×
14.12.2018
218.016.a6dd

Результат интеллектуальной деятельности: Многослойное износостойкое покрытие на стальной подложке

Вид РИД

Изобретение

Аннотация: Изобретение относится к износостойким многослойным покрытиям с алмазоподобным углеродом и может быть использовано в металлообработке, машиностроении, медицине, химической промышленности для повышения эксплуатационных характеристик изделий функционально различного назначения. Многослойное износостойкое покрытие на стальной подложке включает слой, содержащий карбид титана, и слой из алмазоподобного углерода. Упомянутое покрытие выполнено толщиной 200-2500 нм с чередованием упомянутых двух слоев в количестве от 10 до 100. Толщина каждого слоя составляет 20-25 нм, а слой, содержащий карбид титана, выполнен в виде нанокомпозита из карбида титана и аморфного углерода с общим содержанием углерода 25-60 мас.%. Обеспечивается повышение износостойкости покрытия. 2 табл., 1пр.

Изобретение относится к износостойким многослойным покрытиям с алмазоподобным углеродом и может быть использовано в металлообработке, машиностроении, медицине и т.д. для повышения эксплуатационных свойств поверхности изделий различного функционального назначения.

В современном машиностроении широко применяет инструмент и детали механических систем, на рабочую поверхность которых нанесены наноструктурные покрытия [В. Пашенцев. Вакуумное ионно-плазменное нанесение наноструктурных покрытий, Наноиндустрия, 2010, №5]. Нанесение защитных покрытий на обрабатывающие инструменты и детали машин значительно увеличивает их срок службы.

В течение последних лет интенсивно развиваются технологии осаждения нанокомпозитных покрытий, включающих аморфную матрицу и кристаллические включения карбидов, нитридов, карбонитридов переходных металлов [U. Jansson and Е. Lewin, Sputter deposition of transition-metal carbide films - a critical review from a chemical perspective, Thin Solid Films 536 (2013) 1].

Однако, несмотря на имеющийся прогресс в технологии осаждения монослойных нанокомпозитных покрытий, современные тенденции инженерии поверхности связаны с созданием многослойных покрытий, состоящих из слоев с разными физико-механическими свойствами, включая нанокомпозитные [W.Q. Bai et all. Corrosion and tribocorrosion performance of M (M=Ta, Ti) doped amorphous carbon multilayers in Hank's solution, Surf. Coat. Technol. 305 (2016) 11. W.Q. Bai et al. Effects of Ti content on microstructure, mechanical and tribological properties of Ti-doped amorphous carbon multilayer films, Surf. Coat. Technol. 266 (2015) 70-78]. Такие покрытия, обладая высокой твердостью, износостойкостью, являются технологически перспективными материалами для применения в трибологии. Уникальные механические свойства таких покрытий могут быть получены комбинаций слоев и фаз в нанокомпозите. Границы раздела отклоняют или препятствуют распространению трещины и уменьшают концентрацию напряжений. Механические свойства многослойных покрытий могут превосходить свойства отдельно взятых слоев, из которых они сформированы.

Однако, износостойкость таких покрытий определяется не только свойствами отдельно взятых слоев, но и количеством границ раздела в покрытии и адгезией между слоями. Например, отсутствие межзеренных границ в слоях, и плохая адгезия между структурообразующими слоями в покрытии приводят к их разрушению в результате распространения трещин и расслоения, что снижает их износостойкость и препятствует их широкому промышленному применению.

Таким образом, повышение износостойкости покрытий путем осаждения многослойных покрытий с хорошей межслоевой адгезией и системой границ, включающей границы раздела между слоями и межфазные или межзеренные границы в слоях, является технической задачей, на решение которой направлено предлагаемое изобретение.

Известно защитное износостойкое покрытие (патент РФ 2026412), содержащее слои аморфного углерода с алмазным типом связи между атомами чередующиеся со слоями композиционного материала толщиной (0,1-0,2) мкм, состоящего из (60-90) % аморфного углерода с алмазным типом связи между атомами и (10-40) % карбида металла. При этом на рабочую поверхность детали наносится слой карбидообразующего металла. Наружным слоем является слой аморфного углерода. Толщина слоя аморфного углерода с алмазным типом связи между атомами составляет (0,5-1,0) мкм, толщина слоя карбидообразующего металла - (0,1-0,3) мкм, а суммарная толщина покрытия составляет (2,0-5,0) мкм.

Однако, предложенное покрытие не решает техническую задачу повышения износостойкости многослойных покрытий путем достижения хорошей межслоевой адгезии и создания системы границ. При суммарной толщине повторяющихся двух слоев (0,6-1,2) мкм количество слоев в покрытии толщиной (2,0-5,0) мкм варьируется от 3 до 16, что недостаточно для предотвращения развития пластической деформации и распространения трещин в покрытии. Помимо этого, можно отметить и проблему внутренних напряжений в алмазоподобных покрытиях. В покрытии в слое аморфного углерода с алмазным типом связи толщиной (0,5-1,0) мкм накапливаются большие внутренние напряжения, приводящие к их растрескиванию. Кроме того, большие внутренние напряжения не способствуют хорошей адгезии между слоем аморфного углерода с алмазным типом связи и слоем из композиционного материала.

Известно многослойное покрытие для режущего инструмента (Патент РФ 2478731), нанесенное методом физического осаждения из паровой фазы. Многослойное покрытие содержит промежуточный слой, служащий диффузионным барьером между режущим инструментом и износоустойчивым покрытием, и износоустойчивое покрытие. Промежуточный слой состоит из нитридов металлов из ряда: Al, Ti, Zr, Si. Износоустойчивое покрытие состоит из первого слоя, расположенного на промежуточном слое и состоящего из диборида титана или окислов циркония, или алюминия, второго адгезионного наноразмерного слоя, состоящего из Ti или Zr, и поверхностного слоя, состоящего из чередующихся нанослоев сверхтвердого аморфного углерода и нанослоев металла из ряда: Ti, Zr, Cr, W. Внешний нанослой поверхностного слоя состоит из сверхтвердого аморфного углерода.

Однако, предложенное покрытие не решает техническую задачу повышения износостойкости покрытий за счет создания системы границ, включающей границы между слоями и границы в слоях. В примерах заявленного изобретения приводятся покрытия, состоящие из семи слоев. При этом износоустойчивые слои (диборид титана, окись циркония) являются однофазными, следовательно, не содержат межфазные или межзеренные границы. Для создания многослойного покрытия используется несколько мишеней, в частности, мишени из циркония, что усложняет технологию нанесения покрытий, приводит к их удорожанию, и, соответственно, препятствует их широкому промышленному применению.

Известен композиционный материал для многослойных покрытий (патент РФ 2254398). Материал содержит внутренний титаносодержащий слой и внешний углеродосодержащий слой. Внутренний слой выполнен из титана или нитрида титана, а углеродосодержащий слой - из углеродосодержащего вещества с алмазоподобной и графитоподобной модификацией с содержанием 5-20 масс. % графитовой фазы. Толщина титаносодержащего и углеродосодержащего слоев составляет 0,01-0,2 мкм при их повторяемости от 1 до 8, а соотношение титана и углерода в материале равно 1.

Однако, предложенный материал для покрытий не решает техническую задачу повышения износостойкости покрытий за счет создания системы границ, включающей границы раздела между слоями и межзеренные или межфазные границы в слоях. Материал не содержит композитные слои с несколькими структурными составляющими, что исключает наличие границ в слоях.

Наиболее близким к заявляемому покрытию является двухслойное износостойкое покрытие режущего инструмента [патент РФ 2527829]. Двухслойное износостойкое покрытие состоит из слоя аморфного алмазоподобного углерода толщиной 0,3-0,5 мкм, твердостью 70-100 ГПа, осажденного импульсно-дуговым распылением графитовой мишени, и слоя, содержащего карбид титана с твердостью 25-40 ГПа, и имеющего следующий химический состав: углерод - 30-45 ат. %, остальное титан. Выполнение слоя из карбида титана толщиной 1,0-1,5 мкм и твердостью 25-40 ГПа обеспечивает хорошую адгезию слоя из твердого аморфного алмазоподобного углерода, а наличие слоя из твердого аморфного алмазоподобного углерода, с твердостью 70-100 ГПа и толщиной 0,3-0,5 мкм увеличивает износостойкость покрытия. Высокая термическая стабильность покрытия при высоких скоростях резания и износостойкость обеспечивают повышение рабочего ресурса режущею инструмента.

Однако, предложенное двухслойное покрытие не решает техническую задачу повышения износостойкости покрытий путем достижения хорошей межслоевой адгезии и создания системы границ, включающей границы раздела между слоями и межзеренные границы в слоях. Покрытие из двух слоев имеет только одну межслоевую границу раздела, что недостаточно для торможения пластической деформации и продвижения трещин в покрытии. В этом покрытии в слое аморфного алмазоподобного углерода толщиной (0,3-0,5) мкм накапливаются большие внутренние напряжения, приводящие к их хрупкости и разрушению путем растрескивания. Кроме того, большие внутренние напряжения не способствуют хорошей адгезии между слоем аморфного алмазоподобного углерода и слоем, содержащем карбид титана. Следует также отметить, что в слое с карбидом титана при содержании углерода 30-45 ат. % (или менее 20 масс. %) между кристаллитами TiC не образуется углеродная прослойка, что снижает объемную долю границ между разными фазами, которые, наряду с границами раздела между слоями, тормозят развитие трещин. Отсутствие аморфного углерода в слое, содержащем карбид титана, снижает также адгезию между слоями.

Техническая задача повышения износостойкости покрытий решается путем осаждения многослойных покрытий с хорошей межслоевой адгезией и системой границ, включающей границы раздела между слоями и межфазные или межзеренные границы в слоях.

Для решения технической задачи многослойное износостойкое покрытие на стальной подложке, включающее слой, содержащий карбид титана, и слой из алмазоподобного углерода, согласно изобретению, выполнено толщиной 200-2500 нм с чередованием упомянутых слоев, в количестве от 10 до 100, при этом толщина каждого слоя составляет 20-25 нм, а слой, содержащий карбид титана, выполнен в виде нанокомпозита из карбида титана и аморфного углерода с общим содержанием углерода 25-60 масс. %.

Заявляемое покрытие содержит 10-100 слоев, что существенно повышает количество границ раздела между слоями, которые тормозят распространение трещин в покрытии, повышая тем самым его износостойкость. Использование слоя, содержащего карбид титана, в виде нанокомпозита с содержанием углерода (25-60) масс. %, дает преимущества заявляемому покрытию. При содержании углерода более 25 масс. % в фазовую структуру слоя входят аморфный углерод и частицы карбида титана. В такой структуре формируется интерфейсная компонента, служащая границами между разными фазами. Таким образом, в покрытии формируется двухуровневая система границ, включающая границы между слоями и границы в композитном слое. Наличие аморфного углерода в композитном слое также способствует хорошей межслоевой адгезии. При осаждении на композитный слой слоя алмазоподобного углерода (или наоборот) происходит когезионное сцепление между одинаковыми фазами (углеродными) и адгезионное сцепление между разными фазами (углеродной и карбидом титана). Когезионное сцепление улучшает прочность межслоевой адгезии. А в контактных зонах разных фаз образуются границы. Таким образом, заявляемое многослойное покрытие содержит систему границ, в которую входят границы в композитных слоях и межслоевые границы, при этом достигается хорошая межслоевая адгезия. Пример.

Осаждение покрытий проводили на установке УВНИПА-1-001 с возможностью в одном вакуумном цикле проводить ионную очистку поверхности, распылять металлические или композитные мишени дуговым способом и графитовые мишени импульсным дуговым способом. В качестве подложек для осаждения покрытий использовали пластины из нержавеющей стали 12Х18Н10Т и инструментальной стали Р6М5. Поверхность пластин предварительно очищали в дистиллированной воде и спирте в ультразвуковой ванне. Ионную очистку проводили в рабочей камере установки: E(Ar+)=4 кэВ, Р=4,2×10-2 Па, t=30 мин. Покрытия получали последовательным осаждением композитного (TiC/C) и алмазоподобного углеродного (а-С) слоев. а-С слои осаждали импульсно дуговым распылением графитовой мишени, (TiC/C) слои -совместным распылением титановой и графитовой мишеней. Титановую мишень распыляли дуговым способом при постоянном токе дугового источника, а графитовую - импульсно-дуговым при частоте прохождения импульсов f=10, 15 и 25 Гц. Перед осаждением покрытий на подложку наносили адгезионный подслой Ti-C толщиной 0,1-0,2 мкм с переменной концентрацией углерода от 0 до 100%. Толщина каждого слоя составляла 20-25 нм. Данные по покрытиям представлены в Таблице 1.

Твердость и критическую нагрузку образования трещин в покрытиях определяли методом наноиндентирования на установке Nano Test 600.

Многопроходный тест на фрикционное изнашивание проводили с использованием алмазного шарика диаметром 50 мкм при нагрузке Р=300 мН. Скорость скольжения индентора по покрытию - 1 мкм с-1, длина прохода индентора (царапины) - 100 мкм. Количественно износ оценивали по удельному коэффициенту износа k=V/PL,

где V - объем изношенного покрытия (царапины),

Р - нагрузка,

L - длина царапины.

Для испытаний на абразивную стойкость использовали покрытия, осажденные на подложки из стали Р6М5. Тестирование проводили в струе частиц карбида кремния SiC размером 120-150 мкм, при скорости 20 м/с и угле атаки 90°. Относительный износ рассчитывали из соотношения I/I0=(Δm/mп+1)-1, где

I, I0 - износ материала покрытия и подложки соответственно,

Δm - разность между потерей веса подложки и потерей веса образца с полностью изношенным покрытием при одной и той же дозе абразива,

mп - вес изношенного покрытия.

Данные приведены в Таблице 2.

Как видно из таблицы 2 все покрытия показали высокую износостойкость. Фрикционный износ покрытий меньше износа стали 12Х18Н10Т в 6-25 раз. Стойкость покрытий в потоке твердых частиц выше стойкости инструментальной стали в 1,6-2,6 раза. Наибольшая фрикционная стойкость присуща покрытию №1, для которого характерно большое объемное содержание твердых частиц карбида титана в композитном слое (90%, расчетные данные). Покрытие №3 наиболее стойкое под воздействием ускоренного потока твердых частиц. Это покрытие отличается высокой трещиностойкостью и большой объемной долей границ между разными фазами (15%, расчетные данные). Устойчивость покрытий к разным видам внешних воздействий (фрикционному и эрозионному) дает им преимущества с точки зрения их применения для повышения износостойкости деталей, работающих в сложных условиях эксплуатации.

Многослойное износостойкое покрытие на стальной подложке, включающее слой, содержащий карбид титана, и слой из алмазоподобного углерода, отличающееся тем, что оно выполнено толщиной 200-2500 нм с чередованием упомянутых двух слоев в количестве от 10 до 100, при этом толщина каждого слоя составляет 20-25 нм, а слой, содержащий карбид титана, выполнен в виде нанокомпозита из карбида титана и аморфного углерода с общим содержанием углерода 25-60 мас.%.
Источник поступления информации: Роспатент

Показаны записи 11-17 из 17.
09.06.2018
№218.016.5dcf

Способ нанесения твердых износостойких наноструктурных покрытий из аморфного алмазоподобного углерода

Изобретение относится к способу нанесения твердых износостойких наноструктурных покрытий из аморфного алмазоподобного углерода и может быть использовано в металлообработке, машиностроении, медицине, химической промышленности. Получают покрытие толщиной 200-2000 нм с чередованием двух слоев, с...
Тип: Изобретение
Номер охранного документа: 0002656312
Дата охранного документа: 04.06.2018
25.06.2018
№218.016.6616

Устройство для неразрушающего контроля сжимающих механических напряжений в низкоуглеродистых сталях

Изобретение относится к неразрушающему контролю изделий из ферромагнитных материалов и предназначено для определения величин механических сжимающих напряжений в низкоуглеродистых сталях. Устройство для неразрушающего контроля сжимающих механических напряжений в низкоуглеродистых сталях содержит...
Тип: Изобретение
Номер охранного документа: 0002658595
Дата охранного документа: 21.06.2018
20.06.2019
№219.017.8cb3

Магнитная система для спектроскопии ядерного магнитного резонанса

Использование: для спектроскопии ядерного магнитного резонанса. Сущность изобретения заключается в том, что магнитная система для спектроскопии ядерного магнитного резонанса включает два постоянных магнита, два полюсных наконечника, установленных в железном ярме с рабочим зазором между...
Тип: Изобретение
Номер охранного документа: 0002691753
Дата охранного документа: 18.06.2019
21.12.2019
№219.017.f07c

Способ получения упрочненного никельхромборкремниевого покрытия на металлических деталях

Изобретение относится к области металлургии и машиностроения и может быть использовано для упрочнения поверхности новых деталей машин и инструмента, а также для восстановления поверхностей изношенных деталей. Способ получения упрочненного никельхромборкремниевого покрытия на металлических...
Тип: Изобретение
Номер охранного документа: 0002709550
Дата охранного документа: 18.12.2019
13.03.2020
№220.018.0b52

Способ термической обработки контактной пары из золото-медного сплава злм-80 для электрических слаботочных скользящих контактов

Изобретение относится к цветной металлургии, а именно к способу изменения структуры упорядочивающегося сплава золото-медь, ЗлМ-80, и может быть использовано в приборостроении, например, при производстве слаботочных скользящих контактов. Способ термической обработки контактной пары из...
Тип: Изобретение
Номер охранного документа: 0002716366
Дата охранного документа: 11.03.2020
25.06.2020
№220.018.2b76

Способ получения катализатора гидроочистки нефтяных фракций

Предложен способ получения массивного катализатора гидропереработки нефтяных фракций на основе крупнодисперсного коммерческого порошка дисульфида молибдена, где крупнодисперсный коммерческий порошок дисульфида молибдена измельчают до размеров 12-55 нм в условиях механоактивации в среде жидкого...
Тип: Изобретение
Номер охранного документа: 0002724332
Дата охранного документа: 23.06.2020
24.05.2023
№223.018.6fce

Способ оценки ударной вязкости изделий из закаленной на бейнит конструкционной стали

Использование: для оценки ударной вязкости изделий из закаленной на бейнит конструкционной стали. Сущность изобретения заключается в том, что осуществляют изготовление партии неразрушаемых эталонов, которую подвергают изотермической закалке во всем бейнитном интервале и во всем временном...
Тип: Изобретение
Номер охранного документа: 0002795997
Дата охранного документа: 16.05.2023
Показаны записи 21-29 из 29.
20.05.2019
№219.017.5cc6

Система подачи дополнительного топлива в дизель

Система подачи дополнительного топлива в дизель относится к области машиностроения, преимущественно, двигателестроения. Предложена система подачи дополнительного топлива в дизель, содержащая топливные баки 1 и 2, фильтры грубой 4 и тонкой 7 очистки, топливоподкачивающие насосы основного 5 и...
Тип: Изобретение
Номер охранного документа: 0002687856
Дата охранного документа: 16.05.2019
20.05.2019
№219.017.5d1c

Система питания дизельного двигателя с индукционным подогревом

Система питания дизельного двигателя с индукционным подогревом относится к области машиностроения, преимущественно двигателестроения. Существенным отличием предлагаемой системы питания дизельного двигателя с индукционным подогревом является то, что на топливопроводах высокого давления (6)...
Тип: Изобретение
Номер охранного документа: 0002688129
Дата охранного документа: 17.05.2019
26.07.2019
№219.017.b971

Многотопливная система питания автотракторного дизеля

Изобретение относится к области машиностроения, преимущественно двигателестроения. В предлагаемой многотопливной системе питания автотракторного дизеля, содержащей баки нефтяного 1 и альтернативного 2 топлива, линии высокого 3 и низкого 4 давления, топливные фильтры грубой 5 и тонкой 6 очистки...
Тип: Изобретение
Номер охранного документа: 0002695549
Дата охранного документа: 24.07.2019
03.08.2019
№219.017.bbdc

Газогенераторная установка

Изобретение относится к топливной энергетике, а именно к газогенераторным установкам, использующим отходы сельскохозяйственного производства и лесопереработки, и может быть использовано для питания двигателей внутреннего сгорания, а также для газификации и теплоснабжения в промышленности,...
Тип: Изобретение
Номер охранного документа: 0002696463
Дата охранного документа: 01.08.2019
12.12.2019
№219.017.ec77

Способ сокращения фазы быстрого горения топлива в дизеле

Изобретение относится к области машиностроения, преимущественно, двигателестроения. Раскрыт способ сокращения фазы быстрого горения топлива в дизеле, имеющем в составе топливной аппаратуры топливопроводы высокого давления и форсунки. Впрыскиваемое в камеры сгорания дизеля топливо нагревается...
Тип: Изобретение
Номер охранного документа: 0002708484
Дата охранного документа: 09.12.2019
15.05.2023
№223.018.5b53

Система регулирования смесевого топлива дизеля

Система регулирования смесевого топлива дизеля относится к области машиностроения, преимущественно двигателестроения, в частности к топливным системам двигателей внутреннего сгорания. Техническим результатом предлагаемого изобретения является сохранение заданных показателей мощности и...
Тип: Изобретение
Номер охранного документа: 0002763633
Дата охранного документа: 30.12.2021
16.05.2023
№223.018.5e52

Способ увеличения периода управляемого горения в дизельном двигателе

Изобретение может быть использовано в дизельных двигателях. Способ увеличения периода управляемого горения осуществляется в дизельном двигателе, имеющем в составе топливной аппаратуры топливопроводы высокого давления и форсунки. Увеличение периода управляемого горения достигается путем нагрева...
Тип: Изобретение
Номер охранного документа: 0002755536
Дата охранного документа: 17.09.2021
27.05.2023
№223.018.70c3

Низкотемпературная топливная композиция

Изобретение описывает низкотемпературную топливную композицию для дизелей на основе дизельного топлива с добавлением рапсового масла, при этом композиция дополнительно содержит присадку DIFRON Н372 при следующих соотношениях компонентов, % масс.: рапсовое масло от 5,0 до 9,0 или от 51,0 до...
Тип: Изобретение
Номер охранного документа: 0002730833
Дата охранного документа: 26.08.2020
16.06.2023
№223.018.7cdc

Способ получения многокомпонентной биотопливной композиции

Изобретение описывает способ получения многокомпонентной биотопливной композиции, включающий смешение дизельного топлива с рапсовым маслом холодного отжима и этиловым спиртом, характеризующийся тем, что перемешивание многокомпонентной биотопливной композиции, характеризующийся следующим...
Тип: Изобретение
Номер охранного документа: 0002743350
Дата охранного документа: 17.02.2021
+ добавить свой РИД