×
23.11.2018
218.016.9fee

Результат интеллектуальной деятельности: МИКРОСКОПНОЕ ПОКРОВНОЕ СТЕКЛО

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптического приборостроения, нанотехнологий в оптике, в частности к области микроскопических исследований биологических объектов, клеток крови и т.д. Устройство микроскопного покровного стекла включает покровное стекло, на заднюю поверхность которого нанесена одна или более микролинз. Микролинзы выполнены в виде мезоразмерных частичек с относительным показателем преломления по отношению к показателю преломления окружающей среды, находящимся в диапазоне примерно от 1.2 до 1.8 и характерным размером не менее длины волны падающего излучения, формирующих на своей задней поверхности фотонную струю с пространственным разрешением, превышающим дифракционный предел. Изобретение обеспечивает повышение качества получаемого изображения исследуемого объекта за счет повышения разрешающей способности оптического микроскопа. 10 з.п. ф-лы, 5 ил.

Изобретение относится к области оптического приборостроения, нанотехнологий в оптике, в частности к области микроскопических исследований биологических объектов, клеток крови и т.д.

Известны и повсеместно используются покровные стекла (микроскопные элементы) для предметных стекол, предназначенные для предохранения микропрепаратов от пыли и механических повреждений при микроскопировании в видимой области спектра. ГОСТ 6672-75 регламентирует размеры покровных стекол, неплоскостность и непараллельность рабочих поверхностей, марки стекла, из которого они могут изготовляться, их оптические постоянные и химическую стойкость. Покровные стекла изготавливаются из силикатного стекла с коэффициентом преломления материала равного 1.515.

Диаметр пятна Эйри h определяется так называемым критерием Рэлея, который устанавливает предел концентрации (фокусировки) оптического излучения с помощью линзовых систем [Борн М., Вольф Э., Основы оптики // - М.: Наука. - 1970]:

h=2.44 λFD-1,

где λ - длина волны излучения, D - диаметр первичного зеркала или линзы, F - фокусное расстояние фокусирующего устройства.

Диаметр пятна Эйри h является важным параметром фокусирующей системы, который определяет ее собственную разрешающую способность в фокальной плоскости и определяет качество получаемого изображения. Он показывает минимальное расстояние между полем точечных источников в фокальной плоскости, которое способна зарегистрировать данная система. Максимальное разрешение идеальной линзовой системы не может превышать величины λ/2.

Продольное разрешение объектива определяется по выражению [Борн М., Вольф Э., Основы оптики // - М.: Наука. - 1970]

Δz ~ ±8λ(F/D)2

Связь между поперечным и продольным разрешением дается выражением:

Δz~6.5(F/D)h.

Таким образом, с увеличением поперечного разрешения объектива, протяженность области фокуса вдоль оптической оси уменьшается. Поэтому толщина покровного стекла должна уменьшаться с увеличением объектива, а предельное разрешение объектива не достижимо из-за конечной толщины покровного стекла [Как работать со световым микроскопом / Ф.М. Кэррил; (перевод с английского и под редакцией И.Я. Барского, М.М. Аптинова), С.А. Бабушкин. - Москва.: Вест Медика, 2010. - 112 с.].

Известно устройство микроскопного покровного стекла по патенту РФ №2436137, содержащее стеклянную или пластмассовую пластинку, имеющую первую поверхность и вторую поверхность, первая поверхность имеет расположенное на ней клеевое покрытие, на которое нанесена поляризационная пленка с наноструктурированными поверхностями. Оптическая толщина полученного таким образом микроскопного элемента равна таковой для стандартного покровного стекла, а оптическая ось поляризационной пленки параллельна оптической оси микроскопа.

Недостатком данного устройства является низкое пространственное разрешение, ограниченное дифракционным пределом формирующей системы с учетом толщины покровного стекла.

Известно покровное стекло с нанесенной на ее заднюю поверхность рельефно-фазовой голограммной миколинзой [Патент РФ 1314295], применяемую в голографическом оптическом микроскопе и принятое за прототип.

Однако устройство микроскопного покровного стекла с нанесенной на ее заднюю поверхность микролинзой не позволяет повысить пространственного разрешение микроскопа выше дифракционного предела.

Задачей, решаемой предлагаемым устройством, является повышение качества получаемого изображения исследуемого объекта, за счет повышения разрешающей способности оптического микроскопа.

Технический результат, который может быть получен при выполнении заявленного устройства - улучшение разрешающей способности оптических систем построения изображения исследуемых объектов.

Поставленная задача решается благодаря тому, что в устройстве микроскопного покровного стекла, включающем покровное стекло на заднюю поверхность которого нанесена микролинза, новым является то, что одна или несколько микролинз выполнены в виде мезоразмерных частичек с относительным показателем преломления по отношению к показателю преломления окружающей среды находящимся в диапазоне примерно от 1.2 до 1.8 и характерным размером не менее длины волны падающего излучения и формирующих на своей задней поверхности фотонную струю с пространственным разрешением превышающий дифракционный предел.

Кроме того, новым является то, что мезоразмерные частицы внедрены в материал покровного стекла и фотонная струя формируется непосредственно на задней поверхности покровного стекла.

Кроме того, новым является то, что мезоразмерные частицы расположены в виде одномерного монослоя.

Кроме того, новым является то, что мезоразмерные частицы расположены в виде двумерного монослоя.

Кроме того, новым является то, что мезоразмерные частицы выполнены в форме решетки с цилиндрическим профилем.

Кроме того, новым является то, что мезоразмерные частицы выполнены в форме решетки с прямоугольным профилем.

Кроме того, новым является то, что мезоразмерные частицы выполнены в форме решетки с треугольным профилем.

Кроме того, новым является то, что мезоразмерные частицы выполнены в форме сферы.

Кроме того, новым является то, что мезоразмерные частицы выполнены в форме усеченной сферы.

Кроме того, новым является то, что мезоразмерные частицы выполнены в форме куба.

Кроме того, новым является то, что мезоразмерные частицы выполнены в форме цилиндра, при падении излучения с его торца.

Известно, что фундаментальный рэлеевский критерий разрешения оптических систем заключается в том, что минимальный размер различимого объекта несколько меньше длины волны используемого излучения и принципиально ограничен дифракцией этого излучения [Борн М., Вольф Э. Основы оптики. - М.: Мир, 1978]. Невозможность сфокусировать свет в свободном пространстве в пятно с размерами меньше некоторого дифракционного предела следует и из соотношения типа соотношения неопределенностей Гейзенберга [Minin I.V., Minin O.V. Experimental verification 3D subwavelength resolution beyond the diffraction limit with zone plate in millimeter wave // Microwave and Optical Technology Letters, Vol. 56, No. 10, October 2014, 2436-2439].

Под преодолением дифракционного предела понимается фокусировка излучения в пятно с поперечными размерами меньше, чем у пятна Эйри [Борн М., Вольф Э. Основы оптики. - М.: Мир, 1978].

Преодолеть дифракционный предел в оптике можно различными способами, например, с помощью эффекта «фотонной наноструи» (например, см. A. Heifetz et al. Experimental confirmation of backscattering enhancement induced by a photonic jet // Appl. Phys. Lett., 89, 221118 (2006); Y.F. Lu, L. Zhang, W.D. Song, Y.W. Zheng, and B.S. Luk’yanchuk, // J. Exp. Theor. Phys. Lett. 72, 457 (2000); B. S. Luk'yanchuk, Z. B. Wang, W. D. Song, and M. H. Hong, “Particle on surface: 3D-effects in dry laser cleaning,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 747-751 (2004)). Фотонная струя возникает в области теневой поверхности диэлектрических микросферических частиц - в т.н. ближней зоне дифракции - и характеризуется сильной пространственной локализацией и высокой интенсивностью оптического поля в области фокусировки. Было показано, что при падении плоской волны на сфероидальную частицу достижимо пространственное разрешение до трети длины волны, что ниже классического дифракционного предела.

Сферическая микрочастица, таким образом, выполняет роль рефракционной сферической микролинзы, фокусирующей световое излучение в пределах субволнового объема [Ю. Гейнц, А. Землянов, Е. Панина. Микрочастица в интенсивном световом поле. - Palmarium Academic Publishing (2012), ISBN-13: 978-3-8473-9641-3. - 252 с.; Daniel S. Benincasa, Peter W. Barber, Jian-Zhi Zhang, Wen-Feng Hsieh, and Richard K. Chang Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatterers // Applied Optics, Vol. 26, No. 7, 1987, рр. 1348-1356].

Позднее возможность получения фотонных наноструй были изучены для диэлектрических осесимметричных тел, например, эллиптических наночастиц [Минин И.В., Минин О.В. Квазиоптика: современные тенденции развития – Новосибирск: СГУГиТ, 2015. - 163 с.; T. Jalalia and D. Erni. Highly confined photonic nanojet from elliptical particles // Journal of Modern Optics, Vol.61, No. 13, 1069-1076 (2014).], многослойных слоисто-неоднородных микросферических частиц с радиальным градиентом коэффициента преломления [César Méndez Ruiz and Jamesina J. Simpson. Detection of embedded ultrasubwavelength-thin dielectric features using elongated photonic nanojets // 2 August 2010 / Vol. 18, No. 16 / OPTICS EXPRESS 16805], а также полусфер [Cheng-Yang Liu. Photonic nanojet shaping of dielectric non-spherical microparticles // Physica E 64 (2014), pp.23–28.], дисков [B. Luk`yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessenand T.C. Chong. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater.9, 707-715 (2010); C-Y. Liu and C-C. Li. Photonic nanojet induced modes generated by a chain of dielectric microdisks. Optik 127, 267–273 (2016).], цилиндра-сферы [Jinlong Zhu and Lynford L. Goddard. Spatial control of photonic nanojets // Optics Express, Vol. 24, No. 26, 2016, 30445].

Так же было обнаружено, что фотонные струи могут быть сформированы несимметричными мезоразмерными диэлектрическими частицами, например, куб, усеченный шар, пирамида, усеченная пирамида, призма, объемный шестигранник и т.д. [I.V. Minin and O.V. Minin. Diffractive optics and nanophotonics: Resolution below the diffraction limit, Springer, 2016 http://www.springer.com/us/book/9783319242514#aboutBook; V. Pacheco-Pena, M. Beruete, I. V. Minin and O. V. Minin. Terajets produced by 3D dielectric cuboids. Appl. Phys. Lett. 105, 084102 (2014); I.V. Minin, O.V. Minin and Geintz Y.E. Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: brief review. Annalen der Physik (AdP), May 2015 DOI: 10.1002/andp.201500132; Yu. E. Geintz, A.A. Zemlyanov and E.K. Panina. Photonic Nanonanojets from Nonspherical Dielectric Microparticles. Russian Physics Journal 58, 904-910 (2015); Yu. E. Geints, A.A. Zemlyanov and E.K. Panina. Characteristics of photonic jets from microcones. Optics and Spectroscopy 119, 849-854 (2015); И.В.Минин, О.В.Минин. Фотоника изолированных диэлектрических частиц произвольной трехмерной формы - новое направление оптических информационных технологий // "Вестник НГУ. Серия: Информационные технологии". 2014, №4, С. 4-10.].

В результате проведенных исследований, было обнаружено, что диэлектрические мезочастицы произвольной формы, например в форме куба или сферы, усеченной сферы или форме цилиндра, в форме пирамиды или конуса или цилиндра при падении излучения с его торца, с характерным размером не менее λ/2, где λ - длина волны используемого излучения, с относительным коэффициентом преломления материала лежащего в диапазоне примерно от 1.2 до 1.8 по отношению к коэффициенту преломления окружающей среды, при ее облучении электромагнитной волной с плоским волновым фронтом, формируют на ее внешней границе с противоположной стороны от падающего излучения локальную область с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 (фотонную струю).

При относительном коэффициенте преломления материала мезоразмерной частицы менее 1.2 поперечный размер локальной области концентрации поля становится порядка и более дифракционного предела и не обеспечивает значительного повышения интенсивности электромагнитного поля на ее границе. При относительном коэффициенте преломления материала мезоразмерной частицы примерно более 1.8 локальная концентрация электромагнитного поля возникает внутри частицы.

В результате проведенных исследований, было обнаружено, что диэлектрическая частица, например, в форме кубика или шарика или усеченного шарика или кругового конуса или цилиндра и формирующие непосредственно на своей теневой границе фотонную струю, в зависимости от характерного размера частицы (от λ до примерно 200λ), относительного коэффициента преломления (примерно от 1.2 до 1.8), возможно получение увеличение интенсивности оптического излучения на образце от 10 до примерно 150). При этом повышение усиления интенсивности оптического излучения увеличивается с увеличением характерного размера частицы, при пространственном разрешении превышающим дифракционный предел.

На Фиг. 1 показан пример схемы устройства микроскопного покровного стекла с одной (а) и нескольких микролинз выполненных в виде мезоразмерных частичек (б) при размещении их на задней поверхности покровного стекла.

На Фиг. 2 показан пример схемы устройства микроскопного покровного стекла с мезоразмерными частицами внедренными в материал покровного стекла и формировании фотонной струи непосредственно на задней поверхности покровного стекла.

На Фиг. 3 мезоразмерные частицы расположены в виде одномерного монослоя. в форме решетки с цилиндрическим профилем, в форме решетки с прямоугольным профилем, в форме решетки с треугольным профилем, размещенных на задней поверхности покровного стекла и внедренными в материал покровного стекла и формировании фотонной струи непосредственно на задней поверхности покровного стекла.

На Фиг. 4 мезоразмерные частицы расположены в виде двумерного монослоя размещенных на задней поверхности покровного стекла и внедренными в материал покровного стекла и формировании фотонной струи непосредственно на задней поверхности покровного стекла.

На Фиг. 5 приведен пример формирования фотонной струи в случае падения излучения на мезоразмерную частицу с характерным размером порядка λ в форме сферы (а), куба (б), шестиугольника (в-г), треугольника (д-е) с относительным коэффициентом преломления 1.46.

Обозначения: 1 - падающее электромагнитное излучение, 2 - покровное стекло, 3 - передняя поверхность покровного стекла, 4 - задняя поверхность покровного стекла, 5 мезоразмерная диэлектрическая частица на задней поверхности покровного стекла, 6 - фотонная струя с пространственным разрешением превышающим дифракционный предел и формируемая в непосредственной близости от поверхности частицы 5, 7 - мезоразмерная диэлектрическая частица внедренная в материал покровного стекла, 8 - мезразмерные диэлектрические частицы расположенные в виде одномерной цилиндрической решетки на задней поверхности покровного стекла, 9 - мезразмерные диэлектрические частицы расположенные в виде одномерной прямоугольной решетки на задней поверхности покровного стекла, 10 - мезразмерные диэлектрические частицы расположенные в виде одномерной треугольной решетки на задней поверхности покровного стекла, 11 - мезразмерные диэлектрические частицы расположенные в виде одномерной цилиндрической решетки внедренные в материал покровного стекла и формирующие фотонные струи непосредственно на задней поверхности покровного стекла, 12 - мезразмерные диэлектрические частицы расположенные в виде одномерной прямоугольной решетки внедренные в материал покровного стекла и формирующие фотонные струи непосредственно на задней поверхности покровного стекла, 13 - мезразмерные диэлектрические частицы расположенные в виде одномерной треугольной решетки внедренные в материал покровного стекла и формирующие фотонные струи непосредственно на задней поверхности покровного стекла, 14 - мезразмерные диэлектрические частицы расположенные в виде двумерной решетки на задней поверхности покровного стекла, 15 - мезразмерные диэлектрические частицы расположенные в виде двумерной решетки внедренные в материал покровного стекла и формирующие фотонные струи непосредственно на задней поверхности покровного стекла внедренные в материал покровного стекла.

Устройство, работает следующим образом. Падающее электромагнитное излучение 1 освещает поверхность покровного стекла 2, при этом падающее электромагнитное излучение может формироваться системой объективов, например, микроскопа. На задней поверхности 4 покровного стекла 2 размещается одна или несколько мезоразмерных диэлектрических частиц 5. Частица 5 преобразует падающую электромагнитную волну в локальную область, формируемую непосредственно у ее внешней границы по направлению распространения электромагнитного излучения 1, с поперечными размерами порядка λ/3 - λ/4 и протяженностью не более 10 λ, формирующих фотонную струю 6.

В другом варианте устройства, мезоразмерные диэлектрические частицы могут быть внедрены в материал покровного стекла 2, при формировании фотонной струи 6 непосредственно на задней поверхности 4 покровного стекла 2.

Мезоразмерные диэлектрические частицы могут располагаться на задней поверхности покровного стекла или могут быть внедрены в материал покровного стекла в форме отдельной частицы, нескольких частиц или монослоя одномерной решетки, монослоя двумерной решетки.

В качестве материала мезоразмерных частиц могут использоваться различные материалы, например, SiO2 с коэффициентом преломления 1.538 на длине волны 0.7 мкм, полиэстер, с коэффициентом преломления 1.59 на длине волны 0.532 мкм, различные виды стекол, ситаллы, кварц, полиметилметакрилат, полистирол, поликарбонаты [Справочник конструктора оптико-механ. приборов/Под ред. В.А. Панова. - Л.: Машиностроение, 1980.] с относительными коэффициентами преломления материала лежащего в диапазоне примерно от 1.2 до 1.7.

Например, возможно применения мезоразмерных частиц из диоксида циркония ZrO2, прозрачного в спектральном диапазоне 0,25-7,0 мкм с показателем преломления 1.97-2.05, тяжелые баритные флинты, например, ТБФ14 с показателем преломления 1.9624, сверхтяжелые флинты, например, СТФ2, СТФ11 с показателем преломления соответственно равным 1.9554, 2.0711, плавленый кварц с показателем преломления 1.95-2 в диапазоне длин волн 0.3-30 мм, композиты с наполнителем из TiO2 в матрице из фторопласта, полистирола или полиэтилена с показателем преломления порядка 2, керамика Mg2F2 с показателем преломления 2.167 на длине волны 1 мм, ЦМ-4 с показателем преломления 2.17 на длине волны 2 мм [ГОСТ 3514-94, Минин И.В., Минин О.В. Дифракционная квазиоптика и ее применения. Новосибирск: СибАГС, 1999. - 306 с. ] и т.д.

Одним из примеров диэлектрических частичек, например, микросфер, которые могут быть использованы для производства таких фотонных струй, являются стекловолокно из боросиликатного стекла серии 9000 и микросферы из натрий-кальциевого стекла, продаваемые Duke Scientific Corporation.

Показатель преломления материала диэлектрических частиц будет различным для разных длин волн оптического излучения, например, для диэлектрических частичек из боросиликатного стекла показатель преломления на разных длинах волн может составлять: 1,60425 при 400 нм, 1,56442 при 632,8 нм и 1,56031 при 700 нм.

Изготовление или формирование мезоразмерных частиц задней поверхности покровного стекла возможно, например, методами фотолитографии [патент РФ №2350996], 3D принтера и т.д.

Достигаемый в такой конструкции покровного стекла положительный эффект выражается в повышении пространственного разрешения микроскопа с использованием покровного стекла, при существующих объективах.


МИКРОСКОПНОЕ ПОКРОВНОЕ СТЕКЛО
МИКРОСКОПНОЕ ПОКРОВНОЕ СТЕКЛО
МИКРОСКОПНОЕ ПОКРОВНОЕ СТЕКЛО
МИКРОСКОПНОЕ ПОКРОВНОЕ СТЕКЛО
МИКРОСКОПНОЕ ПОКРОВНОЕ СТЕКЛО
МИКРОСКОПНОЕ ПОКРОВНОЕ СТЕКЛО
Источник поступления информации: Роспатент

Показаны записи 11-20 из 26.
29.08.2019
№219.017.c440

Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений с применением технологии лазерного сканирования

Изобретение относится к вычислительной технике. Технический результат - повышение эффективности и достоверности геодезического мониторинга. Способ геодезического мониторинга деформационного состояния земной поверхности на территории разрабатываемых открытым способом крупных рудных месторождений...
Тип: Изобретение
Номер охранного документа: 0002698411
Дата охранного документа: 26.08.2019
01.11.2019
№219.017.dc68

Способ геодинамического мониторинга за смещениями блоков верхней части земной коры и деформационного состояния земной поверхности с применением технологии высокоточного спутникового позиционирования глобальной навигационной спутниковой системы (гнсс) глонасс /gps

Изобретение относится к области геодезических измерений. Технический результат - повышение точности и достоверности способа обработки геодезических измерений за счёт получения максимально точных значений пространственных координат опорных пунктов планово-высотной основы (ПВО) и наблюдательной...
Тип: Изобретение
Номер охранного документа: 0002704730
Дата охранного документа: 30.10.2019
21.11.2019
№219.017.e47b

Способ определения местоположения, координат точек, геометрических и семантических характеристик картографических объектов в интерактивном режиме при работе с традиционной картой в условиях отсутствия связи для передачи цифровых данных

Изобретение относится к области обработки и отображения пространственной информации, компьютерным средствам преобразования, визуального восприятия получаемого изображения, и может быть использовано для определения местоположения, координат и семантических характеристик картографических объектов...
Тип: Изобретение
Номер охранного документа: 0002706465
Дата охранного документа: 19.11.2019
17.01.2020
№220.017.f616

Детектор ионизирующих излучений

Изобретение относится к сцинтилляционным детекторам радиационного излучения. Сущность изобретения заключается в том, что детектор ионизирующих излучений содержит сцинтилляционный детектор радиационного излучения и фотоприемник, между которыми, непосредственно на поверхности сцинтилляционного...
Тип: Изобретение
Номер охранного документа: 0002711241
Дата охранного документа: 15.01.2020
04.02.2020
№220.017.fd1b

Способ определения величины и направления деформации наружной составляющей бугров пучения вечной мерзлоты

Изобретение относится к области геодезического пространственного мониторинга инженерных сооружений и природных объектов и может быть использовано как для наблюдений за осадками и деформациями инженерных сооружений, так и природных объектов (бугров, провалов, холмов, склонов, оползней и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002712796
Дата охранного документа: 31.01.2020
10.04.2020
№220.018.13b1

Способ создания и использования в интерактивном режиме источника геопространственной информации в условиях отсутствия связи для передачи цифровых данных

Изобретение относится к области картографии, обработки и отображения геопространственной информации, компьютерным средствам преобразования, визуального восприятия получаемого изображения и может быть использовано для получения геопространственной информации об объектах местности при работе в...
Тип: Изобретение
Номер охранного документа: 0002718472
Дата охранного документа: 08.04.2020
24.07.2020
№220.018.3749

Способ создания аудиотактильного источника картографической информации с применением цифровых информационных и нанотехнологий и его использования в активном режиме незрячими или слабовидящими людьми

Изобретение относится к области обработки и отображения, компьютерным средствам преобразования, а затем чтения картографической информации незрячими или слабовидящими людьми, дающее пользователям с дефектами зрения возможность замены прямого зрительного восприятия другими видами восприятия, а...
Тип: Изобретение
Номер охранного документа: 0002727558
Дата охранного документа: 22.07.2020
31.07.2020
№220.018.3914

Панорамная двухспектральная зеркально-линзовая система

Зеркально-линзовая система состоит из вогнутого и выпуклого зеркал и линзовой системы переноса изображения визуального диапазона спектра. В систему введено защитное стекло в виде полусферы, обращенное выпуклостью к объекту. Зеркала выполнены с внутренним отражением и сплошное вогнутое зеркало...
Тип: Изобретение
Номер охранного документа: 0002728321
Дата охранного документа: 29.07.2020
21.04.2023
№223.018.5078

Устройство оптического инициирования

Изобретение относится к средствам взрывания, а именно к оптическим средствам инициирования для использования в горнорудной и угледобывающей промышленности, сейсморазведке, нефтедобыче при перфорации скважин, строительстве и спецтехнике для подрыва одиночных и разнесенных зарядов при...
Тип: Изобретение
Номер охранного документа: 0002794055
Дата охранного документа: 11.04.2023
20.05.2023
№223.018.67c9

Устройство бесконтактной акустической сушки материалов

Изобретение относится к области техники, связанной с осуществлением технологических процессов сушки различных материалов при помощи акустических колебаний, и может быть использовано в фармацевтической, химической и биологической промышленности, а также при переработке продукции сельского...
Тип: Изобретение
Номер охранного документа: 0002794688
Дата охранного документа: 24.04.2023
Показаны записи 11-20 из 28.
13.01.2017
№217.015.8638

Способ изготовления анизотропной облицовки кумулятивного заряда

Изобретение относится к технологии изготовления кумулятивных облицовок, которые могут быть использованы в перфорационной технике при прострелочно-взрывных работах в нефтедобыче или боевых частях снарядов или ракет. Способ включает изготовление заготовки оболочечной детали кумулятивной облицовки...
Тип: Изобретение
Номер охранного документа: 0002603327
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9d86

Способ создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы

Изобретение относится к боеприпасам, предназначенным для постановки высотных завес и защиты объектов от высокоточных средств поражения. В способе создания комбинированной низкотемпературной помехи для ложной цели или маскировочной завесы снаряжение боеприпасов выполняют в виде тлеющих ленточных...
Тип: Изобретение
Номер охранного документа: 0002610792
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.c6bc

Акустическая линза

Изобретение относится к акустике, в частности к средствам фокусирования акустического поля. Акустическая линза выполнена в виде кубоида с радиальным градиентом акустического коэффициента преломления с величиной ребра кубоида, равной (0.9-1.2)λΝ, где N=1,2,…, λ - длина упругой волны....
Тип: Изобретение
Номер охранного документа: 0002618600
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.dd1c

Детекторная головка

Изобретение относится к области измерительной техники и касается детекторной головки. Детекторная головка включает в себя корпус, который выполнен в виде основания и крышки. В основании выполнен сквозной волноводный канал, а в крышке расположен короткозамыкатель. Между основанием и крышкой...
Тип: Изобретение
Номер охранного документа: 0002624608
Дата охранного документа: 04.07.2017
29.12.2017
№217.015.f16a

Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн

Изобретение относится к области получения изображений и касается способа формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн. Способ включает в себя облучение источником электромагнитного излучения...
Тип: Изобретение
Номер охранного документа: 0002631006
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0dcd

Кумулятивный заряд для формирования компактного элемента

Изобретение относится к конструкциям боевых частей боеприпасов с осесимметричными кумулятивными выемками. Кумулятивный заряд содержит профилированный корпус с размещенным в нем зарядом взрывчатого вещества с кумулятивной выемкой, металлическую облицовку кумулятивной выемки, инициирующее...
Тип: Изобретение
Номер охранного документа: 0002633021
Дата охранного документа: 11.10.2017
29.05.2018
№218.016.5570

Способ формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн

Использование: для формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн. Сущность изобретения заключается в том, что выполняют размещение объекта исследования в фокальной области акустической линзы, при этом между линзой и объектом размещается...
Тип: Изобретение
Номер охранного документа: 0002654387
Дата охранного документа: 17.05.2018
09.06.2018
№218.016.5b1f

Способ регистрации электромагнитного излучения в ик, свч и терагерцовом диапазонах длин волн

Изобретение относится к области измерительной техники и касается способа регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн. Способ включает в себя направление электромагнитного излучения на чувствительный элемент приемника излучения, преобразование его в...
Тип: Изобретение
Номер охранного документа: 0002655714
Дата охранного документа: 29.05.2018
11.07.2019
№219.017.b2cf

Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн

Изобретение относится к способам радиовидения в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах электромагнитного излучения и может быть использовано для построения радиоизображений различных объектов, в том числе в оптически непрозрачных средах, например в устройствах...
Тип: Изобретение
Номер охранного документа: 0002694123
Дата охранного документа: 09.07.2019
17.01.2020
№220.017.f616

Детектор ионизирующих излучений

Изобретение относится к сцинтилляционным детекторам радиационного излучения. Сущность изобретения заключается в том, что детектор ионизирующих излучений содержит сцинтилляционный детектор радиационного излучения и фотоприемник, между которыми, непосредственно на поверхности сцинтилляционного...
Тип: Изобретение
Номер охранного документа: 0002711241
Дата охранного документа: 15.01.2020
+ добавить свой РИД