость орбиты.

Запомненное значение угла поступает в МФК и МРПП. При поступлении сигнала в МФК этот модуль вырабатывает команду на переключение нормально-замкнутых ключей в положение «разомкнуто», а нормально-разомкнутых ключей в положение «замкнуто». При этом ПОЗ и БИУС отсоединяются от СС и подключаются в контур гирокомпасирования. Ориентация и стабилизация КА в дальнейшем осуществляется только по выходным сигналам гирокомпаса - .

Одновременно с этим по сигналу МРПП рассчитывает программные движения ОГК в процессе курсового приведения КА: , где , которые подаются на третьи входы 5, 8 и 11 сумматоров соответственно. Первый и второй сигналы - для компенсации проекций орбитальной угловой скорости в выходных сигналах БИУС крена и тангажа в процессе курсового поворота, а третий - для программного вращения КА по курсу и стабилизации его программного движения в процессе этого движения. Четвертый выход МРПП обеспечивает вычисление текущих значений КПУ и СПУ и вычисления текущих компонент БКВК, которые служат для компенсации «паразитных» перекрестных сигналов в контуре ОГК в процессе программного движения КА. ННБ служит для уточнения угловой орбитальной скорости КА в течение всего времени полета КА.

Уравнения движения ОГК в процессе курсового приведения КА в плоскость орбиты примут вид:

где к1, к2, к3 - коэффициенты коррекции в каналах крена, курса и тангажа ОГК из состава массивов МПУ 1, 2, 3;

λ(τ) и - текущее значение программного угла и скорости - задаются проектировщиком исходя из возможностей ИО, например, двигателей маховиков, и требуемого качества переходного процесса.

Результаты моделирования процесса восстановления курсовой ориентации КА из крайнего положения при нулевых начальных положениях КА по γ и ϑ показаны на фигуре 2.

В процессе моделирования допустимая угловая погрешность ε - восстановления курсовой ориентации принималась равной 1% от полного значения , а текущее значение программной уставки λ(τ) рассчитывалось по формуле:

λ(τ)=ωЗ⋅τ,

где ωЗ скорость обнуляющего программного поворота задается как максимальная допустимая угловая скорость КА в канале курса. При этом время программного поворота рассчитывалось по формуле: .

Таким образом, для ωЗ=0,2°/с и время программного поворота составило 900 с и стало на порядок меньше по сравнению со временем известной системы ВО (рис. 2, 3), а перерегулирование в канале курса не превысила 1° или 0,6% - существенно меньше чем в известных системах ВО (рис. 2, 3). Одновременно отклонения КА в каналах крена и тангажа относительно ОСК в течение всего времени поворота изменялись незначительно, оставаясь около нулевых значений.

Технический результат достигнут как по качеству переходного процесса - процесс близок к оптимальному, так и по времени - время переходного процесса на восстановления курсовой ориентации КА уменьшилось ~ на порядок.

Список литературы

1. Бесекерский В.А., Иванов В.А.., Самотокин Б.Б. Орбитальное гирокомпасирование. СПб. 251 с. 1993.

2. Патент 2509690 RU.

3. Кэмпбел, Коффи «Цифровые системы отсчета углов». Журнал «Вопросы ракетной техники», 1971 г., №11.

4. Брайсон А.Е., Кортюм В. Вычисление местного углового положения орбитального космического аппарата. Труды III Международного симпозиума ИФАК. Франция, Тулуза, 1970. Управление в космосе. Том 2. М. Наука. 23 с. 1972.

5. Раушенбах Б.В., Токарь Е.Н. Управление ориентацией космических аппаратов. М. Наука. 598 с. 1974.

6. Bowers J.L., Rodden J.J., Scott E.D., Debra D.B. Orbital Gyrocompassing Heading Reference, AIAA Journal of Spacecrat and Rockets, 1968, v. 5, №. 8.

Система восстановления курсовой ориентации (ВО) космического аппарата (КА) с использованием орбитального гирокомпаса (ОГК), содержащая прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей (БИУС), навигационно-баллистический блок (НББ), содержащий центральный бортовой компьютер (ЦБК) и аппаратуру спутниковой навигации (АСН), девять сумматоров, первый, второй и третий модули усиления и преобразования (МУП, МУП, МУП), косинусный (КПУ) и синусный (СПУ) преобразователи углов, четыре блока компенсации взаимовлияния каналов ориентации (БКВК), три интегратора, модуль логического нуля (МЛН), модуль вычисления курсового угла (МВКУ), модуль формирования команды (МФК), модуль расчета программного поворота (МРПП), пять нормально-замкнутых ключей (К1÷К5), пять нормально-разомкнутых ключей (К1÷К5), систему стабилизации (СС), при этом выходы ПОЗ подключены ко входам К1 и К2, а также ко входам МЛН, а выходы К1 и К2 являются входами в СС, входы К1, К2 также подключены к выходам ПОЗ, а выход К1 подключен к входу сумматора (4), выход К2 подключен к входу сумматора (10), выход сумматора (4) подключен к входу МУП и ко входу КПУ (16), второй вход сумматора (4) подключен к выходу интегратора (22), выход которого подключен также ко входу БКВК (19), второй вход сумматора (10) подключен к выходу интегратора (24), выход которого подключен также ко входу БКВК (20), выход сумматора (10) подключен к входу МУП и к первому входу СПУ (17), вторые входы КПУ (16) и СПУ (17) подключены к первому выходу МРПП (28), к этому же выходу подключены вторые входы четырех БКВК (18-21), выход МУП подключен ко входу сумматора (5), а его выход подключен последовательно через сумматор (6) ко входу интегратора (22), выход МУП подключен ко входу сумматора (11), выход которого последовательно подключен через сумматор (12) к входу интегратора (24), выходы КПУ (16) и СПУ (17) подключены ко входам сумматора (7), а его выход подключен к входу МУП, выход МУП подключен ко входу сумматора (8), а его выход подключен последовательно через сумматор (9) ко входу интегратора (23), выход которого подключен ко входам БКВК (18) и (21), выход БКВК (18) подключен ко второму входу сумматора (6), выходы БКВК (19) и БКВК (20) подключены ко второму и третьему входам сумматора (9), выход БКВК (21) подключен ко второму входу сумматора (12), входы и выходы интеграторов (22-24) подключены к СС, выходы БИУС подключены поканально ко входам ключей К3 и К3, К4 и К4, К5 и К5, выходы К3-К5 подключены к СС, а выходы К3-К5 - ко вторым входам пятого (5), восьмого (8) и одиннадцатого (11) сумматоров, выход БИУС (2) по крену и тангажу подключен ко входам МВКУ (26), к третьему входу которого подключен выход МЛН (25), выход МВКУ (26) подключен ко входу МФК (27), при этом выход МФК (27) подключен ко вторым входам ключей К1-К5 и К1-К5, выход МВКУ (26) подключен к первому входу МРПП (28), второй, третий и четвертый выходы которого подключены к третьим входам сумматора (5), сумматора (8) и сумматора (11) соответственно, а второй вход МРПП подключен к НББ.
Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса
Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса
Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса
Система восстановления курсовой ориентации космического аппарата с использованием орбитального гирокомпаса
Источник поступления информации: Роспатент

Показаны записи 11-20 из 161.
13.01.2017
№217.015.752a

Способ изготовления металлических панелей из титано-алюминиевых сплавов

Изобретение может быть использовано для получения ультрамелкозернистых сверхпластичных листов титано-алюминиевых сплавов при изготовлении сложных деталей методом сверхпластической формовки и диффузионной сварки. Листы готового проката титано-алюминиевого сплава, например, Ti-48Al-2Cr-2Nb...
Тип: Изобретение
Номер охранного документа: 0002598747
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7661

Способ обеспечения функционирования на орбите группировки космических аппаратов

Изобретение относится к обслуживанию на околоземной орбите группировки автоматических космических аппаратов (КА). Способ включает выведение КА обслуживания (КАО) в орбитальную плоскость группировки КА, стыковку КАО и КА, техническое обслуживание КА, расстыковку КАО и КА. При невозможности...
Тип: Изобретение
Номер охранного документа: 0002598682
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8262

Способ и устройство для проведения испытаний радиотехнических изделий

Изобретение относится к технике проведения климатических испытаний различных изделий, в частности радиотехнических изделий. Способ для проведения испытаний радиотехнических изделий, включающий размещение испытуемого изделия в климатическом отсеке герметичной камеры с воздействием на него низкой...
Тип: Изобретение
Номер охранного документа: 0002601534
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8375

Космический аппарат обслуживания на орбите автоматического космического аппарата и способ стыковки космического аппарата обслуживания с неисправным вращающимся космическим аппаратом

Группа изобретений относится к обслуживанию (в т.ч. дозаправке) автоматических космических аппаратов (КА) на орбите. КА обслуживания (КАО) содержит узел стыковки с КА, двигательную установку, манипулятор для захвата КА, манипулятор захвата, перемещения и замены (МПЗ) блоков аппаратуры КА и КАО,...
Тип: Изобретение
Номер охранного документа: 0002601522
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8405

Аэродинамическая модель летательного аппарата для исследования распределения давления по поверхности в аэродинамических испытаниях с имитацией струй кормового реактивного двигателя

Изобретение относится к измерительной технике, а именно к аэродинамическим моделям летательных аппаратов для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя. Сущность...
Тип: Изобретение
Номер охранного документа: 0002601532
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8cf4

Способ азимутального прицеливания пусковой установки

Изобретение относится к азимутальному прицеливанию мобильных пусковых установок (ПУ) ракетно-артиллерийского вооружения сухопутных войск при стрельбе по ненаблюдаемой цели. Техническим результатом предлагаемого изобретения является повышение точности азимутального прицеливания пусковой...
Тип: Изобретение
Номер охранного документа: 0002604592
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8dae

Отсек боевого оснащения летательного аппарата

Изобретение относится к ракетной и авиационной технике, а более конкретно - к ударным беспилотным системам для поражения наземных и надводных целей. В отсеке боевого оснащения (БО) летательного аппарата (ЛА), включающем силовой набор, обечайку и вкладную боевую часть (БЧ), обечайка и силовой...
Тип: Изобретение
Номер охранного документа: 0002604540
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9113

Гидравлическая система летательного аппарата

Изобретение относится к ракетной и авиационной технике и может найти применение в конструкциях гидросистем, реализующих несколько режимов управления. Гидравлическая система летательного аппарата содержит электроприводной насос (7) с регулируемой подачей, исполнительный двигатель (8),...
Тип: Изобретение
Номер охранного документа: 0002605797
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9e1d

Способ восстановления ориентации орбитального космического аппарата

Изобретение относится к области космической техники и может быть использовано при разработке ускоренного режима восстановления ориентации орбитального космического аппарата (КА) с применением астродатчика. Восстановление ориентации КА производится из демпфированного относительно инерциальной -...
Тип: Изобретение
Номер охранного документа: 0002610766
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e31

Модель летательного аппарата для исследования влияния струи реактивного двигателя на аэродинамические характеристики летательного аппарата

Модель летательного аппарата для исследования влияния струи реактивного двигателя на аэродинамические характеристики летательного аппарата включает закрепленный на боковой державке тонкостенный корпус с кормовым соплом и дренажными отверстиями по наружной поверхности, дренажные трубки,...
Тип: Изобретение
Номер охранного документа: 0002610791
Дата охранного документа: 15.02.2017
Показаны записи 11-20 из 22.
13.01.2017
№217.015.6d34

Способ компенсации ошибок орбитального гирокомпаса

Изобретение относится к области авиационно-космического приборостроения и может найти применение для повышения точности угловой ориентации орбитальных космических аппаратов (КА), в которых применяются системы ориентирования с использованием орбитальных гирокомпасов (ОГК). Технический результат...
Тип: Изобретение
Номер охранного документа: 0002597017
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6d53

Система управления пространственной ориентацией космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах управления угловым положением космических аппаратов (КА), в которых применяются системы ориентирования с использованием бесплатформенных орбитальных гирокомпасов (БОГК). Технический...
Тип: Изобретение
Номер охранного документа: 0002597015
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.6e06

Гирокомпас для орбитальных космических аппаратов

Изобретение относится к области авиационно-космического приборостроения и может найти применение для пространственной угловой ориентации орбитальных космических аппаратов (КА), в которых применяются системы ориентирования, построенные по принципу орбитального гирокомпасирования. Технический...
Тип: Изобретение
Номер охранного документа: 0002597018
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.9e1d

Способ восстановления ориентации орбитального космического аппарата

Изобретение относится к области космической техники и может быть использовано при разработке ускоренного режима восстановления ориентации орбитального космического аппарата (КА) с применением астродатчика. Восстановление ориентации КА производится из демпфированного относительно инерциальной -...
Тип: Изобретение
Номер охранного документа: 0002610766
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.b208

Способ ориентации орбитального космического аппарата с программно-управляемыми батареями солнечными

Изобретение относится к управлению относительным движением космических аппаратов (КА), преимущественно с одноосно вращающимися панелями солнечных батарей (СБ). В процессе полета ориентированный по местной вертикали КА непрерывно вращается по курсу, а панели СБ синхронно и непрерывно...
Тип: Изобретение
Номер охранного документа: 0002613097
Дата охранного документа: 15.03.2017
12.07.2018
№218.016.6f7f

Способ восстановления курсовой ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса

Изобретение относится к управлению космическим аппаратом (КА) с использованием бесплатформенного орбитального гирокомпаса, прибора ориентации на Землю и гироскопических измерителей угловой скорости. При этом предварительно оценивают положение КА в орбитальной системе координат, а затем...
Тип: Изобретение
Номер охранного документа: 0002661050
Дата охранного документа: 11.07.2018
29.03.2019
№219.016.f761

Способ изменения режима полета воздушного судна в запретной зоне

Изобретение относится к области предотвращения несанкционированного применения воздушных судов (ВС), в том числе предотвращения террористических атак. В способе изменения режима полета ВС в запретной зоне осуществляют автоматическое определение фактического положения и скорости ВС в...
Тип: Изобретение
Номер охранного документа: 0002445579
Дата охранного документа: 20.03.2012
18.12.2019
№219.017.ee15

Радиопрозрачный обтекатель бортовой антенной системы летательного аппарата

Изобретение относится к радиотехнике, в частности к конструкциям радиопрозрачных обтекателей бортовых антенных систем летательных аппаратов, работающих в диапазоне высоких и сверхвысоких частот, и может быть использовано для защиты антенных систем от внешних воздействий. Радиопрозрачный...
Тип: Изобретение
Номер охранного документа: 0002709033
Дата охранного документа: 13.12.2019
23.02.2020
№220.018.05d5

Многоразовый беспилотный летательный аппарат в транспортно-пусковом контейнере и способ старта многоразового беспилотного летательного аппарата из транспортно-пускового контейнера

Группа изобретений относится к атмосферным беспилотным летательным аппаратам (БПЛА). Многоразовый БПЛА в транспортно-пусковом контейнере содержит фюзеляж, двигательную установку, стартово-разгонную ступень, складывающиеся крыло и оперение. Каждая из консолей крыла выполнена из телескопически...
Тип: Изобретение
Номер охранного документа: 0002714616
Дата охранного документа: 19.02.2020
22.04.2020
№220.018.17b4

Способ селекции морской цели оптико-электронной системой летательного аппарата

Изобретение относится к автономным системам конечного наведения летательных аппаратов (ЛА). Достигаемый технический результат - селекция морской цели (МЦ) оптико-электронной системы (ОЭС) конечного наведения ЛА, в том числе в условиях естественных и преднамеренных помех, посредством...
Тип: Изобретение
Номер охранного документа: 0002719393
Дата охранного документа: 17.04.2020
+ добавить свой РИД