×
30.11.2018
218.016.a268

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ДИЗЕЛЬНОГО ТОПЛИВА ОТ СЕРОСОДЕРЖАЩИХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится к очистке углеводородного сырья, содержащего сернистые соединения, путем экстракции сернистых соединений (СС) в ионную жидкость, модифицированную солями переходных металлов, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ очистки дизельного топлива от серосодержащих соединений включает экстракцию серосодержащих соединений из органической фазы в ионные жидкости и отделение углеводородной фракции от ионной жидкости. Для экстракции используют ионные жидкости на основе замещенного катиона имидазолия с анионом бромидом: 1,3-дибутилимидазолий бромид (1,3BImBr) или 1-октил3-бутилимидазолий бромид (1O3BImBr) или 1-нонил3-бутилимидазолий бромид (1Н3BImBr), содержащие растворенные соединения или бромидов, или хлоридов, или трифторацетатов переходных металлов, выбранных из группы: кобальт, медь, марганец. Объемное соотношение углеводородная фракция : ионная жидкость составляет 2:1 – 4:1. Технический результат состоит в эффективном осуществлении процесса очистки нефтепродуктов от серосодержащих соединений. 1 з.п. ф-лы, 1 табл., 9 пр.

Настоящее изобретение относится к очистке углеводородного сырья, содержащего сернистые соединения, путем экстракции сернистых соединений (СС) в ионную жидкость, модифицированную солями переходных металлов, и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

В настоящее время акценты в нефтяной отрасли смещаются в сторону добычи и переработки тяжелого, высоковязкого, низкозастывающего, сернистого нефтяного сырья и нефтяных остатков. В этой связи особое внимание уделяется технологиям, позволяющим вовлекать такие углеводородные системы в переработку. Наиболее широко распространены каталитические процессы углубленной переработки нефти. Основным процессом очистки углеводородных смесей от примесей серы является гидроочистка на твердофазных катализаторах. Этот метод обеспечивает практически полное удаление меркаптанов, сульфидов и дисульфидов из жидких углеводородов [1]. Главные недостатки этого процесса – повышенная чувствительность катализаторов к металлам и гетероатомным соединениям нефтей, большой расход водорода, высокое давление и высокое остаточное содержание тиофенов. Поэтому для каталитических установок малой и средней мощности рассматриваемая технология является нерентабельной, что служит одной из причин для развития альтернативных подходов к очистке углеводородного сырья.

Известны методы, основанные на обработке углеводородного сырья жидкими экстрагентами [2]. Такие процессы характеризуются рядом преимуществ, связанных с простотой аппаратурно-технологического оформления, отсутствием в необходимости использования катализаторов, адсорбентов и водорода, проведением процесса при невысоких температурах и давлениях, что позволяет избежать образования углеродистых отложений и существенного изменения углеводородного состава исходного сырья. Процессы проводят в мягких условиях, поэтому не меняется химическая структура компонентов нефтяных систем. Однако существенными недостатками данных методов являются большие объемы отработанных экстрагентов, процессы их регенерации.

Эффективность десульфуризации зависит от выбора растворителя, химической активности удаляемых компонентов и других факторов, включающих экологические аспекты и токсикологические ограничения. В тоже время происходит стремительное развитие научных исследований и технологических разработок в области «зеленой химии». Одним из важных направлений «зеленой химии» является замена традиционных растворителей. Перспективным представляется использование ионных жидкостей (ИЖ), так как эти соединения не горючи, термически устойчивы, обладают низким давлением паров и низкой токсичностью, а также могут быть использованы повторно. Кроме перечисленного, ионные жидкости удовлетворяют всем основным принципам «зеленой химии» [3].

Известен способ очистки нефтепродуктов от сернистых соединений, который основан на электрохимическом окислении в ионной жидкости серосодержащих соединений с последующим удалением продуктов окисления центрифугированием и (или) отгонкой углеводородной фракции. [4]. Способ применим к присутствующим в нефти меркаптанам и немеркаптановым серосодержащим соединениям, присутствующим в нефти в виде тиофенов и бензотиофенов и способным при электрохимическом окислении образовывать димеры или олигомеры, осаждающиеся на аноде или образующие в ионной жидкости нерастворимый осадок. В качестве ионных жидкостей используют 1-бутил3-метилимидазолий гексафторфосфат, 1-этил3-метилимидазолий тетрахлоралюминат, 1-бутилпиридиний нитрат, 1-бутил-3метилимидазолий тетрафторборат и их смеси.

Недостатком этого способа является ограничение по применению его только к серосодержащим соединениям, способных к окислительной электрополимеризации, а такие соединения как дибензотиофен не удаляются.

Известен также способ экстракции сераорганических соединений из углеводородного сырья ионными жидкостями [5]. В качестве ионных жидкостей используют 1-бутил-3-метилимидазолий гексафторфосфат, 1-этил-3-метилимидазолий тетрахлоралюминат, 1-бутилпиридиний нитрат, 1-бутил-3-метилимидазолий тетрафторборат и их смеси. Оптимизация процесса экстракции проводится посредством подбора времени контакта (5-60 мин), температуры (30-50°С), давления (1-50 атм), кратности самого процесса, парциальным окислением серосодержащих соединений до сульфоксидов или сульфонов до или в процессе экстракции. Окисление проводится биологическим или химическим способом с использованием в качестве катализаторов окисления солей или оксидов металлов, выбранных из группы платина, палладий, ванадий, никель.

Недостатком этого метода является необходимость проведения предварительного окисления СС и многократной экстракции для снижения содержания серосодержащих соединений в углеводородной фазе на 50-80% с постоянной регенерацией ионной жидкости после одной стадии экстракции для восстановления абсорбционной емкости. Содержание серосодержащих соединений в углеводородной фазе после контакта с ионной жидкостью без стадии окисления снижается только на 10-15%.

Наиболее близким по технической сущности к предлагаемому изобретению является способ очистки углеводородных смесей от серосодержащих гетероциклических соединений [6]. Изобретение касается способа очистки углеводородных смесей от серосодержащих гетероциклических соединений, включающего экстракцию серосодержащих соединений из органической фазы в ионные жидкости, отделение углеводородной фракции от ионной жидкости, электрохимическую регенерацию ионной жидкости. В качестве ионной жидкости используют: 1-метил-3-бутилимидазолий тетрафторборат (MBImBF4), 1-метил-3-октилимидазолий тетрафторборат (MOImBF4), содержащую растворенные соединения нитратов переходных металлов, выбранных из группы, включающей кобальт, никель, железо, медь, а также комплексы кобальта (II): 4,5-дикарбоксифталоцианиновый, N,N-бис(салицилиден)этилендиаминовый. Описанный способ принят за прототип изобретения.

Недостатками предлагаемого способа является применение только к модельным смесям и недостаточная емкость по сере предлагаемых металлокомплексов ионных жидкостей. Так степень извлечения бензотиофена (БТ) составила (83±4) %, а дибензотиофена (ДБТ) – (68±3) % при использовании в качестве ионной жидкости MOIm.

В основу предлагаемого изобретения положен принцип использование металлосодержащих ионных жидкостей для процесса очистки нефтепродуктов от серосодержащих органических соединений. Целью изобретения является очистка жидких нефтепродуктов экстракционным методом с использованием металлосодержащих ионных жидкостей.

Поставленная задача решается следующим образом: процесс очистки нефтепродуктов осуществляют с ионными жидкостями 1,3-дибутилимидазолий бромид, (DBImBr) и 1-октил3-бутилимидазолий бромид (ОBImBr) 1-нонил 3 бутилимидазолий бромид (1-н3-BImВr), содержащие растворенные соединения бромидов (хлоридов) и трифторацетатов переходных металлов, выбранных из группы, включающей медь, кобальт и марганец. Критериями выбора ионной жидкости для экстракции являются температура плавления (Тпл ниже 50°С) и растворимость углеводородов в ИЖ (менее 1%), поэтому для процесса очистки были выбраны ИЖ на основе замещенного катиона имидазолия с анионом бромидом. Добавление солей металлов обеспечивает дополнительное комплексообразование с сернистыми соединениями, находящимися в очищаемом углеводородном сырье, что влечет за собой увеличение экстракционной емкости.

Сущность изобретения заключается в том, что к нефтепродукту добавляют определенное количество ионной жидкости, при объемном соотношении нефтепродукт:ИЖ = 2:1 ÷ 4:1. Все перемешивается в течение 35-60 минут при температуре 15 ÷ 35°С. Нефтепродукт от ИЖ отделяется в делительной воронке, и проводится его анализ на содержание СС.

Пример 1.

В реактор, помещенный на магнитную мешалку, приливают 10,0 см3 дизельного топлива с содержанием общей серы 0,22%мас. и добавляют 5 см3 ИЖ – 1,3-дибутилимидазолий бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,18 мас.%.

Пример 2.

В реактор, помещенный на магнитную мешалку, приливают 15,0 см3 дизельного топлива с содержанием общей серы 0,22 мас.% и добавляют 5 см3 ИЖ – 1,3-дибутилимидазолий бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,19 мас.%.

Пример 3.

В реактор, помещенный на магнитную мешалку, приливают 20,0 см3 дизельного топлива с содержанием общей серы 0,22 мас.% и добавляют 5 см3 ИЖ – 1,3-дибутилимидазолий бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,20 мас.%.

Пример 4.

В реактор, помещенный на магнитную мешалку, приливают 10,0 см3 дизельного топлива с содержанием общей серы 0,22 мас.% и добавляют 5 см3 ИЖ –1-октил3 бутилимидазолия бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,17 мас.%.

Пример 5.

В реактор, помещенный на магнитную мешалку, приливают 15,0 см3 дизельного топлива с содержанием общей серы 0,22 мас.% и добавляют 5 см3 ИЖ –1-октил3 бутилимидазолия бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,18 мас.%.

Пример 6.

В реактор, помещенный на магнитную мешалку, приливают 20,0 см3 дизельного топлива с содержанием общей серы 0,22 мас.% и добавляют 5 см3 ИЖ –1-октил3 бутилимидазолия бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,19 мас.%.

Пример 7.

В реактор, помещенный на магнитную мешалку, приливают 10,0 см3 дизельного топлива с содержанием общей серы 0,22 мас.% и добавляют 5 см3 ИЖ –1-нонил 3 бутилимидазолия бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,18 мас.%.

Пример 8.

В реактор, помещенный на магнитную мешалку, приливают 15,0 см3 дизельного топлива с содержанием общей серы 0,22 мас.% и добавляют 5 см3 ИЖ –1-нонил 3 бутилимидазолия бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,19 мас.%.

Пример 9.

В реактор, помещенный на магнитную мешалку, приливают 20,0 см3 дизельного топлива с содержанием общей серы 0,22 мас.% и добавляют 5 см3 ИЖ –1-нонил 3 бутилимидазолия бромида. Перемешивают полученную смесь в течение 35 минут при температуре 25°С. По окончании процесса экстракции смесь переливают в делительную воронку и отделяют слой дизельного топлива. Промывают дизельное топливо водой для удаления остатков ионной жидкости. Остаточное содержание серы в ДТ составляет 0,19 мас.%.

Таким образом, при соотношении ДТ:ИЖ = 2:1 получены лучшие результаты по остаточному содержанию серы для всех трех ионных жидкостей, поэтому дальнейшие опыты по удалению серосодержащих соединений из ДТ с использованием ионных жидкостей, содержащих соли металлов проводили при соотношении ДТ:ИЖ = 2:1.

Содержание серы в исходном и очищенном дизельном топливе определялось методом сжигания в лампе по ГОСТ 19121-73.

Результаты по остаточному содержанию серосодержащих соединений, полученные при экстракции серосодержащих соединений из дизельного топлива с использованием ИЖ с бромидами, хлоридами и трифторацетатами металлов, приведены в таблице 1.

Таблица 1. Содержание серосодержащих соединений в дизельной фракции с температурой кипения 200-360°С после экстракции ионными жидкостями. Общее содержание серы в исходной фракции – 0,22 мас.%.

Как видно из анализа представленных в таблице данных, использование ионных жидкостей при очистке нефтепродукта (дизельного топлива) от серосодержащих соединений позволяет снизить содержание серы в очищенной дизельной фракции с 0,22 до 0,17 мас.% (для 1-октил3-бутилимидазолий бромида). Введение солей металлов в ионные жидкости приводит еще к большему снижению содержанию серы в нефтепродукте, с 0,22 до 0,02 мас.% (для 1-октил3-бутилимидазолий бромид с солью Co(ТФА)2 и солью Mn(ТФА)2).

Синтез ионных жидкостей, применяемых при очистке нефтепродукта от серосодержащих соединений, осуществляют следующим образом.

Синтез 1,3 дибутилимидазолия бромида и 1,3 дибутилимидазолия бромида с солями (CuBr2, CoCl2, MnCl2, (ТФА)2Cu, (ТФА)2Co, (ТФА)2Mn).

Ступень 1. В трехгорлую колбу, снабженную термометром, механической мешалкой и капельной воронкой вносят 37,0 см3 (0,3 моль) 1-бутилимидазола. При температуре 65 - 70°С, добавляют по каплям 36 см3 (0,34 моль) 1-бромбутана. После добавления всего количества 1-бромбутана смесь перемешивают 4 часа при температуре не более 70°С. Продукт представляет собой светло-желтую вязкую жидкость. Сушат при температуре 75°С и 1 мм рт.ст. Выход 97,7% от теоретического.

Ступень 2. В реактор, помещенный на магнитную мешалку, приливают 5 см3 ИЖ – 1,3ВImВr и добавляют при непрерывном перемешивании в течение 30 мин и температуре 25°С 0,05 г соли (CuBr2(безв.), CoCl2, MnCl2) или 0,1 г ((ТФА)2Cu(безв.), (ТФА)2Co(безв.), (ТФА)2Mn(безв.)).

Структуру полученного соединения подтверждают методом элементного анализа и инфракрасной спектроскопии (ИК-спектры).

ИК-спектры регистрируют на ИК-Фурье-спектрометре Nicolet 5700 в матрице KBr в области частот 400-4000 см–1 с разрешением 4 см–1 и количеством сканов. Основные полосы в ИК-спектре ИЖ: 3217-3064 см-1 полосы колебания ароматической системы; 3021-2801 см-1 – полосы колебания алифатических групп; 3435 см-1 – полоса колебания воды; 1022 см-1, 754 – 1,3 замещение.

Синтез 1-октил3-бутилимидазолия бромида и 1-октил3-бутилимидазолия бромида с солями (MnCl2, CoCl2, CuBr2, (ТФА)2Cо, (ТФА)2Cu, (ТФА)2Mn)

Ступень 1. В трехгорлую колбу, снабженную термометром, механической мешалкой и капельной воронкой вносили 32,8 см3 (0,25моль) 1-бутилимидазола. При температуре 65-70°С добавляли по каплям 53,5 см3 (0,31 моль) 1-бромоктана. После добавления всего количества бромбоктана смесь выдерживают при перемешивании 4 часа при температуре не более 70°С. Продукт представлял собой почти бесцветную вязкую жидкость. Сушат под вакуумом при температуре 75°С и 1-2 мм рт.ст. Выход 93,12 % от теоретического.

Ступень 2. В реактор емкостью, помещенный на магнитную мешалку, приливают 5 см3 ИЖ – 1О3ВImВr и добавляют при непрерывном перемешивании в течение 30 мин и температуре 25°С 0,05 г соли (CuBr2 (безв.), CoCl2., CuBr2) или 0,1 г ((ТФА)2Cо (безв.), (ТФА)2Cu (безв.), (ТФА)2Mn(безв.)).

Структуру полученного соединения подтверждают методом элементного анализа и инфракрасной спектроскопии (ИК-спектры).

Полосы в ИК-спектрах ИЖ. 32.3053-3128 см-1 полосы колебания ароматической системы; 2960 - 2857 см-1, 1464, 1378 – полосы колебания алифатических групп; 3440 см-1 – полоса колебания воды; 1022 см-1, 753 – 1,3 замещение.

Синтез 1–нонил 3 бутилимидазолия бромида и 1–нонил 3 бутилимидазолия бромида с солями (CuBr2 , CoCl2, CоBr2, MnCl2, (ТФА)2Cо, (ТФА)2Cu, (ТФА)2Mn).

Ступень 1. В трехгорлую колбу, снабженную термометром, механической мешалкой и капельной воронкой вносят 32,8 см3 (0,25моль) 1-бутилимидазола. При температуре 65-70°С добавляют по каплям 59,2 см3 (0,31 моль) 1-бромононана. После добавления всего количества бромононана смесь выдерживают при перемешивании 4 часы при температуре не более 70°С. Продукт представляет собой желтую вязкую жидкость. Сушат под вакуумом при температуре 100°С и 1-2 мм рт.ст. Выход 98,56 % от теоретического.

Ступень 2. В реактор емкостью, помещенный на магнитную мешалку, приливают 5 см3 ИЖ – 1Н3ВImВr и добавляют при непрерывном перемешивании в течение 30 мин и температуре 25°С 0,01 г соли (CuBr2, CoCl2, CоBr2, MnCl2) или 0,01 г ((ТФА)2Cо (безв.), (ТФА)2Cu (безв.), (ТФА)2Mn(безв.)).

Структуру полученного соединения подтверждают методом ИК-спектроскопии.

3128 – 3058, 875 см-1 полосы колебания ароматической системы; 2973 - 2929 см-1, 1465, 1378 см-1 – полосы колебания алифатических групп; 3432, 657 см-1 – полоса колебания ОН- групп; 1023 см-1, 753 см-1 – 1,3 замещение.

Таким образом, предложенный способ очистки нефтепродуктов от серосодержащих соединений позволяет эффективно произвести процесс очистки нефтепродуктов от нежелательных серосодержащих соединений с применением металлосодержащих ионных жидкостей, которые не горючи, термически устойчивы, обладают низким давлением паров и низкой токсичностью, а также могут быть использованы повторно.

Источники информации

1. Черножуков Н.И. Технология переработки нефти и газа. – М.: «Химия», 1966. – ч. 3. 360с.

2. Гайле А.А., Сомов В.Е., Залищевский Г.Д. Селективные растворители. Разделение и очистка углеводородосодержащего сырья. – СПб.: Химиздат, 2008. – 736с.

3. Л.М. Кустов, И.П. Белецкая «GreenChemistry» — новое мышление//Рос. хим. ж. – 2004. – Т.48, № 6, с.3.

4. Патент US № 6274026 «Electrochemical oxidation of sulfur compounds in naphtha using ionic liquids»// Robert Charles Schucker, William Chalmers Baird, Jr.

5. Патент US № 7001504 «Method For Extraction Of Organosulfur Compounds From Hydrocarbons Using Ionic Liquids» // Roger E. Schoonover.

6. Патент RU № 2408657 «Способ очистки углеводородных смесей от серосодержащих гетероциклических соединений»//Культин Д.Ю., Лебедева О.К., Кустов Л.М., Борисенкова С.А., Нефедьева М.В.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 173.
10.12.2015
№216.013.9821

Способ получения вермикомпоста

Способ получения вермикомпоста включает использование листового опада и внесение в субстрат компостного червя Eisenia fetida. В качестве листового опада используют опад тополя Populus nigra, который смешивают с верховым торфом в соотношении 1:8 по весу и добавляют воду до достижения влажности...
Тип: Изобретение
Номер охранного документа: 0002570565
Дата охранного документа: 10.12.2015
27.01.2016
№216.014.bc7e

Способ выделения глиоксалевой кислоты из продуктов окисления глиоксаля

Изобретение относится к химической промышленности, в частности к способу выделения глиоксалевой кислоты (ГК), которая широко применяется в органическом синтезе, например является исходным продуктом для получения ванилина, аллантоина и биоразлагаемых полимеров. Способ выделения глиоксалевой...
Тип: Изобретение
Номер охранного документа: 0002573839
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c481

Способ получения наноразмерного гидроксиапатита в микроволновом поле с использованием выгорающей добавки

Изобретение относится к способу получения порошка наноразмерного гидроксиапатита (нГА) в микроволновом поле с использованием агар-агара в качестве выгорающей добавки. Способ получения наноразмерного гидроксиаппатита в микроволновом поле включает приготовление и перемешивание водных растворов...
Тип: Изобретение
Номер охранного документа: 0002574455
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c52d

Имидазолмалат меди(ii), проявляющий антибактериальную активность, и способ его получения

Изобретение относится к координационным соединениям металлов, а именно имидазолмалату меди(II) общей формулы Cu(CHN)CHO · 2HO, проявляющему антибактериальную активность в широком диапазоне концентраций. Также предложен способ его получения. Техническим результатом является расширение арсенала...
Тип: Изобретение
Номер охранного документа: 0002574400
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c5b4

Способ определения нитритов

Изобретение относится к аналитической химии, а именно к методам определения нитрит-ионов, и может быть использовано при их определении в питьевых и минеральных водах. Для этого приготавливают раствор нитрита и помещают в него полиметакрилатную мембрану с иммобилизованным сафранином, в...
Тип: Изобретение
Номер охранного документа: 0002578024
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c8a0

Способ определения источников сырья для археологических керамических артефактов

Использование: для определения источников сырья для керамических артефактов. Сущность изобретения заключается в том, что способ определения источников сырья для археологических керамических артефактов включает рентгеновское облучение исследуемого материала, получение графиков...
Тип: Изобретение
Номер охранного документа: 0002578554
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.ca4a

Люминесцентный способ определения минерального состава глиноподобных образований

Использование: для определения минерального состава глиноподобных образований. Сущность изобретения заключается в том, что отбирают пробы минералов, возбуждают в них рентгенолюминесценцию в оптическом диапазоне длин волн с последующим определением минерала, при этом для приготовленных проб...
Тип: Изобретение
Номер охранного документа: 0002577795
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cb8c

Облицовочный материал для антенных измерений в неприспособленном помещении

Использование: для антенных измерений в неприспособленном помещении. Сущность изобретения заключается в том, что облицовочный материал, выполненный в виде конструкции на основе картона, покрытой углеродсодержащим составом, отличающийся тем, что он выполнен на основе рифленых картонных ячеек для...
Тип: Изобретение
Номер охранного документа: 0002577796
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.ddec

Способ получения сорбента для очистки воды от углеводородов и их производных

Изобретение относится к области сорбционной очистки воды. Способ получения сорбента включает обработку пористого носителя с поверхностно гидроксильными группами раствором хлорида меди, никеля или кобальта, сушку при 180-200°С, обработку ализарином в кислой среде и сушку при 160°С. Затем...
Тип: Изобретение
Номер охранного документа: 0002579123
Дата охранного документа: 27.03.2016
10.04.2016
№216.015.3087

Способ анализа 4,5-дигидроксимидазолин-2-тиона

Изобретение относится к аналитической химии, а именно к анализу методом тонкослойной хроматографии 4,5-дигидроксимидазолин-2-тиона, применяющегося для защиты металлов от кислотной коррозии в нефтедобывающей и нефтехимической промышленности, машиностроительной, химической и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002580289
Дата охранного документа: 10.04.2016
Показаны записи 11-20 из 21.
26.08.2017
№217.015.e3c6

Способ дезактивации руд, рудных и техногенных концентратов

Изобретение относится к химической технологии и может быть использовано при переработке руд, рудных и техногенных концентратов для их дезактивации от примесей радиоактивных изотопов: Th, U, U, U, Th, Th, Ra, Ra, Ra. Способ включает обработку раствором выщелачивателя с получением пульпы,...
Тип: Изобретение
Номер охранного документа: 0002626264
Дата охранного документа: 25.07.2017
20.01.2018
№218.016.1125

Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ

Изобретение относится к области переработки жидких радиоактивных промышленных отходов, в частности матричной иммобилизации. Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ включает смешивание жидких радиоактивных отходов с керамообразующим материалов и застывание...
Тип: Изобретение
Номер охранного документа: 0002633817
Дата охранного документа: 19.10.2017
10.05.2018
№218.016.4107

Способ переработки титаномагнетитового рудного сырья

Изобретение относится к технологиям переработки рудного сырья и может быть использовано для переработки титаномагнетитового рудного сырья. Способ переработки титаномагнетитового рудного сырья включает дробление исходной руды с последующим выделением ванадийсодержащего концентрата. Исходную руду...
Тип: Изобретение
Номер охранного документа: 0002649208
Дата охранного документа: 30.03.2018
09.09.2018
№218.016.8534

Способ очистки нефтепродуктов от серосодержащих и ароматических углеводородов

Изобретение относится к технологии облагораживания нефтехимического сырья экстракционным способом и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ очистки нефтепродуктов от сульфидов полимерами включает добавление раствора полимера к раствору...
Тип: Изобретение
Номер охранного документа: 0002666362
Дата охранного документа: 07.09.2018
20.02.2019
№219.016.bc50

Способ каталитического фотоокисления серосодержащих органических веществ

Изобретение относится к способу фотоокисления органических серосодержащих соединений в дизельной фракции нефти и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ каталитического фотоокисления включает перемешивание дизельной фракции с порошком диоксида...
Тип: Изобретение
Номер охранного документа: 0002680145
Дата охранного документа: 18.02.2019
01.03.2019
№219.016.d04b

Способ получения фторалкансульфохлоридов

Изобретение относится к процессам получения фторалкансульфохлоридов RCHX-SOCl, где (R=F, перфторалкил СF…,; X=F, H) и может быть использовано при синтезе пестицидов, инсектицидов и других биологически активных соединений. Применение предлагаемого способа позволяет получать...
Тип: Изобретение
Номер охранного документа: 0002440979
Дата охранного документа: 27.01.2012
08.03.2019
№219.016.d526

Способ получения формальдегидсодержащей смолы с пониженной эмиссией формальдегида и функциональных материалов на ее основе

Изобретение относится к химической промышленности и может быть использовано для снижения содержания в материалах, получаемых на основе формальдегидосодержащих смол, несвязанного формальдегида. Способ получения глиоксальсодержащей карбамидоформальдегидной смолы с пониженной эмиссией фенола...
Тип: Изобретение
Номер охранного документа: 0002413737
Дата охранного документа: 10.03.2011
05.04.2019
№219.016.fd38

Способ получения оксидной мишени, состоящей из dyino3

Изобретение относится к получению мишени, состоящей из DyInO. Получают порошок DyInO путем растворения In(NO) и Dy(NO) в дистиллированной воде, последующего химического соосаждения гидроксидов диспрозия и индия из полученного раствора водным раствором аммиака при рН 10 с последующей...
Тип: Изобретение
Номер охранного документа: 0002684008
Дата охранного документа: 03.04.2019
29.05.2019
№219.017.67f9

Способ получения сложных эфиров из отходов производства капролактама

Изобретение относится к области синтеза сложных эфиров из спиртовой фракции капролактама. Способ получения сложных эфиров из отходов производства капролактама осуществляется путем реакции этерификации органической кислоты и спирта в условиях автокаталитического выделения тепла, поддерживающего...
Тип: Изобретение
Номер охранного документа: 0002422434
Дата охранного документа: 27.06.2011
13.12.2019
№219.017.ecdf

Способ обессеривания тяжелого нефтепродукта с применением микроволнового излучения

Изобретение относится к обессериванию тяжелого нефтепродукта путём каталитического окисления серосодержащих соединений с использованием микроволнового облучения. Способ обессеривания мазута включает каталитическое окисление содержащихся в нефтепродукте органических серосодержащих соединений...
Тип: Изобретение
Номер охранного документа: 0002708629
Дата охранного документа: 10.12.2019
+ добавить свой РИД