×
21.12.2018
218.016.aa31

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ОКИСЛИТЕЛЬНОСТОЙКИХ И УЛЬТРАВЫСОКОТЕМПЕРАТУРНЫХ ПОКРЫТИЙ ИЗ ДИБОРИДОВ ТИТАНА, ЦИРКОНИЯ И ГАФНИЯ НА КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии создания ультравысокотемпературо- и окислительностойких углерод-углеродных волокнистых композиционных материалов, применяемых в конструкциях при создании деталей летательных аппаратов, эксплуатируемых в экстремальных условиях. Предложен способ нанесения покрытий из диборидов титана, циркония и гафния на пористые структуры газофазным методом (CVD), включающий реакцию термического химического газофазного разложения боргидридов соответствующих металлов на поверхности нагретых до 250°C заготовок пористых материалов. В качестве исходных веществ используют растворы боргидридов титана, циркония и гафния в органических углеводородах предельного ряда С-С с температурой кипения (Т) 90-190°C, а процесс ведут путем пропускания легколетучих паров боргидридов титана, циркония и гафния и органических углеводородов совместно в течение 10-24 часов до привеса не менее 20 мас.%. Технический результат изобретения – упрощение технологии получения ультравысокотемпературных материалов. 3 ил., 3 пр.

Изобретение относится к технологии создания ультравысокотемпературо- и окислительностойких, углерод-углеродных волокнистых композиционных материалов (УУВКМ) путем нанесения покрытий из диборидов титана, циркония и гафния на пористые структуры газофазным методом (CVD).

Покрытия из указанных диборидов обладают такими привлекательными свойствами при создании изделий для микроэлектроники как высокая температура плавления (TiB2 - 3240, ZrB2 - 3245 и HfB2 - 3380°C), объемное удельное сопротивление (15 микроомсм) и объемная твердость (29 гигапаскалей), а также износо- и коррозионная стойкость, хорошая электропроводимость, позволяющие использовать их как покрытие металлорежущих инструментов и электродов, применяемых при рафинировании алюминия, покрытие частей сопла ракетных двигателей, клапанов, носовой части ракет, острых кромок деталей и т.д. (Sreenivas J. and Yu Yang, Do Young Kim and G.S. Girolami, J.R. Abelson, J. Vac. Sci. Technol. A 23(6), Nov/Dec, pp. 1619-1625, 2005.

Разработанные с применением керамических покрытий из диборидов Ti, Zr и Hf ультравысокотемпературо- и окислительностойкие конструкционные материалы применяются для создания деталей летательных аппаратов эксплуатируемых в экстремальных условиях (E.P. Simonenko, N.P. Simonenko, N.T. Kuznetsov Russian Journal of Inorganic Chemistry, 2013, Vol. 58, No. 14, pp. 1669-1693)

Способ нанесения покрытий из диборидов титана, циркония и гафния включает реакцию термического химического газофазного разложения боргидридов титана, циркония и гафния (прекурсоров) из их растворов в высококипящих углеводородах предельного ряда при пропускании совместно паров боргидридов и растворителей через предварительно нагретые до 250°C заготовки пористых материалов (УУВКМ), помещенные в трубчатый реактор, в условиях вакуума 30-40 мм рт.ст.

Известен способ получения диборидных пленок циркония и гафния CVD-методом из твердых боргидридов циркония и гафния разложением при температуре около 250°C (James A. Jensen, J.E. Gozum, D.M. Polina and G.S. Girolami, J. Am. Chem. Soc. 110, 1643 (1988), (Sreenivas J. and Yu Yang, Do Young Kim and G.S. Girolami, J.R. Abelson, J. Vac. Sci. Technol. A 23(6), Nov/Dec 2005.

Недостатком способа является использование трудно выделяемых и чрезвычайно реакционно-способных индивидуальных боргидридов циркония и гафния.

Известен способ получения пленки из диборида титана при низкотемпературном химическом газофазном разложении комплекса (прекурсора) боргидрида титана с 1,2-диметоксиэтаном Ti(BH4)3(1,2-dme) (Kumar N., Yang Yu., Chem. Mater., 2007, 19, 3802-3807). Процесс осаждения проводили при температуре 200°C и в вакууме порядка 10-4Тор. Прекурсор был сублимирован без разложения при 25°C.

Недостатком способа является небольшая степень осаждения (меньше 2%) диборида титана на субстрате.

Известен способ получения однородных тонких пленок диборида гафния методом химического осаждения из газовой фазы в присутствии ингибитора (аммиака) при температуре 250°C, парциальном давлении паров боргидрида гафния равном 0,075 мкм рт.ст. (mTorr) и аммиака не более 0,050 mTorr. Потоки паров прекурсора и ингибитора направлены на поверхность субстрата (подложки) отдельно и регулируются при помощи игольчатых клапанов без газа-носителя (S. Babar, Kumar N., P. Zhanf, J.R. Abelson, J.Chem. Mater. 2013, 25, 662-667).

Недостатком способа также является использование трудно выделяемого и чрезвычайно реакционно-способного индивидуального твердого боргидрида гафния.

Известен способ получения боридов циркония и гафния в виде порошков, образующихся при нагревании выделенных осаждением комплексов боргидридов металлов из их растворов с последующим разложением в вакууме при 200°C. (Patent US №5,364,607 МПК С01В 6/15, 1994).

Недостатком способа является применение чрезвычайно реакционно-способных боргидридов циркония и гафния для получения соответствующих промежуточных комплексов с последующим их длительным выделением из углеводородных растворов.

Известен способ получения боридциркониевых порошковых покрытий при разложении боргидрида циркония при температуре около 265°C (состав полученного порошка соответствует формуле ZrBt1,6 и при 400°C - ZrB3,1). (Gary W. Rice and Richard L. Woodin, J. Am. Ceram. Soc, 71[4] c. 181-183 (1988).

Аналогично было проведено разложение паров боргидрида циркония под действием лазерного излучения с получением боридциркониевого порошка такого же состава.

Недостатком способа является также использование очень реакционно-способного боргидрида циркония.

Наиболее близким по технической сущности, достигаемому результату и принятым авторами в качестве прототипа, является способ нанесения покрытия из диборида титана пои низкотемпературном химическом газофазном разложении комплекса (прекурсора) боргидрида титана с 1,2-диметоксиэтаном Ti(BH4)3(1,2-dme) (Kumar N.,Yang Yu., Chem. Mater., 2007, 19, 3802-3807). Процесс осаждения проводили при температуре 200°C и в вакууме порядка 10-4 Тор. Прекурсор был сублимирован без разложения при 25°C. Недостатком способа является небольшая степень осаждения (меньше 2%) диборида титана на субстрате и незначительного проникновения в его глубину.

Задача данного изобретения заключается в оптимизации параметров процесса нанесения покрытий из диборидов Ti, Zr и Hf в максимально безопасном режиме при достижении степени осаждения в глубь субстрата более 20% (масс.).

Поставленная цель нанесения покрытий из диборидов Ti, Zr и Hf достигается тем, что покрытие на субстратах образуется при реакции термического химического газофазного разложения боргидридов Ti, Zr и Hf из их растворов в углеводородах предельного ряда С710 с температурой кипения (Ткип.) 90-190°C при совместном пропускании паров боргидридов и паров растворителей через предварительно нагретые до 250°C заготовки пористых материалов (УУВКМ), помещенные в трубчатый реактор, в условиях вакуума.

При осуществлении предложенного способа процесс представляет собой химическое газофазное разложение (CVD) паров боргидридов титана, циркония и гафния, соответственно, в зоне нагретых до 250°C образцов из УУВКМ в слабом токе инертного газа и протекает в соответствии с уравнениями:

Достигнутый технический результат состоит в упрощении технологии (изготовления) создания ультравысокотемпературо- и окислительностойких углерод-углеродных волокнистых композиционных материалов за счет следующих факторов: использование боргидридов указанных металлов в виде растворов в органических растворителях предельного ряда исключает стадию выделения индивидуальных летучих пожаро- и взрывоопасных продуктов; появляется возможность проведения неоднократного процесса нанесения диборидного покрытия с целью достижения необходимого его содержания в материале; процесс осаждения контролируют по привесу и по падению давления (повышению вакуума) в реакторе.

Процесс нанесения покрытий из диборидов титана, циркония и гафния осуществляют на установке (принципиальная технологическая схема устройства приведена на фиг. 1), в вакууме в трубчатом реакторе, снабженным снаружи электронагревателем в виде рубашки и внутри - устройством подачи паров боргидридов с растворителем в токе инертного газа на заготовку из УУВКМ. Устройство состоит из реактора - 1, нагревателя - 2, испарителя - 3, трубки - 4, весов - 5, образца - 6, термопарной лампы - ТЛ, мановакуумметра - М, регулятора расхода газа - РРГ, термопары - ТП, термодата - ТД.

В подсоединенный к реактору испаритель в виде стального цилиндра, предварительно заполненный аргоном, загружают отмеренное количество раствора с известной концентрацией боргидрида Ti (Zr и Hf). В продуваемый инертным газом реактор помещают подвешенный к весам на проволоке из нержавеющей стали заготовку из УУВКМ на определенном расстоянии от выхода паров из жиклера, который представляет собой устройство в виде трубки с рубашкой, охлаждаемой проточной водой с определенной температурой с помощью термостата. Затем производят герметизацию реактора, вакуумируют систему с помощью мембранного насоса, и нагревают реактор до температуры 250°C. По достижении в реакторе заданной температуры открывают кран на линии от испарителя до реактора и подают с контролируемой по давлению (вакууму) скоростью поток инертного газа через испаритель в реактор. Процесс нанесения покрытия из диборида контролируют по привесу и проводят в течение 10-24-х часов (в зависимости от количества загруженного раствора) до полного испарения боргидрида из испарителя, что сопровождается повышением вакуума. По окончании процесса реактор охлаждают в слабом токе инертного газа до комнатной температуры, прекращают вакуумирование, заполняют реактор аргоном, открывают и вынимают образцы для соответствующей оценки.

Ниже приведены примеры осуществления предлагаемого способа

Пример 1. Нанесение покрытия из диборида титана TiB2

В предварительно проверенный на герметичность и продуваемый сухим аргоном (азотом) трубчатый реактор помещают подвешенный к весам на проволоке из нержавеющей стали заготовку из УУВКМ на расстоянии 3-5 см от выходного отверстия устройства подачи паров в виде трубки с рубашкой, охлаждаемой с помощью термостата проточной водой с температурой 40-45°C. Затем в подсоединенный к реактору испаритель, предварительно заполненный аргоном, в виде стального цилиндра загружают отмеренное количество охлажденного до 0°C раствора боргидрида титана Ti(BH4)3. Далее производят герметизацию реактора, вакуумируют систему с помощью мембранного насоса до 4-6 мм рт.ст. вместе с трубопроводом от испарителя до реактора, и нагревают реактор до температуры 250°C. По достижении в реакторе заданной температуры открывают кран на линии от испарителя до реактора и подают смесь паров боргидрида титана и изооктана вместе с потоком инертного газа, проходящим через испаритель в реактор, с контролируемой по давлению скоростью 3-4 л/ч. Процесс ведут при вакууме 30-40 мм рт.ст. в течение 10-24 часов до привеса не менее 20%. По окончании процесса реактор охлаждают до комнатной температуры, прекращают вакуумирование и заполняют инертным газом, после чего производят выемку образца, который подвергают целевым испытаниям.

Пример 2. Нанесение покрытия из диборида циркония ZrB2

В продуваемый сухим инертным газом трубчатый реактор помещают подвешенный к весам на проволоке из нержавеющей стали заготовку из УУВКМ на расстоянии 3-5 см от выходного отверстия устройства подачи паров в виде трубки с рубашкой, охлаждаемой с помощью термостата проточной водой с температурой 40-45°C. Затем в подсоединенный к реактору испаритель в виде стального цилиндра, предварительно заполненный аргоном, загружают отмеренное количество охлажденного до раствора боргидрида циркония Zr(BH4)4. Далее производят герметизацию реактора, вакуумируют систему с помощью мембранного насоса до 4-6 мм рт.ст. вместе с трубопроводом от испарителя до реактора, и нагревают реактор до температуры 250°C. По достижении в реакторе заданной температуры открывают кран на линии от испарителя до реактора и подают смесь паров боргидрида циркония и изооктана вместе с потоком инертного газа, проходящим через испаритель в реактор, с контролируемой по давлению скоростью 3-4 л/ч. Процесс ведут при вакууме 30-40 мм рт.ст. в течение 10-24 часов до привеса не менее 20%. По окончании процесса реактор охлаждают до комнатной температуры, прекращают вакуумирование и заполняют инертным газом, после чего производят выемку образца, который подвергают целевым испытаниям

Пример 3. Нанесение покрытия из диборида гафния HfB2

В продуваемый сухим инертным газом трубчатый реактор помещают подвешенный к весам на проволоке из нержавеющей стали заготовку из УУВКМ на расстоянии 3-5 см от выходного отверстия устройства подачи паров в виде трубки с рубашкой, охлаждаемой с помощью термостата проточной водой с температурой 40-45°C. Затем в подсоединенный к реактору испаритель в виде стального цилиндра, предварительно заполненный аргоном, загружают отмеренное количество охлажденного до 0°C раствора боргидрида гафния Hf(BH4)4. Далее производят герметизацию реактора, вакуумируют систему с помощью мембранного насоса до 4-6 мм рт.ст. вместе с трубопроводом от испарителя до реактора, и нагревают реактор до температуры 250°C. По достижении в реакторе заданной температуры открывают кран на линии от испарителя до реактора и подают смесь паров боргидрида гафния и изооктана вместе с потоком инертного газа, проходящим через испаритель в реактор, с контролируемой по давлению скоростью 3-4 л/ч. Процесс ведут при вакууме 30-40 мм рт.ст. в течение 10-24 часов до привеса не менее 20%. По окончания процесса реактор охлаждают до комнатной температуры, прекращают вакуумирование и заполняют инертным газом, после чего производят выемку образца, который подвергают целевым испытаниям.

Для подтверждения образования и состава полученных покрытий из диборидов титана, циркония и гафния на субстратах использовали метод электронной спектроскопии. Анализ проводился на электронном сканирующем микроскопе Philips SEM505, оснащенном системой захвата изображения Micro Capture SEM3.0M, и системой элементного микроанализа EDAX с энергодисперсионным детектором SAPHIRE Si(Li) тип SEM10.

Примеры элементного анализа и электронные спектры образцов покрытий представлены на фиг. 2-3

Способ нанесения покрытий из диборидов титана, циркония и гафния путем термического химического газофазного разложения боргидридов соответствующих металлов на поверхности нагретых до 250°С заготовок пористых материалов, помещенных в трубчатый реактор, в условиях вакуума 30-40 мм рт.ст., отличающийся тем, что в качестве исходных веществ используют растворы боргидридов титана, циркония и гафния в органических углеводородах предельного ряда С-С с температурой кипения (Т) 90-190°C, а процесс ведут путем пропускания легколетучих паров боргидридов титана, циркония и гафния и органических углеводородов совместно.
СПОСОБ НАНЕСЕНИЯ ОКИСЛИТЕЛЬНОСТОЙКИХ И УЛЬТРАВЫСОКОТЕМПЕРАТУРНЫХ ПОКРЫТИЙ ИЗ ДИБОРИДОВ ТИТАНА, ЦИРКОНИЯ И ГАФНИЯ НА КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
СПОСОБ НАНЕСЕНИЯ ОКИСЛИТЕЛЬНОСТОЙКИХ И УЛЬТРАВЫСОКОТЕМПЕРАТУРНЫХ ПОКРЫТИЙ ИЗ ДИБОРИДОВ ТИТАНА, ЦИРКОНИЯ И ГАФНИЯ НА КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
СПОСОБ НАНЕСЕНИЯ ОКИСЛИТЕЛЬНОСТОЙКИХ И УЛЬТРАВЫСОКОТЕМПЕРАТУРНЫХ ПОКРЫТИЙ ИЗ ДИБОРИДОВ ТИТАНА, ЦИРКОНИЯ И ГАФНИЯ НА КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ
Источник поступления информации: Роспатент

Показаны записи 41-45 из 45.
15.05.2023
№223.018.5a78

Универсальная пластичная смазка

Настоящее изобретение относится к смазочным материалам, в частности к пластичным смазкам, которые могут применяться для обеспечения работы различных узлов трения механизмов в широком интервале температур. Предложена универсальная пластичная смазка на синтетической основе, в качестве которой...
Тип: Изобретение
Номер охранного документа: 0002769692
Дата охранного документа: 05.04.2022
16.05.2023
№223.018.633e

Способ получения волокон смешанного шпинельно-гранатового состава

Изобретение относится к способам получения волокон смешанного оксидного состава MgAlO/YAlO для создания высокотемпературных керамокомпозитов с улучшенными механическими свойствами. Способ заключается в расплавном формовании полимерных волокон при 80-180°С из волокнообразующих...
Тип: Изобретение
Номер охранного документа: 0002776286
Дата охранного документа: 18.07.2022
16.05.2023
№223.018.640c

Способ получения триэтилалюминия

Изобретение относится к способу получения триэтилалюминия путем взаимодействия алюминия, водорода, затравки триэтилалюминия и этилена при повышенных температуре и давлении в две стадии, где на первой стадии проводят гидрирование алюминия, на второй стадии проводят алкилирование этиленом. При...
Тип: Изобретение
Номер охранного документа: 0002773423
Дата охранного документа: 03.06.2022
16.05.2023
№223.018.641b

Способ глубокой очистки бензола от тиофена

Изобретение относится к способу глубокой очистки бензола от тиофена ректификацией. Способ характеризуется тем, что процесс проводят в двух колоннах непрерывного действия под вакуумом при остаточном давлении вверху колонн 13 кПа, причем эффективность первой колонны 140 теоретических тарелок и...
Тип: Изобретение
Номер охранного документа: 0002773400
Дата охранного документа: 03.06.2022
16.05.2023
№223.018.6428

Способ разделения смеси алкилхлорсиланов и хлористого алкила

Изобретение относится к способу разделения смеси пыли кремния, абгазов процесса, хлористого алкила и алкилхлорсиланов. Способ характеризуется тем, что разделяемая смесь переменного состава поступает в кубовую часть ректификационной колонны, работающей с полным возвратом флегмы, и на колонне...
Тип: Изобретение
Номер охранного документа: 0002773401
Дата охранного документа: 03.06.2022
Показаны записи 91-100 из 135.
29.04.2019
№219.017.4608

Способ получения полидисперсных металлических пленок

Изобретение относится к радиотехнической, атомной и медицинской промышленности и может быть использовано для получения наполнителей современных композиционных защитных материалов, поглощающих электромагнитные и радиационные излучения. В реактор загружают порошок растворимого в воде химического...
Тип: Изобретение
Номер охранного документа: 0002447191
Дата охранного документа: 10.04.2012
09.05.2019
№219.017.4e39

Способ защиты объектов бронетанковой техники и устройство для его осуществления

Изобретение предназначено для защиты транспортных средств гражданского и военного назначения, преимущественно бронетанковой техники, от целеуказывающих и атакующих средств противника, действующих в широком диапазоне электромагнитного излучения: видимом, инфракрасном (ИК) и радиоволновом (РЛ). В...
Тип: Изобретение
Номер охранного документа: 0002321816
Дата охранного документа: 10.04.2008
14.05.2019
№219.017.5187

Способ получения композиционного материала

Изобретение относится к производству высокотемпературных композиционных материалов, обладающих высокой окислительной стойкостью, и может быть использовано в теплонагруженных узлах ракетно-космической и авиационной техники, в автомобиле- и тракторостроении для изготовления узлов очистки...
Тип: Изобретение
Номер охранного документа: 0002687343
Дата охранного документа: 13.05.2019
18.05.2019
№219.017.53d0

Способ получения симметричных метилфенилдисилоксанов и гексафенилдисилоксана дегидроконденсацией триорганосиланов

Изобретение относится к химии и технологии получения симметричных гексаорганодисилоксанов. Предложен способ получения симметричных метилфенилдисилоксанов и гексафенилдисилоксана общей формулы [RRSi]O, где R - СН; R - СН; n=0÷2, дегидроконденсацией индивидуальных триорганосиланов вида RRSiH, в...
Тип: Изобретение
Номер охранного документа: 0002687736
Дата охранного документа: 16.05.2019
18.05.2019
№219.017.595c

Способ непрерывного получения моносилана

Изобретение может быть использовано в производстве полупроводникового кремния. Моносилан непрерывно получают из галогенида кремния и гидрида металла при их стехиометрическом соотношении в жидкой реакционной среде в одном вертикальном аппарате колонного типа, секционированном по высоте на...
Тип: Изобретение
Номер охранного документа: 0002414421
Дата охранного документа: 20.03.2011
29.05.2019
№219.017.68ea

Устройство и способ получения высокодисперсного диоксида кремния

Изобретение относится к технологии получения высокодисперсного порошка диоксида кремния методом сжигания жидких кремнийсодержащих соединений (прекурсора) в пламени горючих газов. Устройство для получения порошка диоксида кремния с регулируемой дисперсностью состоит из блока горения (I) с...
Тип: Изобретение
Номер охранного документа: 0002435732
Дата охранного документа: 10.12.2011
19.06.2019
№219.017.85b0

Способ получения клозо-боратных кластеров

Изобретение относится к получению клозо-боратных кластеров додекабората триэтиламмония [(CH)NH]BH, декабората трибутиламмония [(CH)NH]BH, гексабората трибутиламмония [(CH)NH]BH. Их получают проведением реакции боргидрида натрия NaBH и триэтиламинборана (СН)NBH при молярном соотношении NaBH к...
Тип: Изобретение
Номер охранного документа: 0002344070
Дата охранного документа: 20.01.2009
10.07.2019
№219.017.ad3b

Способ получения пирогенного диоксида кремния и горелка для его осуществления

Изобретение может быть использовано в химической промышленности. Диоксид кремния получают гидролизом в пламени многоканальной трубчатой горелки, содержащей от 3 до 5 концентрических труб. На выходе из горелки образуется многослойная структура потока из чередующихся концентричных струй, имеющих...
Тип: Изобретение
Номер охранного документа: 0002350559
Дата охранного документа: 27.03.2009
10.07.2019
№219.017.b026

Способ получения метилхлорида

Изобретение относится к способу получения метилхлорида, включающему взаимодействие метанола с хлористым водородом в реакторе синтеза с получением парогазовой смеси, включающей метилхлорид, и выделение метилхлорида из парогазовой смеси путем ее парциальной конденсации, последующей промывки ее...
Тип: Изобретение
Номер охранного документа: 0002404952
Дата охранного документа: 27.11.2010
19.07.2019
№219.017.b602

Способ и аппарат для очистки кремнийорганических соединений от летучих компонентов

Изобретение относится к способам очистки кремнийорганических соединений и устройствам для их реализации. Предложен способ очистки кремнийорганических соединений от летучих компонентов, при котором нагретый поток очищаемого кремнийорганического соединения подается в виде пучка множественных...
Тип: Изобретение
Номер охранного документа: 0002694845
Дата охранного документа: 17.07.2019
+ добавить свой РИД