×
23.12.2018
218.016.aa72

Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Предложен катализатор для риформинга бензиновых фракций, гидрирования бензольной фракции или ароматических углеводородов, содержащий оксид алюминия, платину, цеолит со структурой ZSM-5 или ZSM-11. В качестве цеолита катализатор содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11, и имеет следующий состав, мас.%: платина 0,1-0,5, указанный цеолит 1-75, оксид алюминия - остальное. Также в изобретение раскрывается способ получения катализатора, описанного выше, способ риформинга бензиновых фракций и способ гидрирования бензольной фракции или ароматических углеводородов. Технический результат - снижение температуры полного выжигания катализаторного кокса на стадии регенерации катализатора, а также увеличение выхода ароматических углеводородов и октанового числа получаемой бензиновой фракции. 4 н. и 13 з.п. ф-лы, 32 пр., 2 табл., 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к катализаторам риформинга бензиновых фракций для получения высокооктановых бензиновых фракций и/или ароматических углеводородов, а также к способам применения этого катализатора в процессах риформинга и в процессах гидрирования ароматических углеводородов и их фракций. Изобретение может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Основным процессом получения высокооктановых бензиновых фракций и ароматических углеводородов С610 из низкооктановых бензиновых фракций является процесс каталитического риформинга, который осуществляют с применением катализаторов, содержащих по меньшей мере один металл из платиновой группы (Гуреев А.А., Жоров Ю.М., Смидович Е.В., «Производство высокооктановых бензинов», М., Химия, 1981, 224 с.; Маслянский Г.Н., Шапиро Р.Н., «Каталитический риформинг бензинов», Л., Химия, 1985, 222 с.). Для повышения эффективности процесса риформинга применяемые катализаторы постоянно совершенствуются путем изменения природы и концентрации металлов, используемых в качестве активных компонентов и/или промоторов, а так же путем изменения соотношения дегидрирующей и кислотной функций.

Одним из путей изменения соотношения дегидрирующей и кислотной функций катализатора риформинга является введение в его состав цеолитного компонента, причем для этого используют цеолиты различных структурных типов. Известны способы различных вариантов риформинга бензиновых фракций с применением цеолитсодержащих катализаторов, например, содержащих широкопористые цеолиты типа L (пат. США №4645586, C10G 59/02, 1987; пат. США №4985132, C10G 59/02, 1991; пат. РФ №2108153, B01J 29/62; B01J 23/34; C10G 61/06, 1998; пат. РФ №2123382, B01J 29/62; C10G 35/09, 1998) и ZSM-12 (пат. США №4652360, C10G 35/095, 1987) или узкопористые цеолиты со структурой эрионита, ферьерита и филиппсита (пат. РФ №2458103, C10G 35/085; B01J 29/54; B01J 29/67; B01J 21/04; B01J 21/12; B01J 32/00; B01J 37/04, 2012; пат. РФ №2471854, C10G 35/085; C10G 35/095; B01J 23/42; B01J 23/36; B01J 21/04; B01J 29/00; B01J 27/047; B01J 37/02, 2013).

Применение в составе катализаторов риформинга узкопористых цеолитов, к которым относятся эрионит, ферьерит, филлипсит и др., приводит к дополнительной переработке непрореагировавших на металлоксидном катализаторе н-парафинов, однако при этом не затрагиваются слаборазветвленные монометилпарафины, имеющие невысокие октановые числа, что приводит к получению бензиновых фракций с относительно низкими октановыми числами. В случае применения в составе катализаторов риформинга широкопористых цеолитов, таких как цеолиты L, бета, омега и пр., в переработку вовлекаются высокооктановые сильноразветвленные изопарафины, что в результате протекания побочных реакций гидрокрекинга приводит к снижению выхода бензиновых фракций. Таких недостатков лишены катализаторы, содержащие средаепористые цеолиты со структурой ZSM-5 и ZSM-11, вовлекающие в переработку монометил- и н-парафины, и не затрагивающие вследствие молекулярно-ситового эффекта сильноразветвленные изопарафины.

Известен способ приготовления катализаторов риформинга, содержащих 0,01-10% маc. металлов VIII группы и цеолиты ZSM-5, ZSM-11, ZSM-12, ZSM-35 и ZSM-38 (пат. США №4652360, C10G 35/095, 1987). Согласно данному способу катализатор готовят путем прокаливания натриевой формы цеолита при температуре 200-600°С, последующей его пропитки или ионного обмена с водным раствором, содержащим соединения платины или палладия, или платины в сочетании с соединениями металлов VIII группы, прокаливания металлсодержащего цеолита при температуре 150-550°С, последующего ионного обмена с раствором, содержащим соединения щелочных металлов, промывки водой и сушкой при температуре 110°С. В качестве второго металла VIII группы возможно использование иридия или родия. Процесс риформинга осуществляют при температуре 375-575°С и массовой скорости подачи сырья 0,2-5 ч-1.

Известен катализатор и способ риформинга (пат. США №4276151, C10G 35/095, 1981). Согласно данному способу процесс риформинга бензиновых фракций осуществляют при температуре 427-565°С, давлении 0,6-3,4 МПа, массовой скорости подачи сырья 0,5-50 ч-1 (лучше 1-20 ч-1) и мольном отношении водород/углеводороды 1-10 на катализаторе, содержащем платину или смесь платины и рения на оксиде алюминия и 1-15% маc. цеолита ZSM-5 в аммиачной (NH4-) форме.

Известен способ приготовления цеолитсодержащего катализатора риформинга бензиновых фракций (пат. РФ №2108154, B01J 37/02; B01J 29/40; C10G 35/095, 1998). Согласно данному способу цеолитсодержащий катализатор риформинга получают путем пропитки под избыточным давлением 0,02-0,3 МПа предварительно прокаленного цеолитсодержащего носителя раствором смеси аммиаката платины, соединения промотора и соли натрия или калия при рН 8,5-12 и атомном соотношении натрий или калий: платина - (1-50):1, последующей сушки и прокалки полученного материала. В качестве носителя используют оксид алюминия в смеси с натриевой формой цеолита ZSM-5, ZSM-8, ZSM-11 в массовом соотношении (35-45):(55-65), а в качестве промотора используют вольфрам и молибден.

Наиболее близким по своей технической сущности и достигаемому эффекту является катализатор риформинга бензиновых фракций и способ его приготовления (пат. РФ №2043149, B01J29/44; C10G35/09, 1995). Согласно выбранному прототипу катализатор содержит носитель - оксид алюминия, 0,2-1,2% мас. платины или смесь платины и промотора, выбранного из группы: Re, Ir, Rh, W, Mo в массовом соотношении (0,5-12): 1, цеолит типа ZSM-5 или ZSM-8, или ZSM-11 в количестве 50-75% и 0,4-6,8% оксида щелочного металла - Li или Na или К. Катализатор готовят в несколько стадий. Первоначально готовят цеолитсодержащий носитель, для чего смешивают гидроксид алюминия с цеолитом в натриевой форме и добавляют азотную кислоту в качестве пептизатора, полученную смесь формуют в экструдаты, сушат и прокаливают в токе воздуха при температуре 500°С. Полученные экструдаты пропитывают раствором аммиаката платины или смесью аммиаката платины с соединением промотора при температуре 80-90°С и рН=10, после чего избыток раствора сливают, а экструдаты пропитывают при 80-90°С водным раствором соли щелочного металла (Li, Na или К), после чего избыток раствора сливают, полученный катализатор сушат и прокаливают в токе воздуха при температуре 500°С.

Основными недостатками прототипа и перечисленных выше аналогов являются относительно высокая температуры выгорания кокса, образующегося на цеолитном компоненте катализатора и неполная глубина его выгорания при умеренных температурах регенерации катализатора.

Задачей изобретения является разработка катализатора риформинга бензиновых фракций с пониженной температурой полного выгорания кокса, образующегося на цеолитном компоненте катализатора в условиях процесса, при сохранении высокого уровня активности катализатора, а так же способ приготовления такого катализатора, способ риформинга бензиновых фракций и способ применения данного катализатора в процессах гидрирования бензольной фракции и ароматических углеводородов.

Поставленная задача достигается тем, что катализатор риформинга бензиновых фракций содержит 1-75% мас. кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11, 0,1-0,5% платины, 0-1,6% рения и/или олова, возможно 0,5-2,0% хлора, и остальное - гамма оксид алюминия.

Поставленная задача достигается так же тем, что катализатор для риформинга бензиновых фракций готовят путем смешения порошка или пасты гидроксида алюминия и кристаллического ферроалюмосиликата или феррогаллийалюмосиликата, возможно с оловосодержащим реагентом, последующего добавления раствора минеральной и/или органической кислоты в качестве пептизатора, формования полученной смеси, нейтрализации сформованных гранул аммиачным раствором, сушки и прокаливания сформованных гранул носителя, пропитки прокаленных гранул соединениями платины, возможно соединениями олова или рения, возможно в растворах кислот, последующей сушки и прокаливания гранул катализатора, а применяемый ферроалюмосиликат или феррогаллийалюмосиликат имеет структуру цеолита ZSM-5 или ZSM-11.

Поставленная задача достигается так же тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5% мас. железа, а феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2% железа и 0,1-1,5% галлия.

Применяемый катализатор содержит 0,1-0,5% мас. платины, 0-1,6% олова и/или рения и может содержать 0,1-1,6% хлора.

Поставленная задача достигается так же тем, что риформинг бензиновых фракций осуществляют путем их контактирования при повышенных температурах и избыточном давлении в присутствии водородсодержащего газа с вышеупомянутым катализатором, содержащим гамма оксид алюминия, платину, возможно рений и/или олово, и содержащим 1-75% мас. кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.

Поставленная задача достигается также тем, что вышеупомянутый катализатор применяют для гидрирования бензольной фракции или ароматических углеводородов путем контактирования сырья в присутствии водородсодержащего газа при избыточном давлении с катализатором, содержащим гамма оксид алюминия, платину, возможно рений и/или олово, и содержащим 1-75% мас. кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.

Основным отличительным признаком предлагаемого способа является применение в составе катализатора кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.

Катализатор готовят следующим образом. Гидроксид алюминия, полученный по алюминатной технологии по однопоточному или непрерывному осаждению, смешивают с кристаллическим ферроалюмосиликатом или феррогаллийалюмосиликатом, возможно смешивание с растворимым соединением олова, добавляют водный раствор минеральной и/или органической кислоты в качестве пептизатора, гранулируют известными методами в виде экструдатов или сфер, сушат при температуре до 200°С и прокаливают в токе воздуха при температуре 500-650°С.Прокаленные гранулы после охлаждения пропитывают известными методами растворами, содержащими соединения платины или смесь соединений платины и рения, возможно минеральной и/или органической кислоты. Возможна предварительная пропитка соединениями олова. После стадии пропитки раствор отделяют от гранул катализатора, катализатор сушат и прокаливают в токе воздуха при температуре 450-550°С. Применяемый при приготовлении катализатора кристаллический ферроалюмосиликат или феррогаллийалюмосиликат имеет структуру цеолита ZSM-5 или ZSM-11 и используется в катионной Na-форме или в катион-декатионированной HNa-форме, или в декатионированной кислой Н-форме.

Для внесения дополнительного количества хлора в катализатор стадию пропитки гранул соединениями платины или смесью соединений платины и промотора осуществляют раствором, содержащим соляную кислоту.

Риформинг бензиновых фракций осуществляют путем контактирования сырья с вышеописанным катализатором в присутствии водородсодержащего газа при температуре 440-560°С, избыточном давлении 0,3-4,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10.

Перед использованием катализатора в процессе риформинга его восстанавливают водородом при температуре 450-550°С. После восстановления водородом катализатор может быть предварительно осернен сероводородом и/или сераорганическими соединениями из расчета 0,01-0,07% мас. серы на катализатор.

Гидрирование бензольной фракции или ароматических углеводородов осуществляют путем контактирования сырья с вышеописанным катализатором в присутствии водородсодержащего газа при температуре 220-400°С, избыточном давлении 0,5-5,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 4-15. Перед использованием катализатора в процессе гидрирования его восстанавливают водородом при температуре 400-500°С. В результате гидрирования бензол превращается в циклогексан, который далее частично изомеризуется в метилциклопентан. Варьируя условия процесса возможно дальнейшее раскрытие 6-ти и 5-тичленных углеводородных колец с образованием парафинов С6 - н-гексана, метилпентанов и диметилбутанов. При гидрировании алкилбензолов первичным продуктом является соответствующий алкилциклогексан, который в зависимости от условий процесса далее может превращаться подобно вышеописанной схеме.

В ходе переработки углеводородного сырья происходит постепенное закоксование катализатора, приводящее к снижению его каталитической активности, что в свою очередь приводит к падению выхода ароматических углеводородов и к снижению октанового числа получаемых бензиновых фракций. Для восстановления начального уровня активности катализатора осуществляют его регенерацию, заключающуюся в регулируемом выжигании коксовых отложений с поверхности катализатора регенерирующим газом с определенным содержанием кислорода. Однако выгорание кокса на металлическом компоненте катализатора, находящемся на оксиде алюминия, происходит более полно и при более низких температурах, чем выгорание кокса, образовавшегося внутри кристаллов алюмо силикатного (цеолитного) компонента, так как вводимые на стадии пропитки катализатора поливалентные катионы металлов (Pt, Re и пр.) не внедряются внутрь кристаллов цеолитов типа ZSM-5 и ZSM-11 и поэтому не влияют на процесс выжигания катализаторного кокса внутри цеолитных каналов. Вследствие этого коксовые отложения, находящиеся внутри цеолитных кристаллов, могут полностью не выгорать при умеренных температурах регенерации и постепенно накапливаться от регенерации к регенерации приводя к снижению уровня активности и/или к сокращению времени межрегенерационного пробега катализатора. Введение же на стадии гидротермального синтеза в кристаллический каркас цеолита атомов железа и галлия при синтезе ферроалюмосиликата или феррогаллийалюмосиликата со структурой ZSM-5 и ZSM-11 приводит к образованию в объеме их кристаллов активных центров, ускоряющих реакции выгорания катализаторного кокса, что в свою очередь приводит к снижению температуры и увеличению глубины выжигания кокса в цеолитном компоненте катализатора при сохранении высокого уровня активности катализатора.

Сущность предлагаемого способа и его практическая применимость иллюстрируется нижеприведенными примерами. Примеры №№1-12 описывают приготовление катализатора по предлагаемому способу, пример №13 - приготовление катализатора подобно прототипу; составы получаемых катализаторов дополнительно представлены в таблице 1. Для иллюстрации достижимости поставленной цели - снижения температуры выгорания кокса, образующегося на цеолитном компоненте катализатора и увеличения полноты его выгорания, приведены примеры №№14-16 и Фиг. 1-3 - пример №14 (Фиг. 1) показывает глубину выгорания кокса, образующегося на цеолитном компоненте катализатора, приготовленного аналогично прототипу, а примеры №№15 и 16 (Фиг. 2 и 3) иллюстрируют выгорание кокса на цеолитном компоненте предлагаемого катализатора. Примеры №№17-28 иллюстрируют способ применения предлагаемого катализатора в процессе риформинга бензиновых фракций, а пример №29 - применение катализатора, приготовленного подобно прототипу и приведен для сравнения; результаты испытаний катализаторов приведены в таблице 2. Примеры №№30-32 иллюстрируют способ применения катализатора в процессе гидрирования бензольной фракции и ароматических углеводородов.

Пример 1.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 75%. Гидроксид алюминия в количестве 1000 г при температуре 20°С пластифицируют 36 мл 46% уксусной кислотой из расчета получения кислотного модуля (мольное отношение кислоты к оксиду алюминия в гидроксиде) Мк=0,12 и добавляют при перемешивании 28 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной кислой Н-форме, имеющего мольное отношение SiO2/Al2O3=86 и содержащего 0,4% мас. железа. Полученную жидкотекучую тиксотропную смесь формуют в сферические гранулы капельным методом в дизельной фракции и нейтрализуют их в 18% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 24 часов, сушат при температуре 120°С в течение 4 часов и прокаливают при температуре 550°С в течение 2 часов в токе воздуха с объемной скоростью подачи 500 ч-1. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 10% мас. цеолита и имеют диаметр 1,6-2,0 мм, прочность на раздавливание 25 МПа, удельную поверхность 220 м2/г. Пористая структура оксида алюминия представлена порами со средним диаметром 70 и объемом пор 0,6 см3/г.

Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 290 мл водного раствора 0,5% уксусной кислоты при температуре 25°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 75 мл раствора нитрата платины (IV) с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при температуре 60°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. ферроалюмосиликата со структурой цеолита ZSM-5 и 0,5% платины.

Пример 2.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 73%. Гидроксид алюминия в количестве 1000 г пластифицируют раствором 31 г щавелевой кислоты в 124 мл воды при 45°С из расчета получения Мк=0,13. Полученную тиксотропную массу смешивают при перемешивании с 30 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=92 и содержащего 0,3% мас. железа и 0,1% галлия. Гранулирование полученной смеси осуществляют капельным методом в дизельной фракции, а нейтрализацию сформованных гранул проводят в 15% водном растворе аммиака. Сформованные гранулы выдерживают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 4 часов и прокаливают при температуре 600°С в токе сухого воздуха при скорости подачи 1000 ч"1 в течение 2 часов. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 10% мас. цеолита и имеют диаметр 1,6-1,9 мм, прочность на раздавливание 22 МПа и удельную поверхность 250 м2/г.

Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 290 мл водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 45 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при температуре 60°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,3% платины и 0,5% хлора.

Пример 3.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия холодного осаждения с суммарной влажностью 80%. Гидроксид алюминия в количестве 1000 г пластифицируют при температуре 22°С раствором 56,5 г лимонной кислоты в 45 мл воды из расчета получения кислотного модуля Мк=0,15. В полученную смесь при перемешивании добавляют раствор 2 г тетрахлорида олова пятиводного в 10 мл воды и 50 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в катионной Na-форме, имеющего мольное отношение SiO2/Аl2О3=310 и содержащего 1,5% мас. железа. Гранулирование полученной смеси осуществляют капельным методом в дизельной фракции, а нейтрализацию гранул проводят в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 4 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в токе воздуха при объемной скорости подачи 1000 ч-1 в течение 2 часов. Полученные сферические гранулы носителя на основе γ-Аl2О3 содержат 20% мас. цеолита и 0,2% олова; гранулы имеют диаметр 1,6-1,8 мм, прочность на раздавливание 21 МПа и средний диаметр пор оксида алюминия 100.

Охлажденные гранулы приготовленного носителя, взятые в количестве 200 г, увлажняют 320 мл водного раствора 1% лимонной кислоты при температуре 20°С в течение получаса, затем в раствор с гранулами носителя при перемешивании добавляют 25 мл водного раствора рениевой кислоты с концентрацией рения 35 г/л, 30 мл раствора платинохлористоводородной кислоты с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 60°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 20% мас. ферроалюмосиликата со структурой цеолита ZSM-5, 0,2% платины, 0,3% рения и 0,4% хлора.

Пример 4.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия смесевого осаждения при соотношении гидроксидов алюминия холодного и горячего осаждения 1:1 мас. Смесевой гидроксид алюминия высушивают при 110°С до суммарной влажности 25%, размалывают на шаровой мельнице до порошкообразного состояния с размером частиц не более 50 мкм. Полученный порошок гидроксида алюминия в количестве 1000 г с суммарной влажностью 25% смешивают с 2,7 л деионизированной воды, 38 мл раствора 69% азотной кислоты до получения Мк=0,08, после чего при перемешивании добавляют 40 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=38 и содержащего 0,1% мас. железа. Стадию пластификации и смешивания с порошком цеолита осуществляют при температуре 28°С до содержания в массе 248 г Аl2O3/кг смеси. Полученную пластифицированную массу выдерживают в течение 24 часов при температуре 22°С и формуют в сферические гранулы капельным методом в дизельной фракции с последующей нейтрализацией в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе при температуре 20°С в течение 24 часов, затем сушат при 110°С в течение 2 часов и прокаливают при температуре 650°С в течение 4 часов в токе сухого воздуха с объемной скоростью подачи 600 ч-1. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 5% мас. цеолита, имеют диаметр 1,4-1,8 мм, прочность на раздавливание 28 МПа и средний диаметр пор оксида алюминия 65.

Охлажденные гранулы приготовленного носителя в количестве 700 г увлажняют 1000 мл водного раствора 0,3 н соляной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании последовательно добавляют 21 мл водного раствора 0,5% уксусной кислоты, 105 мл раствора платано хлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при 60°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 5% мас. ферроалюмосиликата со структурой цеолита ZSM-5, 0,2% платины, 0,3% олова и 1,4% хлора.

Пример 5.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 85%. Гидроксид алюминия в количестве 500 г пластифицируют при температуре 20°С смесью кислот, добавляя 3,8 мл раствора 69% азотной кислотой и 3,6 мл 46% уксусной кислоты из расчета получения суммарной величины кислотного модуля Мк=0,12, и смешивают с 8,4 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в декатионированной Н-форме, имеющего мольное отношение SiO/Al2O3=61 и содержащего 0,1% мас. железа и 0,3% галлия. Гранулирование полученной смеси в сферические гранулы осуществляют жидкостным методом в керосиновой фракции, а твердение и нейтрализацию гранул проводят в 18% водном растворе аммиака. Сформованные гранулы сушат при температуре 110°С в течение 2 часов и прокаливают в токе сухого воздуха с объемной скоростью 1000 ч'1 при температуре 550°С в течение 4 часов. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 10% мас. цеолита и имеют диаметр 1,6-2,0 мм, прочность на раздавливание 20 МПа, удельную поверхность 270 м2/г и средний диаметр пор оксида алюминия 65.

Охлажденные гранулы приготовленного носителя, взятые в количестве 70 г, увлажняют 150 мл водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании последовательно добавляют 10 мл раствора рениевой кислоты с концентрацией рения 35 г/л, 20 мл раствора нитрата платины (IV) с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором при 80°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,2% платины и 0,4% рения.

Пример 6.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия однопоточного осаждения с суммарной влажностью 73%. Гидроксид алюминия в количестве 1000 г пластифицируют раствором 31 г щавелевой кислоты в 124 мл воды при 45°С из расчета получения Мк=0,13. Полученную тиксотропную массу перемешивают с добавлением 30 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в катион-декатионированной HNa-форме, имеющего мольное отношение SiO2/Al2O3=320 и содержащего 1,1% мас. железа и 1,5% галлия. Гранулирование полученной смеси осуществляют методом капельной формовки в дизельной фракции, а нейтрализацию гранул проводят в 18% водном растворе аммиака. Сформованные гранулы выдерживают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 4 часов и прокаливают при температуре 600°С в токе сухого воздуха при скорости подачи 1000 ч-1 в течение 2 часов. Полученные сферические гранулы носителя на основе γ-А12O3 содержат 10% мас. цеолита и 0,5% олова, гранулы имеют диаметр 1,6-1,9 мм, прочность на раздавливание 15 МПа и удельную поверхность 250 м2/г.

Охлажденные гранулы приготовленного носителя в количестве 250 г увлажняют 360 мл водного раствора 0,5% соляной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя добавляют раствор 4,5 г пятиводного тетрахлорида олова в 50 мл воды и проводят обработку гранул полученным раствором в течение часа при температуре 60°С, после чего смесь декантируют, гранулы сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Охлажденные гранулы увлажняют при температуре 20°С деионизированной водой, затем в раствор с гранулами добавляют при перемешивании 55 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором первоначально при 20°С, а затем при 70°С, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,3% платины, 0,5% олова и 0,9% хлора.

Пример 7.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 79%. Пасту данного гидроксида алюминия в количестве 600 г при температуре 25°С пептизируют 9,5 мл раствора 69% азотной кислоты из расчета получения кислотного модуля Мк=0,10 и смешивают при перемешивании с 0,4 г тетрахлорида олова пятиводного в 5 мл воды и 1,3 г порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-11 в катионной Na-форме, имеющего мольное отношение SiO2/Al2O3=88 и содержащего 0,1% мас. железа. Полученную жидкотекучую тиксотропную смесь формуют методом капельной формовки в дизельной фракции и нейтрализуют их в 20% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 10 часов и сушат первоначально при температуре 60°С в течение 2-х часов, а затем при температуре 110°С в течение 4 часов, после чего их прокаливают в течение 3 часов при температуре 550°С в токе сухого воздуха с объемной скоростью подачи 1000 ч-1. Полученные гранулы γ-А12O3 содержат 1% мас. цеолита и 0,1% олова, имеют размер 1,6-1,8 мм, прочность на раздавливание 31 МПа, удельную поверхность 210 м2/г и пористую структуру со средним диаметром пор 90 и объемом пор 0,55 см3/г.

Охлажденные гранулы приготовленного носителя в количестве 100 г увлажняют в 200 мл деионизированной воды при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 16 мл раствора рениевой кислоты с концентрацией рения 35 г/л, 22 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 1% мас. ферроалюмосиликата со структурой цеолита ZSM-11, 0,3% платины, 0,5% рения и 0,1% олова.

Пример 8.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 79%. Пасту данного гидроксида алюминия в количестве 500 г пластифицируют 5,1 мл раствора 69% азотной кислотой из расчета получения кислотного модуля Мк=0,08. Полученную тиксотропную массу гидроксида алюминия перемешивают с 3 г тетрахлорида олова пятиводного в 30 мл воды и с 3,2 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=212 и содержащего 0,6% мас. железа и 1,1% галлия. Смесь формуют в сферические гранулы методом капельной формовки в керосиновой фракции, а нейтрализацию сформованных гранул проводят в 15% водном растворе аммиака. Сформованные гранулы провяливают на воздухе в течение 10 часов и сушат при температуре 110°С в течение 4 часов, после чего их прокаливают в течение 3 часов при температуре 550°С в токе сухого воздуха с объемной скоростью 600 ч-1. Полученные гранулы носителя - γ-А12O3 размером 1,6-1,8 мм обладают прочностью на раздавливание 20 МПа, удельной поверхностью 250 м2/г и содержат 3% мас. цеолита и 1% олова. Пористая структура оксида алюминия представлена порами со средним диаметром 90 и объемом пор 0,8 см3/г.

Охлажденные гранулы приготовленного носителя, взятые в количестве 100 г, увлажняют 150 мл водного раствора 1% соляной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 3 мл водного раствора 0,5% уксусной кислоты, 35 мл водного раствора рениевой кислоты с концентрацией рения 20,0 г/л, 33 мл раствора платинохлористоводородной кислоты с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение получаса, а затем при 80°С в течение 1 часа, после чего раствор декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 3% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,4% платины, 0,6% рения, 1% олова и 1,6% хлора.

Пример 9.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 85%. Гидроксид алюминия в количестве 1500 г пластифицируют при температуре 20°С смесью кислот, добавляя по 11 мл 69% азотной кислотой и 46% уксусной кислоты из расчета получения суммарной величины кислотного модуля Мк=0,12. Полученную тиксотропную массу гидроксида алюминия перемешивают с раствором 7 г тетрахлорида олова пятиводного в 60 мл воды и с 25 г порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=186 и содержащего 1,2% мас. железа и 0,3% галлия. Гранулирование полученной смеси в сферические гранулы осуществляют жидкостным методом в керосиновой фракции, а твердение и нейтрализацию гранул проводят в 18% водном растворе аммиака. Сформованные гранулы сушат при температуре 120°С в течение 2 часов и прокаливают в токе сухого воздуха с объемной скоростью 800 ч-1 при температуре 550°С в течение 4 часов. Полученные сферические гранулы носителя на основе γ-А12O3 имеют диаметр 1,6-1,9 мм, прочность на раздавливание 22 МПа, удельную поверхность 260 м2/г, средний диаметр пор оксида алюминия 70 и содержат 10% мас. цеолита и 1% олова.

Охлажденные гранулы приготовленного носителя в количестве 200 г увлажняют в 400 мл деионизированной воды при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при перемешивании добавляют 40 мл раствора перрената аммония с концентрацией рения 35 г/л, 15 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 10% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,1% платины, 0,6% рения и 1,0% олова.

Пример 10.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 80%. В смеситель с Z-образными лопастями загружают 3,0 кг пасты гидроксида алюминия и при постоянном перемешивании добавляют 19 мл 69% азотной кислоты. После перемешивания в течение 15 минут к пластифицированной массе добавляют при перемешивании 1,4 кг порошка кристаллического ферроалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=96 и содержащего 0,5% мас. железа. Полученную массу с суммарной влажностью 50% формуют на экструдере в черенки с диаметром 3-4 мм и длиной 5-7 мм. Экструдаты выдерживают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 4 часов и прокаливают при 500°С в течение 4 часов. Полученные гранулы носителя содержат 30% мас. γ-А12O3 и 70% цеолита, имеют прочностью на раздавливание по образующей 7,1 МПа и удельную поверхностью 340 м2/г.

Охлажденные гранулы приготовленного носителя в количестве 2,0 кг увлажняют 3,3 л водного раствора 0,5% уксусной кислоты при температуре 20°С в течение 0,5 часа, затем в раствор с гранулами носителя при циркуляции раствора добавляют 420 мл раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором первоначально при 20°С в течение 0,5 часа, а затем при 70°С в течение 1 часа, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 70% мас. ферроалюмосиликата со структурой цеолита ZSM-5 и 0,3% платины.

Пример 11.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия смесевого осаждения при соотношении гидроксида алюминия холодного осаждения и горячего 1:1 мас. Смесевой гидроксид алюминия высушивают при 110°С до суммарной влажности ~25%, размалывают на шаровой мельнице до порошкообразного состояния с размером частиц не более 50 мкм. Полученный порошок гидроксида алюминия в количестве 3 кг с суммарной влажностью 25% помещают в смеситель с Z-образными лопастями и смешивают при постоянном перемешивании с 1,5 кг порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=145 и содержащего 0,2% мас. железа и 0,6% галлия. К полученной смеси порошков добавляют при постоянном перемешивании раствор азотной кислоты, содержащий 114 мл 69% азотной кислоты для получения кислотного модуля Мк=0,08 и 1930 мл воды. Полученную массу перемешивают в течение 20 минут и добавляют 25 г тетрахлорида олова пятиводного в 140 мл воды. Смесь с суммарной влажностью 46% формуют в экструдаты диаметром 4-5 мм и длиной 5-8 мм. Гранулы выдерживают на воздухе в течение 10 часов и сушат при температуре 120°С в течение 4 часов. Прокаливание гранул проводят при температуре 550°С в токе сухого воздуха при его объемной скорости подачи 1000 ч-1 в течение 4 часов. Полученные гранулы экструдатов на основе γ-А12O3 содержат 40% мас. цеолита и 0,2% олова, гранулы обладают прочностью на раздавливание по образующей 8,9 МПа и удельной поверхностью 310 м2/г.

Охлажденные гранулы приготовленного носителя в количестве 3,5 кг увлажняют 5,5 л водного раствора 0,1 н соляной кислоты при температуре 20°С в течение 0,5 часа, затем при циркуляции раствора добавляют 130 мл раствора платинохлористоводородной кислоты с концентрацией платины 15 г/л и проводят обработку гранул полученным раствором первоначально при 20°С в течение 0,5 часа, а затем при 70°С в течение 1 часа, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 120°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 40% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-5, 0,1% платины, 0,2% олова и 0,9% хлора.

Пример 12.

В качестве сырья для приготовления носителя катализатора используют гидроксид алюминия непрерывного осаждения с суммарной влажностью 75%. В смеситель с Z-образными лопастями загружают 2,0 кг пасты гидроксида алюминия и при постоянном перемешивании добавляют 222 мл 69% азотной кислоты. После перемешивания пластифицированной массы в течение 15 минут к ней добавляют при постоянном перемешивании 4,0 кг порошка смесевого гидроксида алюминия, полученного после сушки влажной лепешки смесевого гидроксида алюминия при 110°С до влажности ~25% и размола его на шаровой мельнице до частиц с размером менее 50 мкм. Через 30 минут перемешивания в полученную пластифицированную массу вводят 10,5 кг порошка кристаллического феррогаллийалюмосиликата со структурой цеолита ZSM-11 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=105 и содержащего 0,4% мас. железа и 0,1% галлия. Полученную пластифицированную массу гидроксида алюминия с суммарной влажностью 50% экструдируют в гранулы диаметром 5-7 мм и длиной 7-10 мм. Экструдированные гранулы выдерживают на воздухе при комнатной температуре в течение 10 часов, сушат при 110°С в течение 4-х часов и прокаливают в токе воздуха при объемной скорости подачи 500 ч-1 при температуре 550°С в течение 2-х часов. Полученные гранулы носителя содержат 25% мас. γ-А12O3 и 75% цеолита, гранулы обладает прочностью на раздавливание по образующей 4,8 МПа и удельной поверхностью 350 м2/г.

Охлажденные гранулы приготовленного носителя в количестве 14,0 кг увлажняют под вакуумом 25 л деионизированной воды при температуре 20°С в течение 0,5 часа, затем при циркуляции раствора добавляют 1,4 л раствора рениевой кислоты с концентрацией рения 35 г/л и 2,1 л раствора нитрата платины (IV) с концентрацией платины 15,0 г/л и проводят обработку гранул полученным раствором при 20°С в течение 2 часов, после чего смесь декантируют, гранулы катализатора провяливают на воздухе в течение 10 часов, сушат при температуре 110°С в течение 2 часов и прокаливают при 500°С в течение 2 часов. Полученные гранулы катализатора содержат 75% мас. феррогаллийалюмосиликата со структурой цеолита ZSM-11, 0,2% платины и 0,3% рения.

Пример 13 (для сравнения).

Носитель для катализатора и сам катализатор готовят подобно их приготовлению по прототипу. Для приготовления носителя применяют пасту гидроксида алюминия с влажностью 30%. Пасту гидроксида алюминия в количестве 43 г смешивают с 70 г цеолита ZSM-5 в декатионированной Н-форме, имеющего мольное отношение SiO2/Al2O3=91, и добавляют раствор 57% азотной кислоты в качестве пептизатора до получения кислотного модуля Мк=0,05. Смесь формуют на экструдере в черенки с диаметром 3-4 мм и длиной 5-7 мм, сушат на воздухе в течение 10 часов и прокаливают в токе воздуха при температуре 500°С в течение 4 часов. Полученные гранулы носителя имеют прочностью на раздавливание по образующей 5,1 МПа и удельную поверхностью 340 м2/г и содержат 30% мас. γ-А12O3 и 70% цеолита.

Пропитку 100 г полученного носителя 200 мл раствора нитрата платины (IV) с содержанием платины 2 г/л ведут при температуре 85°С в течение 3 ч, избыток раствора сливают, катализатор сушат на воздухе в течение 10 часов и прокаливают в токе воздуха при температуре 500°С в течение 4 часов. Полученные гранулы катализатора содержат 70% мас. цеолита ZSM-5 и 0,3% платины.

Пример 14 (для сравнения).

Изучение процесса выжигания катализаторного кокса закоксованного образца осуществляют по контролю изменения массы 0,2 г образца в реакторе, близком к изотермическому. Выжигание кокса проводят путем контактирования с катализатором регенерирующего газа, содержащего 1,3% об. кислорода в смеси с азотом, которое осуществляют при атмосферном давлении, температуре 500-600°С и скорости подачи газа 50 л/ч.

Выжиганию кокса подвергают носитель примера 13, проработавший 15 ч как катализатор переработки углеводородной фракции C6-C8 и содержащий 5,1% мас. кокса.

Выжигание кокса начинают при постоянной температуре 500°С и ведут 60 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 39% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 22% от начального содержания кокса. При температуре 550°С было удалено еще 8% кокса. Остаточный кокс в количестве 31% от начального содержания кокса выгорел при температуре 600°С за 70 мин. Общее время выжигания кокса составило ~250 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 1.

Пример 15.

Аналогичен примеру 14 с тем отличием, что выжиганию кокса подвергают носитель примера 10, проработавший 15 ч как катализатор переработки углеводородной фракции C6-C8 и содержащий 5,2% мас. кокса.

Выжигание кокса начинают при постоянной температуре 500°С и ведут 85 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 62% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 75 мин до стабилизации массы образца катализатора было удалено еще 28% от начального содержания кокса. Остаточный кокс в количестве 10% от начального содержания кокса выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что подтверждает полное удаление кокса при температуре 550°С. Общее время выжигания кокса составило ~180 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 2.

Пример 16.

Аналогичен примеру 14 с тем отличием, что выжиганию кокса подвергают носитель примера 12, проработавший 100 ч как катализатор переработки углеводородной фракции С68 и содержащий 10,2% мас. кокса.

Выжигание кокса начинают при постоянной температуре 500°С и ведут 80 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 81% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 13% от начального содержания кокса. Остаточный кокс в количестве 6% от начального содержания кокса выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что подтверждает полное удаление кокса при температуре 550°С. Общее время выжигания кокса составило ~160 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 3.

Пример 17.

Испытание катализатора в процессе риформинга проводят на лабораторной установке с трубчатым изотермическим реактором. При тестировании катализатора в качестве сырья процесса риформинга применяют модельную фракцию углеводородов С6-C8, содержащую нафтены, н-парафины и изопарафины в массовом соотношении 1:1:1. В качестве катализатора используют катализатор примера 10. Перед испытанием катализатор активируют в токе воздуха в течение 1 часа при температуре 450°С, затем продувают азотом и восстанавливают в токе водорода при температуре 480°С в течение 4 часов. Риформинг углеводородной фракции C6-C8 осуществляют при температуре 480°С, избыточном давлении 1,0 МПа, объемной скорости подачи жидкого сырья 2,0 ч-1 и мольном отношении водорода к углеводородам Н2/СН=5. При этих условиях получаемая бензиновая фракция C5+ содержит, % маc.: н-парафины - 11,4; изопарафины - 29,6; нафтены - 6,2; ароматические углеводороды - 52,8; и имеет октановое число 83,6 ММ.

Примеры 18-28.

Аналогичны примеру 17. Условия процесса риформинга и результаты испытаний катализаторов приведены в таблице 2. Составы катализаторов приведены в таблице 1.

Пример 29 (для сравнения).

Аналогичен примеру 17. В качестве катализатора используют катализатор примера №13, приготовленный подобно прототипу. Состав катализатора приведен в таблице 1. Условия процесса риформинга и результаты испытаний катализаторов приведены в таблице 2.

Пример 30.

Испытание катализатора в реакциях гидрирования проводят на лабораторной установке с трубчатым изотермическим реактором. Катализатор тестируют в процессе гидрирования бензольной фракции, содержащей % маc.: парафины С6 - 24,6, нафтены С6 - 4,1, бензол - 34,8, парафины С7 - 36,5. В качестве катализатора применяют катализатор примера 10. Перед испытанием катализатора его активируют в токе воздуха в течение 1 часа при температуре 450°С, затем продувают азотом и восстанавливают в токе водорода при температуре 500°С в течение 2 часов. Испытание катализатора проводят при температуре 380°С, избыточном давлении 3,0 МПа, объемной скорости подачи жидкого сырья 5,0 ч-1 и мольном отношении водорода к углеводородам Н2/СН=5. При этих условиях конверсия бензола составляет 83%, выход фракции С5+ - 65% мас. Фракция С5+ содержит 75,9% мас. парафинов С57, 12,9% нафтенов С6, 9,1% бензола, 1,3% толуола и 0,8% ксилолов.

Пример 31.

Аналогичен примеру 30. В качестве сырья процесса гидрирования используют смесь бензола и толуола в соотношении 2:1 маc., в качестве катализатора применяют катализатор примера 1. Превращение сырья проводят при температуре 300°С, давлении 3,0 МПа, объемной скорости подачи жидкого сырья 2,0 ч-1 и мольном отношении Н2/СН=15. При этих условиях конверсия бензола составляет 84%, конверсия толуола - 98%, выход фракции С5+ - 96% мас. Фракция С5+ содержит 0,1% мас. парафинов С6, 94,9% нафтенов С67 и 5,0% бензола с толуолом.

Пример 32.

Аналогичен примеру 30. В качестве сырья процесса гидрирования используют бензол, в качестве катализатора применяют катализатор примера 12. Превращение сырья проводят при температуре 280°С, давлении 5,0 МПа, объемной скорости подачи жидкого сырья 1,7 ч-1 и мольном отношении Н2/СН=10. При этих условиях конверсия бензола составляет 96%, выход фракции С5+ - 97% мас. Фракция С5+ содержит 0,1% мас. парафинов С6, 24,9% метилциклопентана, 71,2% циклогексана и 3,8% бензола.

Как видно из приведенных примеров №№13-15 и фиг. 1-3 предлагаемый катализатор обладает способностью проводить удаление коксовых отложений с поверхности цеолитного компонента регенерируемого катализатора в более мягких условиях, заключающихся в снижении температуры полного выжигания кокса с 600°С до 550°С и сокращении общего времени регенерации. При этом он проявляет высокую активность в процессах риформинга бензиновых фракций и гидрирования ароматических углеводородов. Кроме того, при одинаковых с прототипом условиях процесса риформинга предлагаемый катализатор производит бензиновую фракцию С5+ с большим содержанием ароматических углеводородов и большим октановым числом, чем катализатор прототипа (см. соответственно примеры 17 и 29 в табл. 2).


Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
Источник поступления информации: Роспатент

Показаны записи 1-10 из 37.
20.03.2015
№216.013.3317

Способ получения оксихлоридов алюминия

Изобретение может быть использовано в химической промышленности. Способ получения оксихлоридов алюминия включает обработку термохимически активированного гидроксида алюминия водным раствором соляной кислоты при нагреве. Термохимически активированный гидроксид алюминия предварительно подвергают...
Тип: Изобретение
Номер охранного документа: 0002544554
Дата охранного документа: 20.03.2015
10.07.2015
№216.013.5b70

Медьцинковый катализатор для низкотемпературной конверсии оксида углерода водяным паром

Изобретение относится к химической промышленности, а именно к усовершенствованию промышленного медьцинкового катализатора для низкотемпературной конверсии оксида углерода. Предложен медьцинковый катализатор, включающий оксиды меди, цинка, алюминия и дополнительное соединение кремния....
Тип: Изобретение
Номер охранного документа: 0002554949
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5eed

Медьхромцинковый катализатор для гетерогенных реакций

Изобретение относится к химической промышленности, а именно к усовершенствованию промышленного медьхромцинкового катализатора для низкотемпературной конверсии оксида углерода и расширения области его применения для других процессов. Заявлен медьхромцинковый катализатор для гетерогенных реакций,...
Тип: Изобретение
Номер охранного документа: 0002555842
Дата охранного документа: 10.07.2015
10.02.2016
№216.014.c2f0

Композиция на основе диоксида титана и оксида алюминия, способ ее получения и ее применение

Изобретение относится к каталитическим композициям, применяемым в качестве катализаторов или носителей для катализаторов, в частности катализаторов для очистки серосодержащих газов, и может найти применение в процессах очистки серосодержащих газов на предприятиях газовой, нефтяной, химической...
Тип: Изобретение
Номер охранного документа: 0002574599
Дата охранного документа: 10.02.2016
27.08.2016
№216.015.4f5c

Катализатор изомеризации парафиновых углеводородов и способ его приготовления

Изобретение относится к катализатору для изомеризации парафиновых углеводородов, включающему металл платиновой группы, нанесенный на носитель, состоящий из смеси оксида алюминия, оксида циркония и сернокислотного иона или иона вольфрамата. Состав катализатора, в котором объем пор с диаметром...
Тип: Изобретение
Номер охранного документа: 0002595341
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.7e24

Реактор для дегидрирования парафиновых углеводородов c-c

Изобретение относится к области нефтехимии, в частности к реакторам дегидрирования парафиновых углеводородов С-С в соответствующие олефиновые углеводороды. Реактор с кипящим слоем мелкозернистого катализатора содержит вертикальный цилиндрический корпус, патрубок ввода паров сырья, соединенный с...
Тип: Изобретение
Номер охранного документа: 0002601002
Дата охранного документа: 27.10.2016
25.08.2017
№217.015.c397

Система дегидрирования парафиновых углеводородов c-c

Изобретение относится к области нефтехимии, в частности к системе получения олефиновых углеводородов С-С дегидрированием соответствующих парафиновых углеводородов, используемых в дальнейшем для получения основных мономеров синтетических каучуков, а также при производстве полипропилена,...
Тип: Изобретение
Номер охранного документа: 0002617397
Дата охранного документа: 24.04.2017
25.08.2017
№217.015.c7c4

Способ получения олефиновых углеводоров c-c

Изобретение относится к способу получения олефиновых углеводородов С-С путем дегидрирования соответствующих парафиновых углеводородов в кипящем слое алюмохромового катализатора, циркулирующего в системе, включающей реактор, регенератор (13) и узел восстановительно-десорбционной подготовки...
Тип: Изобретение
Номер охранного документа: 0002619128
Дата охранного документа: 12.05.2017
26.08.2017
№217.015.e1a2

Реактор (варианты) и способ диагностики неисправностей и оптимизации конструкции реактора дегидрирования парафиновых углеводородов с3-с5

Изобретение относится к области нефтехимии, в частности к реакторам с кипящим слоем, в том числе к реакторам получения олефиновых углеводородов C-C дегидрированием соответствующих парафиновых углеводородов, используемых в дальнейшем для получения основных мономеров синтетического каучука, а...
Тип: Изобретение
Номер охранного документа: 0002625880
Дата охранного документа: 19.07.2017
20.11.2017
№217.015.efc2

Катализатор для селективного окисления сероводорода (варианты)

Изобретение относится к катализаторам (вариантам) для селективного окисления сероводорода в элементарную серу, включающим соединения железа и кислородсодержащие соединения неметалла. Катализатор дополнительно содержит силикаты и/или алюмосиликаты в количестве 1,0-40,0 мас. %, катализатор в...
Тип: Изобретение
Номер охранного документа: 0002629193
Дата охранного документа: 25.08.2017
Показаны записи 1-10 из 12.
26.09.2018
№218.016.8bed

Катализатор для гидроизомеризации углеводородных фракций и способ его применения

Изобретение относится к области нефтепереработки, в частности к катализатору гидроизомеризации углеводородных фракций и способу его применения. Катализатор гидроизомеризации углеводородных фракций содержит 0,05-8,0% мас. по меньшей мере одного металла или соединения металла, выбранного из ряда:...
Тип: Изобретение
Номер охранного документа: 0002667920
Дата охранного документа: 25.09.2018
21.11.2018
№218.016.9f8a

Способ риформинга бензиновых фракций

Настоящее изобретение относится к способу риформинга бензиновых фракций путем их последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором риформинга,...
Тип: Изобретение
Номер охранного документа: 0002672882
Дата охранного документа: 20.11.2018
19.04.2019
№219.017.2fba

Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Изобретение относится к способу получения высокооктановых бензиновых фракций и/или ароматических углеводородов С-С из углеводородного сырья путем его нагрева, испарения и перегрева до температуры переработки, последующего его контактирования при температуре 320-480°С и избыточном давлении с...
Тип: Изобретение
Номер охранного документа: 0002334781
Дата охранного документа: 27.09.2008
20.04.2019
№219.017.359c

Носитель на основе оксида алюминия для катализаторов переработки углеводородного сырья и способ его приготовления

Изобретение относится к области катализа и нефтепереработки. Заявлен носитель для катализатора переработки углеводородного сырья, включающий оксид алюминия и цеолит, при этом в качестве цеолита носитель содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита...
Тип: Изобретение
Номер охранного документа: 0002685263
Дата охранного документа: 17.04.2019
06.10.2019
№219.017.d351

Способ получения высокооктановых бензиновых фракций

Изобретение относится к способу получения высокооктановых бензиновых фракций из бензино-лигроиновых фракций путем их ректификации с выделением головной фракции сырья и тяжелой бензиновой фракции, последующего нагрева, испарения и перегрева до температуры переработки тяжелой бензиновой фракции и...
Тип: Изобретение
Номер охранного документа: 0002702134
Дата охранного документа: 04.10.2019
24.10.2019
№219.017.da4b

Способ получения алюмооксидного металлсодержащего катализатора переработки углеводородного сырья (варианты)

Изобретение относится к области катализа и нефтепереработки - к вариантам способа приготовления алюмооксидных металлсодержащих катализаторов переработки углеводородного сырья на основе оксида алюминия. Алюмооксидный металлсодержащий катализатор переработки углеводородного сырья готовят из...
Тип: Изобретение
Номер охранного документа: 0002704014
Дата охранного документа: 23.10.2019
24.10.2019
№219.017.da80

Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Изобретение относится к области нефтепереработки, в частности к двухстадийным способам получения высокооктановых бензиновых фракций и ароматических углеводородов С-С с применением процесса риформинга бензиновых фракций. На первой стадии процесса риформинг бензиновых фракций осуществляют путем...
Тип: Изобретение
Номер охранного документа: 0002704006
Дата охранного документа: 23.10.2019
08.12.2019
№219.017.eb6b

Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Изобретение относится к получению высокооктановых бензиновых фракций и ароматических углеводородов С-С из углеводородного сырья, выкипающего в области температур кипения бензинолигроиновых фракций, и может быть использовано в нефтепереработке. Способ осуществляют путем нагрева выкипающего в...
Тип: Изобретение
Номер охранного документа: 0002708071
Дата охранного документа: 04.12.2019
13.12.2019
№219.017.eccd

Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Способ получения высокооктановых бензиновых фракций и ароматических углеводородов C-C из выкипающего в области температур кипения бензинолигроиновых фракций углеводородного сырья осуществляют путем его нагрева, испарения и перегрева до температуры переработки, последующего его контактирования...
Тип: Изобретение
Номер охранного документа: 0002708621
Дата охранного документа: 10.12.2019
13.12.2019
№219.017.ed6b

Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Предложен способ получения высокооктановых бензиновых фракций и ароматических углеводородов С-С из выкипающего в области температур кипения бензинолигроиновых фракций углеводородного сырья путем его нагрева, испарения и перегрева до температуры переработки, последующего его контактирования при...
Тип: Изобретение
Номер охранного документа: 0002708620
Дата охранного документа: 10.12.2019
+ добавить свой РИД