×
29.12.2018
218.016.acff

Результат интеллектуальной деятельности: СВЧ ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на длину волны лазерного излучения в диапазоне 800-860 нм, включающего чередующиеся пары слоев n-AlAs 3 / n-AlGaAs 4, базового слоя, выполненного из n-GaAs 5, с толщиной 50-100 нм, нелегированного слоя i-GaAs 6 толщиной 0,9-1,1 мкм, эмиттерного слоя p-GaAs 7 толщиной 450-400 нм, фронтальный слой р-AlGaAs, при этом сумма толщин базового, нелегированного и эмиттерного слоев не превышает 1,5 мкм. Изобретение обеспечивает возможность создания такого СВЧ фотодетектора лазерного излучения, который обладал бы малой барьерной емкостью, обеспечивал высокое быстродействие и поглощал бы более 95% фотонов с длинной волны в диапазоне 800-860 нм, обеспечивая близкое к полному собирание фотогенерированных носителей. 2 з.п. ф-лы, 5 ил.

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ).

Быстродействующие ФД являются одними из главных компонентов волоконно-оптических линий связи (ВОЛС) и обеспечивают идеальную гальваническую развязку между источником сигнала и приемником. Также они невосприимчивы к электромагнитным помехам в радиодиапазоне и сами не являются источником таких помех. По этим причинам ВОЛС имеют неоспоримые достоинства в задачах, где предъявляются строгие требования по обеспечению электромагнитной совместимости и использование медных проводников между источником и приемником невозможно или нежелательно. В настоящий момент достигнут значительный прогресс в создании ФД для высокоскоростных систем информационного обмена и создания волоконных линий, обеспечивающих передачу сигнала к СВЧ излучателям. Рабочие частоты ФД, применяемых в таких системах, достигают десятков гигагерц, а в случае радиофотонных трактов - и терагерцового диапазона. Мощность оптического сигнала в зависимости от задачи и рабочей частоты лежит в диапазоне от единиц микроватт до сотен милливатт.

В большинстве приложений в качестве среды ВОЛС используется кварцевое волокно, окна прозрачности которого лежат вблизи следующих длин волн излучения: 0,85 мкм (первое окно), 1,3 мкм (второе окно) и 1,55 мкм (третье окно). Оптимальными материалами для создания ФД, работающего в первом окне является GaAs, эффективно преобразующий фотоны с длинной волны менее 860 нм в электрический ток.

Таким образом, задача улучшения утилитарных характеристик ФД ЛИ, таких как, квантовый выход, КПД и быстродействие являются весьма актуальной для современной фотоники и радиофотоники.

Известен СВЧ фотодетектор лазерного излучения (см. заявку JP 2008140808, МПК H01L 31/10, опубликована 19.06.2008), содержащий p-i-n переход, включающий базовый слой одного типа проводимости, выполненный из кремния, нелегированный слой, выполненный из кремния, и эмиттерный слой другого типа проводимости, выполненный из германия.

Недостатком известного СВЧ фотодетектора лазерного излучения является высокое время разделения носителей, связанное с необходимостью обеспечения большой толщины слоев p-i-n структуры для близкого к полному поглощению носителей, что выражается в пониженном быстродействии фотодетектора.

Известен СВЧ фото детектор лазерного излучения (см. патент RU 2318272, МПК H01L 31/18, опубликован 27.02.2008), содержащий подложку n-InP, поглощающий слой n-In0,53Ga0,47As и слой n+-InP.

Недостатком известного СВЧ фотодетектора лазерного излучения является высокое время разделения носителей, связанное с необходимостью обеспечения большой толщины слоев структуры, а также неэффективное преобразование фотонов с длинной волны в диапазоне 800-860 нм.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является СВЧ фотодетектор лазерного излучения (см. патент RU 2547004, МПК H01L 31/18, опубликована 10.04.2015), принятый за прототип и включающая подложку n-GaAs, базовый слой n-GaAs, эмиттерный слой p-GaAs и слой p-AlGaAs.

Недостатками известного СВЧ фотодетектора лазерного излучения является высокая барьерная емкость за счет отсутствия нелегированной области, а также низкое быстродействие, связанное с необходимостью создания слоев большой толщины для обеспечения близкого к полному поглощения фотонов.

Задачей настоящего решения является создание такого СВЧ фотодетектора лазерного излучения, который обладал бы малой барьерной емкостью, обеспечивал высокое быстродействие и поглощал бы более 95% фотонов с длинной волны в диапазоне 800-860 нм, обеспечивая близкое к полному собирание фотогенерированных носителей.

Поставленная задача достигается тем, что СВЧ фотодетектор лазерного излучения, включает полупроводниковую подложку, выполненную из n-GaAs, и последовательно осажденные: Брегговский отражатель, настроенный на длину волны лазерного излучения в диапазоне 800-860 нм, включающий чередующиеся пары слоев n-AlAs/n-Al0,2Ga0,8As, базовый слой, выполненный из n-GaAs, нелегированный слой i-GaAs и эмиттерный слой p-GaAs, при этом сумма толщин базового, нелегированного и эмиттерного слоев не превышает 1,5 мкм.

В СВЧ фотодетекторе лазерного излучения толщина слоя n-AlAs Брегговского отражателя может находится в диапазоне от 66 нм для длины волны лазерного излучения 800 нм до 72 нм для длины волны лазерного излучения 860 нм, а толщина слоя n-Al0,2Ga0,8As Брегговского отражателя может находиться в диапазоне от 57 нм для длины волны лазерного излучения 800 нм до 63 нм для длины волны лазерного излучения 860 нм.

В СВЧ фотодетекторе лазерного излучения толщина базового слоя может находиться в диапазоне от 50 до 100 нм, толщина нелегированного слоя может составлять от 0.9 до 1.1 мкм, а толщина эмиттерного слоя может находиться в диапазоне от 450 до 400 нм.

Настоящее техническое решение поясняется чертежами, где:

на фиг. 1 представлено схематичное изображение поперечного сечения настоящего СВЧ фотодетектора лазерного излучения;

на фиг. 2 приведены спектры отражение Брегговского отражателя (БО) на основе AlAs/Al0,2Ga0,8As (кривые 1-3) и AlAs/GaAs (кривая 4), центрированных на длину волны ЛИ 830 нм, в зависимости от числа пар слоев: кривая 1-20 пар; кривые 2, 4 - 15 пар, кривая 3-12 пар;

на фиг.3 приведены доли непоглощенных фотонов лазерного излучения в ФД ЛИ на основе GaAs в зависимости от суммарной толщины базового нелегированного и эмиттерного слоев для длин волн в диапазоне 800-860 для структур без БО (серия кривых 5) и с БО на основе 15 пар слоев AlAs/Al0,2Ga0,2As толщиной 69/60 нм, соответственно (серия кривых 6);

на фиг.4 представлены вклады различных фотоактивных слоев в постоянную времени разделения фотогенерированных носителей в ФД ЛИ на основе GaAs в вентильном режиме при напряжении 1 В: кривая 7 -время диффузии неравновесных дырок из слоя n-GaAs; кривая 8 - время дрейфа неравновесных дырок через слой i-GaAs; кривая 9 - время диффузии неравновесных электронов из слоя p-GaAs; кривая 10 - время разделения электрон-дырочных пар в i-GaAs; кривая 11 - время дрейфа неравновесных электронов через слой i-GaAs;

на фиг. 5 показаны вклады различных фотоактивных слоев в удельную диффузионную емкость структуры ФД на основе GaAs в вентильном режиме при напряжении 1В (кривые 12-14), а также барьерная емкость такого ФД ЛИ (кривая 15): кривая 12 - вклад слоя i-GaAs, кривая 13 - вклад слоя n-GaAs, кривая 14 - вклад слоя p-GaAs.

Настоящий СВЧ фотодетектор лазерного излучения показан на фиг. 1. Он включает подложку 1, выполненную, например, из и-GaAs, и последовательно осажденные: Брегговский отражатель 2, настроенный на длину волны лазерного излучения в диапазоне 800-860 нм, включающий чередующиеся пары слоев n-AlAs 3 /n-Al0,2Ga0,2As 4, базовый слой, выполненный из n-GaAs 5, с толщиной, например, 50-100 нм, нелегированный слой i-GaAs 6 толщиной, например, 0,9-1,1 мкм и эмиттерный слой p-GaAs 7 толщиной, например, 450-400 нм, при этом сумма толщин базового, нелегированного и эмиттерного слоев не превышает 1,5 мкм.

Структура ФД представляет собой полупроводниковый p-i-n переход, разделяющий фотогенерированные носители за счет тянущего поля p-i-n перехода. Ключевой особенностью большинства типов СВЧ ФД ЛИ является наличие толстого нелегированного i-слоя. Назначением такого слоя является расширение обедненной области между сильно легированными мелкой примесью эмиттерным и базовым слоями ФД с целью снижения емкости структуры. Этот параметр оказывает исключительно важное влияние на показатели быстродействия ФД, а, следовательно, и возможность его использования при преобразовании СВЧ сигналов.

Быстродействие p-i-n структур определяется несколькими постоянными времени:

где τ0 - постоянная времени, определяемая скоростью разделения электрон-дырочных пар в области пространственного заряда (ОПЗ);

τэмиттер - постоянная времени, определяемая скоростью диффузии неравновесных носителей заряда из эмиттера по направлению к ОПЗ;

τбаза - постоянная времени, определяемая скоростью диффузии неравновесных носителей заряда из базы по направлению к ОПЗ;

τRC = RhC - постоянная времени перезаряда емкостей, определяемая сопротивлением нагрузки ФД RH и емкостью p-i-n структуры.

Скорость разделения электрон-дырочных пар в ОПЗ зависит от подвижности носителей заряда градиента поля в ОПЗ, определяемого контактной разницей потенциалов, напряжением на ФД и толщины i-слоя d. Скорости диффузии в эмиттере и базе определяются толщинами этих слоев и коэффициентами диффузии неосновных носителей заряда.

Сопротивление нагрузки ФД зависит от режима его работы, для большинства приложений оно составляет 50 Ом, однако, в некоторых задачах может быть меньше. Емкость p-i-n структуры включает два основных компонента:

- барьерную емкость;

- диффузионную емкость.

Барьерная емкость играет доминирующую роль при отрицательных смещениях на p-i-n структуре. Ее можно оценить по формуле:

где ε - диэлектрическая проницаемость i-слоя; ε0 - электрическая постоянная; S - площадь ФД.

При положительных смещениях существенной оказывается диффузионная емкость. Ее значение можно рассчитать из решения диффузионно-дрейфовых уравнений для структуры. Диффузионная емкость определяется нескомпенсированным зарядом в фотоактивных слоях и также существенно зависит от толщины i-слоя. Диффузионная емкость экспоненциально возрастает с увеличением положительного смещения на ФД.

Для обеспечения высокого быстродействия ФД необходим компромисс в выборе толщины нелегированной области. При малой ее толщине поле в области ОПЗ будет достаточно для быстрого разделения носителей, однако, барьерная емкость структуры окажется большей, чем для толстого i-слоя.

Толщина i-слоя помимо быстродействия также определяет долю поглощаемого в нем излучения, а, следовательно, и квантовый выход ФД. Поглощение излучения в полупроводниках подчиняется закону Бугера-Бэра, поэтому доля непоглощенного лазерного излучения в структуре с суммарной толщиной всех фотоактивных слоев h может быть выражена формулой:

где α - коэффициент поглощения полупроводника.

Существует возможность оптимизации поглощения в слоях ФД ЛИ, так как необходимая толщина поглощающего слоя структуры может быть обеспечена не только за счет нелегированной i-области, но также и легированных мелкой примесью эмиттерного и базового слоев. Поэтому в p-i-n ФД ЛИ возможно достижение квантового выхода близкого к 100% при достаточно высоких частотах и значительных мощностях.

Важной особенностью настоящего СВЧ фотодетектора лазерного излучения является наличие встроенного Брэгговского отражателя. БО обеспечивают двухкратное прохождение оптического излучения через структуру, и таким образом, позволяют в два раза сократить толщину поглощающих слоев ФД ЛИ.

Если в конце структуры установлен Брегговский отражатель с коэффициентом ξ отражения то формула (3) заменится следующей:

Чем ближе коэффициент ξ к единице, тем меньше доля непоглощенного света согласно (4). При ξ =1 эквивалентная оптическая толщина слоев структуры удваивается.

Конструкция БО выбиралась из условия обеспечения высокого коэффициента отражения в рабочем диапазоне 800-860 нм (фиг. 2). Расчет распространения света в структуре был произведен с использованием метода матриц Абелеса. Оптимальными материалами для слоев БО являются AlAs и Al0,2Ga0,8As, которые имеют значительную разницу в показателе преломления, не поглощают ЛИ в рабочем диапазоне, а также согласованы по параметру решетки с GaAs. Число пар слоев отражателя выбрано равным 15 (см. фиг. 2, кривая 2), так как при меньшем числе пар коэффициент отражения не доходит до 90% (см. фиг. 2, кривая 3), дальнейшее же увеличение числа пар до 20 и более (см. фиг. 2, кривая 1) уже не оказывает заметного влияния на коэффициент отражения. Предлагаемый БО на основе непоглощающих материалов AlAs/Al0,2Ga0,8As имеет существенно более высокий коэффициент отражения по сравнению с БО на основе пар слоев GaAs/AlAs (см. фиг. 2, кривая 4), среди которых GaAs поглощает ЛИ.

Расчетные толщины слоев AlAs/Al0,2Ga0,8As для длины волны 800 нм составляют 66/57 нм соответственно, для длины волны 860 нм 71/62 нм соответственно и меняются линейно при изменении длинны волны центрирования БО в диапазоне 800-860 нм.

Встраивание БО в предлагаемую структуру ФД ЛИ позволяет обеспечить поглощение порядка 95% фотонов ЛИ в рабочем диапазоне при в два раза меньшей общей толщине поглощающих базового нелегированного и эмиттерного слоев. Действительно, в случае структуры ФД ЛИ без БО поглощение порядка 95% достигается при общей толщине порядка 3 мкм (см. фиг 3 серия кривых 5), в то время как при введении БО поглощение на уровне 95% обеспечивается при общей толщине порядка 1,5 мкм. Таким образом, ФД ЛИ без БО явно уступает по быстродействию ФД с БО, так как фотогенерированным носителям потребуется большее время для разделения. Уменьшение же общей толщины ФД ЛИ без БО для увеличения его быстродействия будет приводить к падению поглощения и квантовой эффективности прибора. К примеру, ФД ЛИ без БО с общей толщиной 1,5 мкм обеспечит поглощение на уровне, не превышающем 70%.

Расчет фоточувствительности и временных параметров структуры ФД производился методом решения системы уравнений диффузии и дрейфа, а также уравнения Пуассона для фотоактивных слоев. При этом учитывалось кулоновское взаимодействие электронов и дырок, генерированных ЛИ в i-слое. Быстродействие СВЧ ФД ЛИ определяет постоянная времени разделения фотогенерированных носителей заряда и удельная емкость структуры. Расчеты показывают, что толщины слоев заявляемого СВЧ ФД ЛИ обеспечивают достижение постоянной времени разделения фотогенерированных носителей на уровне 10 пс (фиг. 4). Постоянная определяется временем разделения электрон-дырочных пар в слое i-GaAs, которая составляет 10 пс для толщины нелегированного слоя 1 мкм (фиг. 4, кривая 10) и временем собирания неравновесных электронов из слоя p-GaAs, которое составляет 10 пс для толщины этого слоя в 400 нм (фиг. 4, кривая 9). Время дрейфа электронов через слой i-GaAs пренебрежимо мало, порядка 1 пс для толщины 1 мкм (рис. 4, кривая 11). Время дрейфа дырок через слой i-GaAs составляет порядка 50 пс (фиг. 4, кривая 8), однако, ввиду малой толщины слоя n-GaAs (100 нм), из которого они инжектируются, а также расположения слоя с тыльной стороны, суммарный вклад этих носителей заряда в фототок не превышает 3%. В то же самое время, такой толщины достаточно для создания необходимой контактной разности потенциалов на p-i-n переходе и сильного равномерного электрического поля в слое i-GaAs.

Толщина слоя p-GaAs помимо достижения малого значения постоянной времени разделения носителей заряда, которое составляет 10 пс при толщине 100 нм (фиг. 4, кривая 7), выбрана и с учетом обеспечения высокого значения внутреннего квантового выхода фотоответа (фиг. 5).

Если для структуры без БО увеличения толщины эмиттерного слоя р-GaAs позволяет улучшить чувствительность за счет улучшения поглощения, то для предлагаемой структуры более толстый слой только ухудшит квантовый выход, т.к. снизится коэффициент собирания. Выбранная толщина слоя i-GaAs помимо приемлемой постоянной времени разделения фотогенерированных носителей также отвечает условию баланса между барьерной и диффузионной емкостями в рабочих режимах (фиг. 5, кривые 12 и 15). При этом вклад в диффузионную емкость, в основном, обеспечивает слой i-GaAs.


СВЧ ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОДЕТЕКТОР ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 174.
29.12.2017
№217.015.f48b

Фильтрующий материал и способ его получения

Изобретение относится к области фильтрующих материалов и может быть использовано для сверхтонкой очистки воздуха от высокодисперсных аэрозолей в противоаэрозольных фильтрах, противогазах, респираторах и масках. Для получения фильтрующего материала осуществляют электроформование...
Тип: Изобретение
Номер охранного документа: 0002637952
Дата охранного документа: 08.12.2017
04.04.2018
№218.016.303a

Сердечник бронебойной пули

Изобретение относится к боеприпасам и, в частности, к пулям автоматным и винтовочным, имеющим сердечник из твердого сплава с высокой пробивной способностью. Технический результат - повышение характеристик бронепробиваемости и, в том числе, возможности пробивания бронеплит на керамической...
Тип: Изобретение
Номер охранного документа: 0002644987
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3ba9

Нетканый многослойный материал для поглощения электромагнитного излучения в свч диапазоне

Изобретение относится к области радиофизики и предназначено для поглощения электромагнитного излучения сверхвысокочастотного (СВЧ) диапазона, причем его структура и свойства отвечают требованиям создания элементов носимой одежды для маскировки человека в СВЧ диапазоне. Нетканый материал для...
Тип: Изобретение
Номер охранного документа: 0002647380
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3d11

Способ получения керамической вставки для оружейных стволов

Изобретение относится к области огнестрельного оружия, а именно способу получения керамической вставки для ствола стрелкового оружия. Способ получения керамической вставки для оружейных стволов включает подготовку исходных смесей из керамических порошков и временного связующего, формование...
Тип: Изобретение
Номер охранного документа: 0002647948
Дата охранного документа: 21.03.2018
18.05.2018
№218.016.5139

Способ обнаружения шумящих объектов в мелком и глубоком море

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого и глубокого моря путем использования приемной системы на...
Тип: Изобретение
Номер охранного документа: 0002653189
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5277

Гидроакустический комплекс для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника звука в мелком море

Изобретение относится к гидроакустике и может быть использовано для обнаружения движущегося источника звука, измерения азимутального угла на источник и горизонта источника в мелком море в пассивном режиме с помощью акустических приемников, установленных на морском дне, координаты которых и...
Тип: Изобретение
Номер охранного документа: 0002653587
Дата охранного документа: 11.05.2018
29.05.2018
№218.016.55c5

Способ обнаружения шумящих в море объектов с помощью комбинированного приемника

Изобретение относится к области гидроакустики и может быть использовано в системах шумопеленгования. Техническим результатом является повышение помехоустойчивости и дальности действия приемной системы на низких частотах в условиях мелкого моря путем использования приемной системы, которая...
Тип: Изобретение
Номер охранного документа: 0002654335
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5c4d

Способ создания изгибов волноводов

Изобретение относится к области создания интегральных оптических волноводных микроструктур для прикладного использования в системах получения, обработки и передачи информации по оптическим каналам связи и другим областям науки и техники. Способ формирования изгиба волновода в интегральной...
Тип: Изобретение
Номер охранного документа: 0002655992
Дата охранного документа: 30.05.2018
05.07.2018
№218.016.6c55

Способ выявления в воздухе малых концентраций взрывчатых и наркотических веществ на основе анализа биоэлектрических потенциалов обонятельного анализатора крысы

Изобретение относится к области безопасности и газоанализаторов, а именно к способам обнаружения взрывчатых и/или наркотических веществ в воздухе. В основе изобретения лежит анализ ЭКоГ сигналов, снятых имплантированными в мозг крысы электродами. На первом этапе происходит обучение используемых...
Тип: Изобретение
Номер охранного документа: 0002659712
Дата охранного документа: 03.07.2018
06.07.2018
№218.016.6cb6

Способ хранения клеточных культур в суспензии

Изобретение относится к биологии и медицине и может быть использовано при хранении клеточных культур. Для криоконсервации используют контейнер с регулируемым объемом и возможностью его герметизации, при этом осуществляют вывод атмосферного газа из внутреннего объема контейнера и последующий...
Тип: Изобретение
Номер охранного документа: 0002660075
Дата охранного документа: 05.07.2018
Показаны записи 11-20 из 71.
20.10.2013
№216.012.7739

Фотоэлектрический концентраторный субмодуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический концентраторный субмодуль содержит фронтальный стеклянный лист (1), на тыльной стороне которого расположен первичный оптический концентратор в виде линзы (2) квадратной формы с длиной стороны квадрата, равной W, и фокусным...
Тип: Изобретение
Номер охранного документа: 0002496181
Дата охранного документа: 20.10.2013
10.04.2014
№216.012.b047

Способ приготовления питательной среды для выращивания дрожжей

Изобретение относится к биотехнологии и может быть использовано при получении питательных сред для выращивания дрожжей. Способ предусматривает измельчение соломы и отрубей. Измельченные солому и отруби смешивают в заданном соотношении. Полученную смесь гидролизуют сернистой кислотой...
Тип: Изобретение
Номер охранного документа: 0002510842
Дата охранного документа: 10.04.2014
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
10.09.2014
№216.012.f3f6

Способ изготовления каскадных солнечных элементов на основе полупроводниковой структуры galnp/galnas/ge

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста....
Тип: Изобретение
Номер охранного документа: 0002528277
Дата охранного документа: 10.09.2014
10.12.2014
№216.013.0d8d

Биореактор с мембранным устройством подвода газового питания

(57) Изобретение относится к микробиологической, пищевой, медицинской промышленности, в частности к биореакторам асептического выращивания микроорганизмов, и может быть использовано для комплектации установок учебного, научно-исследовательского и промышленного назначения. Биореактор содержит...
Тип: Изобретение
Номер охранного документа: 0002534886
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.03.2015
№216.013.2fc4

Способ формирования массивов квантовых точек повышенной плотности

Способ формирования массивов квантовых точек повышенной плотности для использования в различных оптоэлектронных устройствах. Способ формирования массива квантовых точек высокой плотности включает три этапа. На первом происходит формирование зародышевого ряда квантовых точек в режиме...
Тип: Изобретение
Номер охранного документа: 0002543696
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
27.07.2015
№216.013.6857

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств

Полупроводниковая структура для фотопреобразующего и светоизлучающего устройств состоит из полупроводниковой подложки (1) с лицевой поверхностью, разориентированной от плоскости (100) на (0,5-10) градусов и, по меньшей мере, одного р-n перехода (2), включающего, по меньшей мере, один активный...
Тип: Изобретение
Номер охранного документа: 0002558264
Дата охранного документа: 27.07.2015
27.03.2016
№216.014.c751

Концентраторный солнечный фотоэлектрический модуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4) на ее внутренней стороне, светопрозрачную тыльную панель (5), солнечные фотоэлементы (б) с байпасными диодами, планки (11), выполненные из...
Тип: Изобретение
Номер охранного документа: 0002578735
Дата охранного документа: 27.03.2016
+ добавить свой РИД