×
06.12.2018
218.016.a3d4

Результат интеллектуальной деятельности: СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ

Вид РИД

Изобретение

№ охранного документа
0002674089
Дата охранного документа
04.12.2018
Аннотация: Изобретение относится к энергетике. Способ форсирования газотурбинной установки подачей воды в пространство между компрессорами низкого и высокого давлений в количествах, при которых вода превращается в пар, заключается в формировании внутреннего термодинамического цикла, который снимает температурные ограничения в газотурбинной установке. Изобретение позволяет повысить удельную мощность газотурбинной установки. 6 з.п. ф-лы, 3 ил.

Изобретение относится к теплоэнергетике.

Известно, что эффективность (к.п.д.) газотурбинных установок (ГТУ) повышается при увеличении степени повышения давления воздуха 71 (отношение давления воздуха за компрессором к атмосферному давлению) и подогрева газа А (отношение температуры газа перед турбиной к температуре воздуха на входе в компрессор).

Целью изобретения является повышение эффективного к.п.д. ГТУ до 70% и более.

Известен способ форсирования газотурбинных двигателей, заключающийся в подаче воды на вход в двигатель (Теория и расчет воздушно-реактивных двигателей. Под ред. СМ. Шляхтенко., М., Машиностроение, 1987 г., с. 374÷375).

Известны двухкаскадные газотурбинные двигатели, в состав которых входят компрессор низкого и компрессор высокого давлений (там же, рис. 7.3, с. 185).

Поставленная цель достигается тем, что в двухкаскадной газотурбинной установке со степенью повышения давления воздуха в компрессоре низкого давления более 20 при суммарной степени повышения давления в компрессорах более 120 в пространство между компрессорами низкого и высокого давлений подается вода.

Сущность изобретения заключается в использовании внутренних термодинамических циклов (Письменный В.Л. Внутренние термодинамические циклы // М. - Конверсия в машиностроении. 2006, №3. С.5÷10).

Предпочтительно иметь:

стехиометрический состав топливовоздушной смеси;

водяную рубашку на корпусе камеры сгорания;

паровое охлаждение рабочих лопаток турбины;

керамические сопловые аппараты;

статическое давление за турбиной меньше атмосферного;

утилизатор тепловой энергии на выходе из турбины.

На фиг. 1 показана ГТУ.

на фиг. 2 показан термодинамический цикл ГТУ;

на фиг. 3 показаны зависимости параметров ГТУ от суммарной степени повышения давления воздуха.

ГТУ (фиг. 1) состоит из входного устройства 1, компрессора низкого давления 2, камеры смешения 3, внутри которой расположен водяной коллектор 4, компрессора высокого давления 5, камеры сгорания 6, турбины 7, теплообменника-конденсатора 8, выходного устройства 9, насосов (н).

Теплообменник-конденсатор 8 входит в состав паросиловой установки, рабочим телом которой является вода (пар).

Турбина 7 приводит в действие компрессоры 2 и 5, генератор электрической энергии (на фиг. 1 не показан).

Воздух через входное устройство 1 попадает в компрессор 2, где сжимается и нагревается, после чего поступает в камеру смешения 3. Туда же через коллектор 4 подается вода в количестве, при котором она превращается в пар (влажность воздуха менее 100%). Вода смешивается с воздухом и испаряется. Температура воздуха понижается. Образовавшаяся паровоздушная смесь поступает в компрессор 5, где сжимается и нагревается.

Сжатая и нагретая в компрессоре 5 паровоздушная смесь поступает в камеру сгорания ГТУ.

В камере сгорания паровоздушная смесь смешивается с топливом, которое сгорает. Образующийся при этом горячий газ поступает в турбину 7, которая совершает механическую работу. Для увеличения работы статическое давление на выходе из турбины поддерживается меньше атмосферного (за счет более высокой скорости истечения газа из последней ступени турбины). Работа турбины тратится на привод компрессоров, насосов и электрогенератора.

Оставшаяся после прохождения турбины теплота преобразуется в паросиловой установке (передается через теплообменник 8) в механическую работу и горячую воду, удаляется (с конденсатом) через выходное устройство 9 в атмосферу.

Для охлаждения камеры сгорания и рабочих лопаток турбины используется вода, которая через каналы в корпусе камеры сгорания (водяная рубашка) поступает в виде пара в рабочие лопатки турбины, и далее в газовоздушный тракт.

На фиг. 2 в P-υ координатах показан термодинамический цикл ГТУ (фиг. 1). Цикл состоит из внешнего цикла Lц1 (цикл Брайтона с отводом теплоты при сжатии) и двух внутренних циклов: Lц2 (цикл Письменного) и Lц3 (цикл Ренкина). Внешний цикл имеет энергообмен с внешней средой, внутренние - с внешним циклом. К внешнему циклу подводится теплота Q1, отводится - Qr. Термический к.п.д. ГТУ определяется как ηt=1-Qr/Q1.

Тепловые потоки показаны здесь же. К внешнему циклу, как уже сказано, подводится теплота Q1 (процесс к-г). Часть этой теплоты преобразуется в работу Lц1, которая используется для сжатия рабочих тел внутренних циклов (в насосах (н) и компрессоре высокого давления), для привода электрогенератора, а также - для компенсации всевозможных потерь, в том числе во внутренних циклах. Другая часть теплоты (Q1-2, и Q1-3) передается во внутренние циклы, в которых преобразуется в работу Lц2 и Lц3. Нереализованная во внутренних циклах теплота (Q2-1 и Q3-1) возвращается (условно) внешнему циклу, после чего рассеивается в атмосфере в виде теплоты Qr. Общая работа цикла ГТУ определяется как Lц=Lц1+m2⋅Lц2+m3⋅Lц3, где m2 и m3 - относительные расходы рабочих тел во внутренних циклах.

Новым здесь является цикл Письменного - внутренний термодинамический цикл, который реализуется с использованием тех же элементов тепловой машины (ГТУ), что и внешний цикл (существует параллельно внешнему циклу). Это качество цикла Письменного позволяет распределять подводимую к внешнему циклу энергию на два рабочих тела (воздух и пар), и тем самым, увеличивать количество подводимой в тепловой машине энергии (патент RU 2616137 С1).

На фиг. 3 показаны характеристики ГТУ (фиг. 1) в зависимости от суммарной степени повышения давления воздуха π.

Условные обозначения: πкнд - степень повышения давления воздуха в компрессоре низкого давления, πквд - степень повышения давления воздуха в компрессоре высокого давления; m2 и m3 - относительные расходы рабочих тел внутренних циклов; Ткнд* - температура воздуха на выходе из компрессо-ра низкого давления; Тквд* - температура паровоздушной смеси на выходе из компрессора высокого давления; Тг* - температура газа на входе в турбину; Ne - удельная мощность ГТУ; ηe∑ - суммарный эффективный к.п.д. ГТУ, ηе - эффективный к.п.д. ГТУ (без паросиловой установки).

Исходные данные ГТУ: внешние условия - стандартные; топливо - керосин; рабочее тело паросиловой установки - вода (пар); коэффициент избытка воздуха в камере сгорания - 1,1; степень повышения давления в компрессоре низкого давления - 30; температура лопаток первой ступени турбины - 1250 К; коэффициент интенсивности охлаждения лопаток турбины - 0,65; к.п.д. компрессора низкого давления - 0,83; к.п.д. компрессора высокого давления - 0,83; к.п.д. турбины - 0,95; к.п.д. паровой турбины - 0,9; механический к.п.д. - 0,99; полнота сгорания топлива - 0,99; коэффициент восстановления давления в камере смешения - 0,95; коэффициент восстановления давления в камере сгорания - 0,95.

Видно (фиг. 3), что цикл Письменного в сочетании с авиационно-космическими технологиями (к.п.д. элементов, паровое охлаждение лопаток турбины, монокристаллические лопатки, керамические сопловые аппараты, «водяная рубашка», технология «blisk» и д.р.) позволяет повысить эффективный к.п.д. ГТУ до 704-75%.

Форсированные ГТУ (фиг. 1) обладают уникальными энергетическими характеристиками, например, при расходе воздуха 210 кг/с мощность ГТУ составляет ~ 400 МВт (для сравнения, мощность Волжской ГЭС составляет 2660 МВт).

Для России разработка и внедрение форсированных ГТУ (к.п.д. ~ 70% и более) является, по мнению автора, национальной задачей. Большая часть запасов углеводородных топлив находится в северных широтах, что делает их добычу и доставку крайне затратными. Высокоэффективная переработка углеводородных топлив в электроэнергию в местах их добычи позволит решить проблему доставки энергии потребителю (ЛЭП), обустроить северные города по образцу той же Исландии (количество тепловой энергии, выделяющееся при переработке топлива в электроэнергию, учитывая объемы добычи топлива, соизмеримо с энергией геотермальных источников).


СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ
СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ
СПОСОБ ФОРСИРОВАНИЯ ГАЗОТУРБИННОЙ УСТАНОВКИ
Источник поступления информации: Роспатент

Показаны записи 21-27 из 27.
13.10.2018
№218.016.9107

Двухконтурный турбореактивный двигатель

Двухконтурный турбореактивный двигатель с раздельными контурами со степенью двухконтурности более десяти состоит из входного устройства, вентилятора; внутреннего контура, внутри которого расположены компрессор (компрессоры), камера сгорания, турбины; внешнего контура, состоящего из кольцевого...
Тип: Изобретение
Номер охранного документа: 0002669420
Дата охранного документа: 11.10.2018
01.11.2018
№218.016.9848

Стехиометрическая парогазотурбинная установка

Изобретение относится к энергетике. Стехиометрическая парогазотурбинная установка состоит из входного устройства, компрессора низкого и компрессора высокого давлений, между которыми расположен теплообменник, являющийся нагревательным элементом паросиловой установки, камеры сгорания, охлаждаемой...
Тип: Изобретение
Номер охранного документа: 0002671264
Дата охранного документа: 30.10.2018
05.12.2018
№218.016.a35b

Энергоустановка

Изобретение относится к энергетике. Энергоустановка состоит из двух контуров - внутреннего и внешнего и газоотводящего канала. Во внутреннем контуре расположен турбокомпрессор, во внешнем - циркуляционный теплообменник, охлаждающий воздух высокого давления, используемый для охлаждения...
Тип: Изобретение
Номер охранного документа: 0002673948
Дата охранного документа: 03.12.2018
19.12.2018
№218.016.a8d6

Газотурбинная установка

Газотурбинная установка состоит из входного устройства, вентилятора, внутреннего контура, внешнего контура. Внутри внутреннего контура расположены компрессор с отбором воздуха для охлаждения турбины привода вентилятора и компрессора, камера сгорания, турбина привода вентилятора и компрессора,...
Тип: Изобретение
Номер охранного документа: 0002675167
Дата охранного документа: 17.12.2018
02.10.2019
№219.017.cc6b

Двухконтурный турбореактивный двигатель

Двухконтурный турбореактивный двигатель, состоящий из входного устройства, вентилятора, внутреннего контура, внешнего контура. Внутри внутреннего контура расположены компрессор, камера сгорания, турбина, газовые каналы теплообменника-регенератора, выхлопной патрубок. Внутри внешнего контура...
Тип: Изобретение
Номер охранного документа: 0002701034
Дата охранного документа: 24.09.2019
01.11.2019
№219.017.dd30

Двухконтурная газотурбинная установка

Двухконтурная газотурбинная установка состоит из входного устройства, вентилятора, внутреннего контура и внешнего контура. Внутри внутреннего контура расположены компрессор, камера сгорания, турбина, газовые каналы теплообменника-регенератора, выхлопной патрубок. Внутри внешнего контура...
Тип: Изобретение
Номер охранного документа: 0002704435
Дата охранного документа: 29.10.2019
19.06.2020
№220.018.2833

Двухконтурный турбореактивный двигатель с тепловым насосом

Двухконтурный турбореактивный двигатель с тепловым насосом содержит входное устройство, вентилятор, внутренний контур, внешний контур. Внутри внутреннего контура расположены компрессор среднего давления, теплообменник-испаритель, компрессор высокого давления, камера сгорания, турбины. Внутри...
Тип: Изобретение
Номер охранного документа: 0002723583
Дата охранного документа: 17.06.2020
Показаны записи 21-27 из 27.
13.10.2018
№218.016.9107

Двухконтурный турбореактивный двигатель

Двухконтурный турбореактивный двигатель с раздельными контурами со степенью двухконтурности более десяти состоит из входного устройства, вентилятора; внутреннего контура, внутри которого расположены компрессор (компрессоры), камера сгорания, турбины; внешнего контура, состоящего из кольцевого...
Тип: Изобретение
Номер охранного документа: 0002669420
Дата охранного документа: 11.10.2018
01.11.2018
№218.016.9848

Стехиометрическая парогазотурбинная установка

Изобретение относится к энергетике. Стехиометрическая парогазотурбинная установка состоит из входного устройства, компрессора низкого и компрессора высокого давлений, между которыми расположен теплообменник, являющийся нагревательным элементом паросиловой установки, камеры сгорания, охлаждаемой...
Тип: Изобретение
Номер охранного документа: 0002671264
Дата охранного документа: 30.10.2018
05.12.2018
№218.016.a35b

Энергоустановка

Изобретение относится к энергетике. Энергоустановка состоит из двух контуров - внутреннего и внешнего и газоотводящего канала. Во внутреннем контуре расположен турбокомпрессор, во внешнем - циркуляционный теплообменник, охлаждающий воздух высокого давления, используемый для охлаждения...
Тип: Изобретение
Номер охранного документа: 0002673948
Дата охранного документа: 03.12.2018
19.12.2018
№218.016.a8d6

Газотурбинная установка

Газотурбинная установка состоит из входного устройства, вентилятора, внутреннего контура, внешнего контура. Внутри внутреннего контура расположены компрессор с отбором воздуха для охлаждения турбины привода вентилятора и компрессора, камера сгорания, турбина привода вентилятора и компрессора,...
Тип: Изобретение
Номер охранного документа: 0002675167
Дата охранного документа: 17.12.2018
02.10.2019
№219.017.cc6b

Двухконтурный турбореактивный двигатель

Двухконтурный турбореактивный двигатель, состоящий из входного устройства, вентилятора, внутреннего контура, внешнего контура. Внутри внутреннего контура расположены компрессор, камера сгорания, турбина, газовые каналы теплообменника-регенератора, выхлопной патрубок. Внутри внешнего контура...
Тип: Изобретение
Номер охранного документа: 0002701034
Дата охранного документа: 24.09.2019
01.11.2019
№219.017.dd30

Двухконтурная газотурбинная установка

Двухконтурная газотурбинная установка состоит из входного устройства, вентилятора, внутреннего контура и внешнего контура. Внутри внутреннего контура расположены компрессор, камера сгорания, турбина, газовые каналы теплообменника-регенератора, выхлопной патрубок. Внутри внешнего контура...
Тип: Изобретение
Номер охранного документа: 0002704435
Дата охранного документа: 29.10.2019
19.06.2020
№220.018.2833

Двухконтурный турбореактивный двигатель с тепловым насосом

Двухконтурный турбореактивный двигатель с тепловым насосом содержит входное устройство, вентилятор, внутренний контур, внешний контур. Внутри внутреннего контура расположены компрессор среднего давления, теплообменник-испаритель, компрессор высокого давления, камера сгорания, турбины. Внутри...
Тип: Изобретение
Номер охранного документа: 0002723583
Дата охранного документа: 17.06.2020
+ добавить свой РИД