×
29.12.2018
218.016.acfa

Результат интеллектуальной деятельности: СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-AlGaAs, базового слоя, выполненного из n-GaAs 3, с толщиной 50-100 нм, непроводящего слоя i-GaAs 4 толщиной 1 мкм и эмиттерного слоя p-GaAs 5 толщиной 900-1000 нм с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм. Изобретение обеспечивает возможность создания СВЧ фотоприемника лазерного излучения с высоким быстродействием и поглощением не менее 80% фотонов с длиной волны в диапазоне 800-860 нм. 2 з.п. ф-лы, 4 ил.

Изобретение относится к полупроводниковым приборам, применяемым в электронике. На его основе возможно создание фотоприемников (ФП) лазерного излучения (ЛИ).

В настоящее время все большее распространение получают волоконно-оптические линии связи (ВОЛС), основанные на лазерных диодах и быстродействующих ФП, которые обеспечивают гальваническую развязку между источником сигнала и приемником. При этом достигнут значительный прогресс в создании ФП, обеспечивающих прием сигнала в СВЧ системах, работающих на частотах, достигающих десятков гигагерц, и в ряде случаев достигающих терагерцового диапазона. В качестве оптоволокна в системах ВОЛС используется кварцевое волокно с окнами прозрачности: 0,85 мкм (первое окно), 1,3 мкм (второе окно) и 1,55 мкм (третье окно).

Как показывают теоретические данные, эффективность преобразования монохроматического (в частности лазерного) излучения в диапазоне длин волн 0,8-0,86 мкм для фотопреобразователей на основе GaAs может достигать 85-87% при мощности падающего излучения 100 Вт/см2. Таким образом, задача улучшения характеристик ФП лазерного излучения, таких как, квантовый выход и быстродействие являются весьма актуальной для современной электроники и фотоники.

Известен фотоприемник лазерного излучения на основе GaAs (см. Tiqiang Shan, Xinglin Qi, Design and optimization of GaAs photovoltaic converter for laser power beaming, 2015, м. 71, p. 144-150), включающий подложку из n-GaAs, слой тыльного потенциального барьера из n-AlGaAs, базовый слой из n-GaAs толщиной 3,5 мкм, эмиттерный слой из p-GaAs толщиной 0,5 мкм, слой широкозонного окна из p-GaInP, контактный подслой из p+-GaAs.

Недостатком известного фотоприемника является малое быстродействие из-за высокой барьерной емкости, а также большой постоянной времени разделения носителей заряда.

Известен фотоприемник лазерного излучения на основе GaAs (см. E. Oliva, F. Dimroth and A.W. Bett. Converters for High Power Densities of Laser Illumination. - Prog. Photovolt: Res. Appl., 2008, 16: 289-295), содержащий подложку из n-GaAs, слой тыльного потенциального барьера из n+-GaInP, базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из p+-GaInP и контактный подслой из p++-Al0,5GaInAs.

К недостатку известного фотоприемника относится усложненная технология его изготовления (использование большого количества разных газов для выращивания слоев разного элементного состава, а, следовательно, повышенные требования к очистке реактора от нежелательных примесей). Кроме того, отсутствие нелегированной области вызывает повышение барьерной емкости.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является фотоприемник лазерного излучения (см. патент RU 2547004, МПК H01L 31/18, опубликован 10.04.2015), принятый за прототип и включающий подложку из n-GaAs, базовый слой из n-GaAs толщиной 3-5 мкм, эмиттерный слой из p-GaAs толщиной 1,5-2,0 мкм, слой из p-AlGaAs толщиной 3-30 мкм.

Недостатками известного фотоприемника лазерного излучения является неполное собирание фотогенерированных носителей из базового слоя, а также низкое быстродействие.

Задачей настоящего решения является создание такого СВЧ фотоприемника лазерного излучения, который обеспечивал, высокое быстродействие и поглощал бы не менее 80% фотонов с длиной волны в диапазоне 800-860 нм при близком к полному собиранию фотогенерированных носителей.

Поставленная задача достигается тем, что СВЧ фотоприемник лазерного излучения включает полупроводниковую подложку, выполненную из n-GaAs, и последовательно осажденные: слой тыльного потенциального барьера, выполненный из n-Al0.2Ga0.8As, базовый слой, выполненный из n-GaAs, непроводящий слой i-GaAs и эмиттерный слой p-GaAs с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм.

В СВЧ фотоприемнике лазерного излучения толщина базового слоя может находиться в диапазоне от 50 до 100 нм, толщина непроводящего слоя может составлять 1 мкм, а толщина эмиттерного слоя может находиться в диапазоне от 900 до 1000 нм.

В СВЧ фотоприемнике лазерного излучения уровень легирования эмиттерного слоя p-GaAs мелкой акцепторной примесью у границы с непроводящим слоем i-GaAs может составлять от 1⋅1016 до 1⋅1017 см-3 и увеличивается по экспоненциальному закону до величины от 1⋅1018 до 2⋅1018 см-3 у противоположной границы эмиттерного слоя.

Настоящее техническое решение поясняется чертежами, где:

на фиг. 1 представлено схематичное изображение поперечного сечения настоящего СВЧ фотоприемника лазерного излучения;

на фиг. 2 приведены доли непоглощенных фотонов лазерного излучения в ФП ЛИ на основе GaAs в зависимости от суммарной толщины базового непроводящего и эмиттерного слоев для длин волн в диапазоне 800-860 нм: кривая 6 - длина волны излучения 810 нм; кривая 7 - длина волны излучения 830 нм; кривая 8 - длина волны излучения 850 нм;

на фиг. 3 представлены вклады различных фотоактивных слоев в постоянную времени разделения фотогенерированных носителей в ФП ЛИ на основе GaAs в вентильном режиме при напряжении 1 В: кривая 9 - время диффузии неравновесных дырок из слоя n-GaAs; кривая 10 - время диффузии неравновесных электронов из слоя p-GaAs при отсутствии градиента легирования; кривая 11 - время диффузии неравновесных электронов из слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1017 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 12 - время диффузии неравновесных электронов из слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 13 - время разделения электрон-дырочных пар в i-GaAs; кривая 14 - время дрейфа неравновесных электронов через слой i-GaAs;

на фиг. 4 показаны вклады различных фотоактивных слоев в удельную диффузионную емкость структуры ФД на основе GaAs в вентильном режиме при напряжении 1 В (кривые 15-19), а также барьерная емкость такого ФП ЛИ, в зависимости от толщины нелегированного слоя (кривая 20): кривая 15 - вклад слоя i-GaAs; кривая 16 - вклад слоя p-GaAs при отсутствии градиента легирования; кривая 17 - вклад слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 18 - вклад слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 19 - вклад слоя и-GaAs.

Настоящий СВЧ фотоприемник лазерного излучения показан на фиг. 1. Он включает полупроводниковую подложку 1, выполненную, например, из n-GaAs, и последовательно осажденные: слой тыльного потенциального барьера 2, выполненный, например, из n-Al0.2Ga0.8As, базовый слой 3, выполненный, например, из n-GaAs, с толщиной, например, 50-100 нм, непроводящий слой i-GaAs 4, толщиной, например, 1 мкм и эмиттерный слой p-GaAs 5 толщиной, например, 900-1000 нм с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм.

С увеличением частоты все большее влияние на работу СВЧ приборов оказывают паразитные емкости, образуемые конструктивными элементами самих устройств. При этом модуль реактивного сопротивления емкостей уменьшается: шунтирующие емкости закорачивают соответствующие участки схемы. Поэтому на высоких частотах и особенно в СВЧ-диапазоне паразитные емкости, в первую очередь емкости p-n переходов в полупроводниковых приборах, должны быть сведены к минимуму.

Общая емкость p-n перехода измеряется между выводами кристалла при заданных постоянном напряжении (смещении) и частоте гармонического напряжения, прикладываемых к переходу. Она складывается из барьерной и диффузионной емкостей.

При прямом напряжении на переходе и работе ФП в «вентильном» режиме общая емкость определяется в основном диффузионной емкостью, а при обратном напряжении и работе ФП в режиме «ключа». - барьерной.

Барьерная (или зарядная) емкость обусловлена нескомпенсированным зарядом ионизированных атомов примеси, сосредоточенными по обе стороны от границы перехода. Эти объемные заряды неподвижны и не участвуют в процессе протекания тока. Они и создают электрическое поле перехода. При увеличении обратного напряжения область пространственного заряда и сам заряд увеличиваются, причем это увеличение происходит непропорционально тем меньше, чем больше расстояние между атомами донорной и акцепторной примесей.

Использование непроводящего i-слоя большей толщины позволяет расширить обедненную область между сильнолегированными эмиттерным и базовым слоями ФП, что позволяет уменьшить барьерную емкость структуры, которую можно оценить по формуле:

где ε - диэлектрическая проницаемость i-слоя; ε0 - электрическая постоянная; S - площадь ФП, d - ширина запрещенной зоны p-n перехода.

Увеличение толщины непроводящего i-слоя приводит к возрастанию d, что понижает барьерную емкость.

При положительных смещениях существенной оказывается диффузионная емкость. Диффузионная емкость связана с нескомпенсированным зарядом в фотоактивных слоях: и обратно пропорциональна толщине i-слоя p-эмиттере, n-базе и нелегированном i-слое. Диффузионная емкость обусловлена изменением величины объемного заряда, вызванного изменением прямого напряжения и вследствие инжекции неосновных носителей в рассматриваемый слой. В результате, например, в n-базе возникает объемный заряд дырок, который практически мгновенно компенсируется зарядом собственных подошедших к дыркам электронов. Диффузионную емкость часто выражают как линейную функцию тока, учитывая экспоненциальный характер вольтамперной характеристики.

Для обеспечения высокого быстродействия ФП необходим компромисс в выборе толщины непроводящей области. При малой ее толщине поле в области ОПЗ будет достаточно для быстрого разделения носителей, однако, барьерная емкость структуры окажется большей, чем для толстого i-слоя.

Быстродействие p-i-n структур определяется постоянной времени, связанной со скоростью разделения электрон-дырочных пар в области пространственного заряда (ОПЗ), постоянной времени, определяемой скоростью диффузии неравновесных носителей заряда из эмиттера по направлению к ОПЗ, и постоянной времени, определяемой скоростью диффузии неравновесных носителей заряда из базы по направлению к ОПЗ и постоянной времени перезаряда емкостей, определяемой сопротивлением нагрузки ФП RH и емкостью p-i-n структуры.

Скорость разделения электрон-дырочных пар в ОПЗ зависит от подвижности носителей заряда градиента поля в ОПЗ, определяемого контактной разницей потенциалов, напряжением на ФП и толщиной i-слоя d. Скорости диффузии в эмиттере и базе определяются толщинами этих слоев и коэффициентами диффузии неосновных носителей заряда.

Суммарная толщина базового, эмиттерного и непроводящего слоев определяет коэффициент поглощения лазерного излучения в ФП. Для получения требуемого коэффициента поглощения необходимо обеспечение суммарной толщины базового, эмиттерного и непроводящего слоев порядка 2 мкм (фиг. 2, кривые 6-8). Толщины должны быть распределены таким образом, чтобы обеспечить близкое к полному собирание фотогенерированных носителей и, одновременно, приемлемые параметры быстродействия.

Результаты расчетов показывают, что для ФП, в целом, при выбранных толщинах и профилях легирования слоев обеспечивается время разделения фотогенерированных носителей на уровне 15-20 пс (фиг. 3).

Толщина слоя n-GaAs выбиралась равной 50-100 нм для минимизации вклада базы в постоянную времени ФП (фиг. 3, кривая 9). Выбранная толщина позволила удержать постоянную на уровне менее 10 пс, при больших толщинах время собирания фотогенерированных носителей в p-i-n переход существенно возрастает. В то же самое время, такой толщины достаточно для создания необходимой контактной разности потенциалов на p-i-n переходе и сильного равномерного электрического поля в слое i-GaAs. Для обеспечения требуемых временных параметров диффузию неравновесных дырок в направлении подложки ограничивает слой тыльного потенциального барьера, выполненный из n-Al0.2Ga0.8As.

При отсутствии тянущего поля время собирания неравновесных электронов из эмиттера (фиг. 3, кривая 10) превышает время разделения носителей в ОПЗ, начиная с толщины эмиттера в 400 нм. При толщине эмиттера в 900-1000 нм время разделения носителей составит 50 пс. Это существенно больше времени разделения электрон-дырочных пар в ОПЗ, составляющего 12 пс для толщины слоя i-GaAs в 1000 нм (фиг. 3, кривая 13). Внедрение тянущего поля при толщине эмиттера 900-1000 нм позволит сохранить постоянную времени в пределах от 15 до 20 пс в зависимости от величины градиента легирования (фиг. 3, кривые 11 и 12). Также тянущее поле обеспечивает близкое к полному собирание фотогенерированных носителей заряда. Экспоненциальный закон изменения концентрации мелкой акцепторной примеси позволяет получить постоянную напряженность тянущего поля по всей толщине эмиттера.

Время дрейфа электронов через слой i-GaAs при этом пренебрежимо мало, порядка 1 пс для толщины 1000 нм (фиг. 3, кривая 14). Время дрейфа дырок через слой i-GaAs несколько больше ввиду их меньшей подвижности, однако, ввиду малой толщины слоя n-GaAs (50-100 нм), из которого они инжектируются, а также расположения слоя с тыльной стороны, суммарный вклад этих носителей заряда в фототок в предложенной структуре не превышает 1%, что позволяет пренебрегать ими.

Выбранные толщины эмиттерного, базового и непроводяшего слоев ФП помимо приемлемой постоянной времени разделения фотогенерированных носителей также отвечают условию баланса между барьерной и диффузионной емкостями в рабочих режимах (фиг. 4).

Основной вклад в диффузионную емкость обеспечивает слой i-GaAs (фиг. 4, кривая 15). Вклады эмиттерного и базового слоев, если нет градиента легирования, на несколько порядков меньше (фиг. 4, кривые 16 и 19). При рассмотрении временных параметров ФП необходимо учитывать, что наличие градиента легирования и области с более низким легированием приводит к росту вклада эмиттера в диффузионную емкость структуры. Однако, область, за счет которой будет расти диффузионная емкость, ограничена градиентом тянущего поля на участке ~kT. По этой причине, хотя внедрение поля будет сопровождаться увеличением вклада эмиттера в диффузионную емкость (фиг. 4, кривые 17 и 18), этот вклад будет незначителен и останется, как минимум, на 2 порядка ниже, чем вклад слоя i-GaAs (фиг. 4, кривая 15). Для выбранной толщины слоя i-GaAs диффузионная и барьерная емкость (фиг. 4, кривая 20) приблизительно равны.


СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
СВЧ ФОТОПРИЕМНИК ЛАЗЕРНОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 174.
26.10.2018
№218.016.9620

Оптоволоконный фотоэлектрический свч модуль

Изобретение относится к области радиотехники, в частности к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и антенных решеток для связи, радиолокации и радиоэлектронной борьбы. Оптоволоконный фотоэлектрический СВЧ модуль включает симметричный...
Тип: Изобретение
Номер охранного документа: 0002670719
Дата охранного документа: 24.10.2018
06.12.2018
№218.016.a444

Стендовый жидкостный ракетный двигатель с непрерывной спиновой детонацией

Изобретение относится к области испытаний, в частности стендовых испытаний режимов работы ЖРД, работающих в режиме непрерывной детонации на топливной смеси, состоящей из газообразного кислорода и керосина. Изобретение представляет собой стендовый ЖРД с кольцевой камерой детонационного горения,...
Тип: Изобретение
Номер охранного документа: 0002674117
Дата охранного документа: 04.12.2018
07.12.2018
№218.016.a463

Устройство для импульсной деформации длинномерных трубчатых изделий

Изобретение относится к обработке металлов давлением, а именно к устройствам для магнитоимпульсной обработки металлов давлением. Устройство содержит приспособление для прижимного соединения и разъединения торцевых частей полувитков блока разъемного индуктора. При этом указанное приспособление...
Тип: Изобретение
Номер охранного документа: 0002674184
Дата охранного документа: 05.12.2018
09.12.2018
№218.016.a50b

Радиофотонный передающий тракт для передачи мощных широкополосных сигналов и эффективного возбуждения антенн

Изобретение относится к радиофотонике, в том числе к технике передачи мощных широкополосных радиосигналов по волоконно-оптическим линиям связи к антеннам и антенным решеткам. Техническим результатом является повышение КПД, максимально достижимой мощности, широкополосности (расширение мгновенной...
Тип: Изобретение
Номер охранного документа: 0002674074
Дата охранного документа: 07.12.2018
20.12.2018
№218.016.a95b

Радиофотонный широкополосный приемный тракт на основе ммшг-модулятора с подавлением собственных шумов лазера

Изобретение относится к радиофотонике, в том числе к технике приема слабых широкополосных радиосигналов, например, от антенн и антенных решеток. Заявленный радиофотонный широкополосный приемный тракт на основе ММШГ-модулятора с подавлением собственных шумов лазера содержит лазер, оптическую...
Тип: Изобретение
Номер охранного документа: 0002675410
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a963

Способ изготовления фотодетекторов мощного оптоволоконного свч модуля

Изобретение может быть использовано для создания мощных СВЧ фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ изготовления фотодетекторов мощного оптоволоконного СВЧ модуля включает создание на полупроводниковой подложке...
Тип: Изобретение
Номер охранного документа: 0002675408
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a99f

Конструкция высокопрочных датчиков

Изобретение относится к области авиационной техники, диагностики технического состояния конструкций из полимерных композиционных, металлических и гибридных материалов с использованием волоконно-оптических акустических средств встроенного контроля. Конструкция высокопрочного датчика деформации...
Тип: Изобретение
Номер охранного документа: 0002675411
Дата охранного документа: 19.12.2018
20.12.2018
№218.016.a9dd

Фотодетекторный свч модуль

Изобретение относится к области радиотехники, а именно к радиофотонике, и может быть использовано при конструировании систем возбуждения антенн и активных фазированных антенных решеток (АФАР) для связи, радиолокации, радионавигации и радиоэлектронной борьбы. Фотодетекторный СВЧ модуль включает...
Тип: Изобретение
Номер охранного документа: 0002675409
Дата охранного документа: 19.12.2018
26.12.2018
№218.016.ab9c

Фильтрующий пакет, способ получения мембраны для него и способ изготовления противоаэрозольного фильтра противогаза

Изобретение относится к области получения противоаэрозольных фильтров из волокнистых фильтрующих материалов. Фильтрующий слой изготовлен из полиакрилонитрильных нановолокон. Нановолокна получены методом электроформования по технологии Nanospider из раствора полиакрилонитрила с концентрацией...
Тип: Изобретение
Номер охранного документа: 0002675924
Дата охранного документа: 25.12.2018
27.12.2018
№218.016.ac66

Способ получения фильтрующего материала и фильтрующий материал

Изобретение относится к области получения высокоэффективных волокнистых фильтрующих материалов. Фильтрующий материал представляет собой трехслойную композицию, в которой один из слоев выполнен из полимерных (полиакрилонитрильных) нановолокон, полученных методом электроформования, и размещен...
Тип: Изобретение
Номер охранного документа: 0002676066
Дата охранного документа: 25.12.2018
Показаны записи 41-50 из 68.
29.12.2018
№218.016.acff

Свч фотодетектор лазерного излучения

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на...
Тип: Изобретение
Номер охранного документа: 0002676187
Дата охранного документа: 26.12.2018
01.03.2019
№219.016.cedd

Способ полирования полупроводниковых материалов

Изобретение относится к области обработки полупроводниковых материалов, а именно к химико-механическим способам полирования полупроводников. Изобретение обеспечивает высокое качество полированной поверхности. Сущность изобретения: в способе химико-механического полирования полупроводниковых...
Тип: Изобретение
Номер охранного документа: 0002457574
Дата охранного документа: 27.07.2012
01.03.2019
№219.016.d0be

Способ изготовления полупроводниковой структуры с p-n переходами

Изобретение относится к электронной технике, а именно к полупроводниковым многопереходным структурам, используемым, в частности, в фотоэлектрических преобразователях. Способ изготовления полупроводниковой структуры включает последовательное формирование на полупроводниковой подложке методом...
Тип: Изобретение
Номер охранного документа: 0002461093
Дата охранного документа: 10.09.2012
01.03.2019
№219.016.d0c1

Способ определения неоднородностей в полупроводниковом материале

Изобретение относится к области электронной техники и может быть использовано для контроля качества проводящих слоев и поверхностей полупроводниковых пленок, применяемых при изготовлении изделий микроэлектроники. Сущность изобретения: в способе определения неоднородностей в полупроводниковом...
Тип: Изобретение
Номер охранного документа: 0002461091
Дата охранного документа: 10.09.2012
03.03.2019
№219.016.d231

Способ изготовления мощного фотодетектора

Изобретение может быть использовано для создания СВЧ-фотодетекторов на основе эпитаксиальных структур GaAs/AlGaAs, чувствительных к излучению на длине волны 810-860 нм. Способ заключается в создании фоточувствительной области и контактной площадки для бондинга вне фоточувствительной области на...
Тип: Изобретение
Номер охранного документа: 0002680983
Дата охранного документа: 01.03.2019
11.03.2019
№219.016.db2f

Биореактор вытеснения с мембранным устройством подвода и стерилизации газового питания

Изобретение относится к биореакторам асептического выращивания микроорганизмов, в частности к инокуляторам, посевным аппаратам, и может найти применение в микробиологической, пищевой, медицинской промышленности, а также в сфере образования и науки. Биореактор вытеснения с мембранным устройством...
Тип: Изобретение
Номер охранного документа: 0002415913
Дата охранного документа: 10.04.2011
11.03.2019
№219.016.dd2c

Биореактор вытеснения с мембранным устройством подвода газового питания

Изобретение относится к микробиологической, пищевой, медицинской промышленности, в частности к биореакторам асептического выращивания микроорганизмов, и может быть использовано для комплектации установок учебного, научно-исследовательского и промышленного назначения. Биореактор вытеснения с...
Тип: Изобретение
Номер охранного документа: 0002446205
Дата охранного документа: 27.03.2012
10.04.2019
№219.017.0277

Способ формирования многослойного омического контакта фотоэлектрического преобразователя (варианты)

Изобретение относится к микроэлектронике. Сущность изобретения: в способе формирования многослойного омического контакта фотоэлектрического преобразователя на основе арсенида галлия электронной проводимости формируют фотолитографией топологию фоточувствительных областей и проводят травление...
Тип: Изобретение
Номер охранного документа: 0002391741
Дата охранного документа: 10.06.2010
16.05.2019
№219.017.5260

Способ изготовления фотоэлектрического преобразователя с антиотражающим покрытием

Изобретение относится к солнечной энергетике. Способ изготовления фотоэлектрического преобразователя включает последовательное формирование фоточувствительной полупроводниковой гетероструктуры АВ с пассивирующим слоем и контактным слоем GaAs, удаление контактного слоя над...
Тип: Изобретение
Номер охранного документа: 0002687501
Дата охранного документа: 14.05.2019
18.05.2019
№219.017.5967

Солнечный фотоэлектрический модуль на основе наногетероструктурных фотопреобразователей

Концентраторный фотоэлектрический модуль на основе наногетероструктурных солнечных элементов относится к области фотоэлектрического преобразования энергии, в частности к системам с расщеплением солнечного спектра. Модуль содержит корпус (1), имеющий фронтальную панель (2), содержащую...
Тип: Изобретение
Номер охранного документа: 0002426198
Дата охранного документа: 10.08.2011
+ добавить свой РИД