×
29.12.2018
218.016.ac93

СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области измерительной техники и касается способа измерения температуры активной области светодиода. Способ заключается в том, что через светодиод пропускают греющий ток заданной величины, излучение светодиода подается на два фотоприемника и температуру активной области светодиода определяют по изменению центральной длины волны излучения. Первый фотоприемник выбирается с гауссовой спектральной чувствительностью с шириной, во много раз превышающей ширину спектра светодиода. Второй фотоприемник имеет равномерную спектральную чувствительность в заданном диапазоне длин волн излучения. При проведении измерений измеряют сигналы фотоприемников U(0) и U(0) сразу после подачи греющего тока и U(t) и U(t) в заданный момент времени t после разогрева. Температуру Т активной области светодиода в момент времени t рассчитывают по формуле
Реферат Свернуть Развернуть

Изобретение относится к средствам измерения тепловых режимов работы светодиодов и может быть использовано для контроля качества сборки и оценки температурных запасов светодиодов и светотехнических изделий с их использованием: светодиодных светильников, панелей, светофоров и т.п.

Из существующего уровня техники известен способ измерения температуры р-n перехода светодиода по патенту US 2009/0306912 А1 (опубликован 10.12.2009), который заключается в предварительном определении температурного коэффициента KU прямого падения напряжения при пропускании через светодиод прямого импульсного тока и в последующем определении температуры перехода по изменению прямого падения напряжения при заданном токе по формуле

где UT и U0 - падение напряжения на светодиоде при заданном токе до нагрева, то есть при температуре T0, и после нагрева светодиода до температуры , соответственно.

Недостатком способа является невозможность оперативного измерения температуры активной области светодиода в составе светотехнического изделия, когда невозможно (или затруднено) подключение к контролируемому светодиоду. К недостаткам способа следует отнести также большую погрешность измерения из-за переходных тепловых и электрических процессов при однократном переключении светодиода из режима нагрева в режим измерения.

Известен способ измерения температуры активной области светодиода по патенту РФ на изобретение №2473149 по сдвигу спектра излучения светодиода на нескольких длинах волн, заключающийся в том, что получают ряд градуировочных зависимостей длины волны излучения от температуры для заданных точек в выбранной длинноволновой части нормированного спектра излучения светодиода, измеряют спектр светодиода при заданном значении прямого тока, по градуировочным зависимостям рассчитывают значения температуры для каждой заданной точки спектра, и в качестве результата измерения температуры активной области светодиода принимают среднее арифметическое полученного ряда значений температуры.

Известен способ измерения температуры активной области светодиода по сдвигу доминирующей длины волны излучения, которая определяется путем измерений спектра спектрометром по точкам (см. Луценко Е.В. Температура перегрева активной области коммерческих светодиодов и светодиодов с прямым жидкостным охлаждением чипа // Полупроводниковая светотехника. - 2011. - №2. - С. 26-29). Способ основан на использовании линейной зависимости длины волны в максимуме спектра излучения светодиодов от температуры активной области (p-n-перехода):

где Kλ - температурный коэффициент длины волны в максимуме спектра излучения светодиода.

Известны также способы измерения переходной тепловой характеристики светодиодов (то есть изменения температуры активной области во времени при разогреве светодиода заданной мощностью) по сигналам многоэлементных фотоприемников (ФП): фотоприемной КМОП-линейки (по патенту РФ на изобретение №2523731) или фотоприемной КМОП-матрицы (по патенту РФ на изобретение №2609815).

Недостатками указанных выше известных способов является необходимость спектрального разложения излучения светодиода с помощью диспергирующего устройства, регистрации сдвига спектра на нескольких длинах волн излучения и, как следствие, большая трудоемкость настройки и калибровки аппаратуры и сложная обработка сигналов. Поскольку интенсивность излучения светодиода сильно зависит от температуры, то для измерения сдвига спектра необходимо нормировать спектр, то есть делить все значения на максимальное значение. В результате, с помощью известных способов невозможно оперативно измерить температуру активной области светодиодов в полевых условиях и в условиях массового контроля.

Наиболее близким к предлагаемому способу является способ по патенту РФ на изобретение №2390738 измерения средней длины волны узкополосного излучения (по изменению которой, применительно к излучению светодиода, можно определить изменение температуры активной области светодиода) без использования диспергирующего элемента с помощью двух ФП с различающимися функциями спектральной чувствительности. Недостатком известного способа является сложная подготовка и настройка аппаратуры, в частности, необходимость точного деления светового потока светодиода между ФП, а также многоэтапные преобразования полезных сигналов, что приводит к потере точности.

Технический результат состоит в исключении необходимости установки точного распределения светового потока излучения светодиода между фотоприемниками и, как следствие, в уменьшении времени на подготовку и настройку аппаратуры к измерению.

Технический результат достигается тем, что через светодиод пропускают греющий ток заданной величины, излучение светодиода подается на два фотоприемника с различающимися функциями спектральной чувствительности, и температуру активной области светодиода определяют по изменению центральной длины волны излучения, отличающийся тем, что первый фотоприемник выбирается с гауссовой спектральной чувствительностью с шириной, во много раз превышающей ширину спектра светодиода, а второй - с равномерной спектральной чувствительностью в заданном диапазоне длин волн излучения, измеряют сигналы U1(0) и U2(0) фотоприемников сразу после подачи греющего тока и в заданный момент времени tн после разогрева: U1(tн) и U2(tн), и температуру активной области светодиода в момент времени tн рассчитывают по формуле

где , Kλ - известный температурный коэффициент центральной длины излучения светодиода, σ1 - ширина спектральной чувствительности первого фотоприемника.

Технический результат достигается за счет того, что для определения температуры не требуется знать точное значение длины волны в максимуме спектра излучения светодиода, достаточно зарегистрировать и определить только значение сдвига этой длины волны. А, поскольку спектр светодиода слабо трансформируется в рабочем диапазоне температур, то для измерения сдвига центральной длины волны достаточно двух ФП: одного ФП с участком монотонно растущей (или монотонно спадающей) спектральной чувствительности и второго - с постоянной чувствительностью в заданном спектральном диапазоне. Так как с увеличением температуры интенсивность излучения светодиода падает, то для выделения полезного сигнала, вызванного только сдвигом спектра, надо учитывать это изменение интенсивность излучения. Для этого и необходим второй ФП с постоянной спектральной чувствительностью. При этом обработка измерительной информации сводится только к определению отношения сигналов ФП.

Суть предлагаемого технического решения состоит в том, что сигнал ФП с постоянной спектральной чувствительностью зависит только от интенсивности излучения, а сигнал второго ФП - и от интенсивности и от сдвига спектра с ростом температуры. Выберем первый ФП со спектральной характеристикой гауссова вида и запишем выражения для спектральных характеристик ФП:

где λm - длина волны, соответствующая максимуму функций S1(λ) a σ1 - параметр этой функции, характеризующий ее ширину (фиг. 1, а). Характеристика вида (3а) легко реализуется путем применения широкополосного ФП и полосового фильтра с гауссовой характеристикой пропускания.

Спектр излучения светодиода для определенности представим гауссовой функцией

Ах - параметр, определяющий интенсивность излучения, λx - длина волны излучения в максимуме спектра светодиода, а σx - параметр, характеризующий ширину спектра светодиода.

Излучение со спектром I(λ при попадании на фотоприемники создает на выходе ФП устройств сигналы, величина которых в общем случае определяется выражениями

где ki - доля излучения светодиода, попадающего на i-й ФП.

Подставляя в (5) выражения (4) и (3) после несложных преобразований с учетом того что для величины сигналов на выходе ФП получим следующие выражения

Характер изменения сигналов ФП при разогреве светодиода показан на фиг. 1, б. Если измерить сигналы ФП до разогрева (в первые несколько микросекунд после включения светодиода, пока температура не успеет заметно измениться), и через заданное время tн разогрева, то получим систему уравнений для нахождения сдвига спектра и, соответственно, температуры активной области светодиода:

Для отношения сигналов первого ФП в начале и конце нагрева светодиода (в заданный момент времени tн) получим:

Отношение интенсивностей излучения находим из отношения сигналов второго ФП: . Тогда, при малом смещении спектра Δλн<<λxm можно записать

где .

Из (8) с учетом (1) нетрудно получить выражение для приращения температуры СИД в общем виде

Известно, что максимум крутизны спектральной чувствительности гауссовой формы будет в точке λ=λm±σ1. И, если подобрать фильтр первого ФП так, чтобы λm≈λx±σ1, то при обычном условии и Δλн<<σ1 а⋅Δλ<<1, и чувствительность ФП к сдвигу спектра будет определяться только значением σ1: G(Δλн)≈(1+2Δλн1) и формула для расчета приращения температуры активной области светодиода существенно упроститься:

Заметим, что измеряемая величина определяется только отношениями сигналов ФП до и после разогрева светодиода рабочим током и не зависит от распределения излучения светодиода между ФП, что существенно упрощает реализацию способа, поскольку юстировка ФП относительно светового потока светодиода исключается.

Структурная схема одного из вариантов устройства, реализующего способ, представлена на фиг. 2. Устройство содержит: клеммы 1 для подключения контролируемого СИД; 2 - источник греющего тока; 3 - устройство управления; 4, 5 - ФП с гауссовой и постоянной спектральной чувствительностью, соответственно; 5, 6 - АЦП; 8 - вычислитель; 9 - индикатор.

Устройство работает следующим образом. Излучение контролируемого светодиода после подачи греющего тока от источника тока 2 по сигналу устройства управления 3 попадает на два ФП 4 и 5 со спектральными чувствительностями S1(λ) и S2(λ) соответственно. Сигналы U1(t) и U2(t) с выходов ФП поступают на входы АЦП 6 и 7, соответственно, которые по команде устройства управления в моменты времени t0 и tн преобразуют эти напряжения в код и передают в вычислитель 8. Вычислитель по измеренным значениям сигналов ФП по формуле (6) вычисляет сначала значение H(Δλ) и затем рассчитывает приращение температуры активной области светодиода по формуле (7) или (8). Результат вычисления отображается на индикаторе 9.

У известных фильтров с гауссовой спектральной характеристикой значение σ≈40 нм. Относительный температурный коэффициент сигнала ФП даже для синего светодиода с малым температурным коэффициентом:

, то есть 0,2%/К.

Для красного СИД этот коэффициент примерно в 4 раза больше:

или 0,75%/К.

Для примера, температурный коэффициент прямого падения напряжения на кремниевом диоде составляет - 2 мВ/К. При напряжении на кремниевом диоде 0,8 В относительный температурный коэффициент Up-n равен 0,25%/К.

Время tн саморазогрева светодиода греющим током выбирается, исходя из задач контроля. Для контроля, например, качества пайки кристалла светодиода достаточно нескольких миллисекунд; при контроле качества сборки светодиода для саморазогрева его конструкции необходимо уже несколько секунд; для достижения стационарного теплового режима светодиодных изделий (светильников, панелей и т.п.) необходимо несколько минут или даже десятков минут.


СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
СПОСОБ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ АКТИВНОЙ ОБЛАСТИ СВЕТОДИОДА
Источник поступления информации: Роспатент

Показаны записи 1-10 из 216.
25.08.2017
№217.015.cbd0

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способу нанесения износостойкого покрытия на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002620529
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.cbf7

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002620528
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.cbf9

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида хрома. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002620532
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.cc62

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия, при котором сначала наносят нижний слой из нитрида хрома, затем наносят верхний слой из нитрида...
Тип: Изобретение
Номер охранного документа: 0002620531
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.cc8e

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002620530
Дата охранного документа: 26.05.2017
25.08.2017
№217.015.cca6

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида титана. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002620527
Дата охранного документа: 26.05.2017
26.08.2017
№217.015.d7c6

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Наносят нижний слой из нитрида циркония. Затем наносят верхний...
Тип: Изобретение
Номер охранного документа: 0002622533
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d7d2

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622531
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d7d6

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способу нанесения износостойкого покрытия на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида циркония. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002622537
Дата охранного документа: 16.06.2017
26.08.2017
№217.015.d7ee

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят...
Тип: Изобретение
Номер охранного документа: 0002622543
Дата охранного документа: 16.06.2017
Показаны записи 1-10 из 29.
20.09.2013
№216.012.6a98

Ультрафиолетовый светодиодный облучатель

Изобретение предназначено для отверждения ультрафиолетовым излучением полимерных материалов и может быть использовано, в частности, при изготовлении изделий цилиндрической формы и при ремонте поврежденных участков трубопроводов. Изобретение обеспечивает отверждение цилиндрических изделий из...
Тип: Изобретение
Номер охранного документа: 0002492939
Дата охранного документа: 20.09.2013
27.11.2014
№216.013.0b11

Устройство для отверждения изделий из полимерных материалов ультрафиолетовым излучением

Устройство относится к установкам для отверждения полимерных материалов на основе полиэфирных смол ультрафиолетовым излучением и может быть использовано при изготовлении изделий со сложной поверхностью. Устройство для отверждения изделий из полимерных материалов ультрафиолетовым излучением...
Тип: Изобретение
Номер охранного документа: 0002534241
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.17cb

Способ определения напряжения локализации тока в мощных вч и свч биполярных транзисторах

Изобретение относится к технике измерения предельных параметров мощных биполярных транзисторов и может использоваться на входном и выходном контроле их качества. Способ основан на использовании известного эффекта резкого изменения крутизны зависимости напряжения на эмиттерном переходе при...
Тип: Изобретение
Номер охранного документа: 0002537519
Дата охранного документа: 10.01.2015
27.03.2015
№216.013.3526

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольтамперной характеристикой

Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый...
Тип: Изобретение
Номер охранного документа: 0002545090
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.3636

Рециркуляционный способ измерения времени задержки распространения сигнала цифровых интегральных микросхем

Изобретение относится к измерительной технике и может быть использовано для измерения времени задержки распространения сигнала цифровых интегральных микросхем. Формируют стартовый и стоповый импульсы заданной длительности и с заданной длительностью интервала между ними, превышающей длительность...
Тип: Изобретение
Номер охранного документа: 0002545362
Дата охранного документа: 27.03.2015
20.04.2015
№216.013.4413

Способ измерения последовательного сопротивления базы полупроводникового диода

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева...
Тип: Изобретение
Номер охранного документа: 0002548925
Дата охранного документа: 20.04.2015
10.07.2015
№216.013.60c5

Способ измерения теплового импеданса светодиодов

Изобретение относится к технике измерения теплофизических параметров полупроводниковых изделий и может быть использовано на выходном и входном контроле качества изготовления светодиодов. Способ состоит в том, что через светодиод пропускают последовательность импульсов греющего тока постоянной...
Тип: Изобретение
Номер охранного документа: 0002556315
Дата охранного документа: 10.07.2015
27.08.2015
№216.013.7441

Способ измерения параметров элементов многоэлементных нерезонансных линейных двухполюсников

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый...
Тип: Изобретение
Номер охранного документа: 0002561336
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7442

Способ измерения теплового сопротивления кмоп цифровых интегральных микросхем

Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего...
Тип: Изобретение
Номер охранного документа: 0002561337
Дата охранного документа: 27.08.2015
20.10.2015
№216.013.85d0

Способ измерения теплового сопротивления компонентов наноэлектроники с использованием широтно-импульсной модуляции греющей мощности

Изобретение относится к технике измерения теплофизических параметров компонентов наноэлектроники, таких как нанотранзисторы, нанорезисторы и др.. Сущность: способ заключается в пропускании через объект измерения последовательности импульсов греющего тока с постоянным периодом следования и...
Тип: Изобретение
Номер охранного документа: 0002565859
Дата охранного документа: 20.10.2015
+ добавить свой РИД