×
29.05.2018
218.016.5570

Способ формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн. Сущность изобретения заключается в том, что выполняют размещение объекта исследования в фокальной области акустической линзы, при этом между линзой и объектом размещается иммерсионная среда, связанная с исследуемым объектом, и прием отраженного или прошедшего излучения от объекта исследования, преобразование принятого излучения в электрические сигналы и формирование по данным электрическим сигналам визуально воспринимаемого изображения объекта наблюдения, при этом в области фокусировки излучения формирующей системы размещают мезоразмерную частицу с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ - длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде в диапазоне от 0.5 до 0.83, формируют на ее внешней границе с противоположной стороны от падающего излучения область с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 и протяженностью не более 10λ и размещают объект исследования в этой области. Технический результат: обеспечение возможности улучшения разрешающей способности акустических систем построения изображения исследуемых объектов. 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к способам формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн и может быть использовано для построения изображений различных объектов, в том числе в оптически непрозрачных средах, например, в устройствах акустического сканирующего микроскопа, интроскопии, неразрушающего контроля качества материалов и изделий.

Устройства звуковидения используются для получения оптически видимых изображений различных объектов искусственного и естественного происхождения с помощью акустических волн [П. Грегуш. Звуковидение. М.: Мир, 1982, 230 с.]. В зависимости от назначения и используемого диапазона частот применяют устройства линзового звуковидения, при котором для построения акустического изображения объекта используется звуковая (акустическая) оптика. Объект "освещается" звуковым (акустическим) полем от излучателя, а акустическая линза создаёт звуковое изображение объекта в некоторой плоскости, где устанавливается приемное акустическое устройство, преобразующее распределение поля давлений либо непосредственно в оптическое изображение, либо в электрический сигнал с последующим преобразованием в оптическое изображение.

Акустическая микроскопия есть совокупность способов визуализации микроструктуры и формы малых объектов с помощью ультразвуковых и гиперзвуковых волн. Акустическая микроскопия основана на том, что ультразвуковые волны, прошедшие, отраженные или рассеянные отдельными участками объекта, имеют различные характеристики (амплитуду, фазу) в зависимости от локальных вязкоупругих свойств образца. Эти различия позволяют методами визуализации звуковых полей получать акустические изображения, восстанавливаемые компьютером на экране дисплея.

В сканирующей растровой акустической микроскопии сфокусированный в точку ультразвуковой пучок перемещается по объекту, изображение которого воссоздается по точкам в виде растра. Принимая ту или иную часть излучения, можно судить об акустических свойствах образца в области, размеры которой определяются размерами фокального пятна. Эти размеры согласно теории дифракции равны не менее длины волны ультразвуковых колебаний в данной среде.

Диаметр пятна Эйри h определяется так называемым критерием Рэлея, который устанавливает предел концентрации (фокусировки) акустического поля с помощью линзовых систем [Борн М., Вольф Э. Основы оптики. - М.: Наука. – 1970]:

h=2.44 λFD-1,

где λ - длина волны излучения, D - диаметр первичного зеркала или линзы, F - фокусное расстояние фокусирующего устройства.

Диаметр пятна Эйри h является важным параметром фокусирующей системы, который определяет ее собственную разрешающую способность в фокальной плоскости и определяет качество получаемого изображения. Он показывает минимальное расстояние между полем точечных источников в фокальной плоскости, которое способна зарегистрировать данная система. Максимальное разрешение идеальной линзовой системы не может превышать величины λ/2.

В зависимости от того, какая часть излучения после взаимодействия с объектом регистрируется, различают акустические микроскопы «на отражение», на «пропускание».

Известен способ формирования изображения объектов в акустическом диапазоне длин волн, например, по патенту РФ № 79219, патентам США №№ 4028933, 4563900, включающий формирование излучения в акустическом диапазоне длин волн, облучение источником акустического излучения формирующей системы в виде акустической линзы, фокусировку излучения формирующей системой на объекте исследования, размещение между фокусирующей системой и объектом исследования иммерсионной среды, прием прошедшего или отраженного излучения от объекта исследования, преобразование принятого излучения в электрические сигналы и формирование по данным электрическим сигналам визуально воспринимаемого изображения объекта наблюдения.

Недостатком указанного способа является его низкое пространственное разрешение.

Недостатком данного способа является низкое пространственное разрешение, ограниченное дифракционным пределом формирующей системы.

В качестве прототипа выбран способ формирования изображения объектов в акустическом диапазоне длин волн (Березина С.И., Лямов В.Е., Солодов И.Ю., Акустическая микроскопия, "Вестник МГУ", сер. "Физика, Астрономия", 1977, т.18, №1, стр. 3), включающий формирование акустического излучения источником, облучение источником акустического излучения формирующей системы в виде акустической линзы, размещение объекта исследования в фокальной области акустической линзы, при этом между линзой и объектом размещается иммерсионная среда, связанная с исследуемым объектом, и прием отраженного или прошедшего излучения от объекта исследования, преобразование принятого излучения в электрические сигналы и формирование по данным электрическим сигналам визуально воспринимаемого изображения объекта наблюдения. При этом сканирование исследуемого объекта осуществляется за счет сканирования освещающим излучением или за счет перемещения объекта.

Недостатком данного способа является низкое пространственное разрешение, ограниченное дифракционным пределом формирующей системы.

Задачей, решаемой предлагаемым способом, является повышение качества получаемого изображения исследуемого объекта за счет повышения разрешающей способности акустической формирующей системы.

Технический результат, который может быть получен при выполнении заявленного способа, - улучшение разрешающей способности акустических систем построения изображения исследуемых объектов.

Поставленная задача решается благодаря тому, что в способе формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн, включающем формирование акустического излучения источником, облучение источником акустического излучения формирующей системы в виде акустической линзы, размещение объекта исследования в фокальной области акустической линзы, при этом между линзой и объектом размещается иммерсионная среда, связанная с исследуемым объектом, и прием отраженного или прошедшего излучения от объекта исследования, преобразование принятого излучения в электрические сигналы и формирование по данным электрическим сигналам визуально воспринимаемого изображения объекта наблюдения, согласно изобретению в области фокусировки излучения формирующей системы размещают мезоразмерную частицу с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ – длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде в диапазоне от 0.5 до 0.83, формируют на ее внешней границе с противоположной стороны от падающего излучения область с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 и протяженностью не более 10λ и размещают объект исследования в этой области.

Известны способы преодоления дифракционного предела, например, с помощью эффекта «фотонной наноструи» (например, см. A. Heifetz et al. Experimental confirmation of backscattering enhancement induced by a photonic jet // Appl. Phys. Lett., 89, 221118 (2006)). Поперечный размер фотонной наноструи составляет 1/3…1/4 длины волны излучения, что меньше дифракционного предела классической линзы.

При этом формировать локальные области концентрирования электромагнитной энергии вблизи поверхности мезоразмерных диэлектрических частиц возможно с помощью частиц различной формы, например в форме сферы, куба, пирамиды, при облучении их электромагнитной волной с плоским волновым фронтом и т.д. [I.V. Minin and O.V. Minin. Diffractive optics and nanophotonics: Resolution below the diffraction limit, Springer, 2016 http://www.springer.com/us/book/9783319242514#aboutBook].

В результате проведенных исследований было обнаружено, что мезоразмерная частица, например, в форме куба или сферы с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ – длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде в диапазоне от 0.5 до 0.83, формирует на ее внешней границе с противоположной стороны от падающего излучения области с повышенной концентрацией энергии и с поперечными размерами порядка λ/3-λ/4 и протяженностью не более 10λ.

При выполнении мезоразмерной частицы с размерами более поперечных размеров области фокусировки излучения формирующей системы увеличиваются габариты устройства формирования изображения при сохранении качества концентрации акустического излучения частицей. При характерных размерах мезоразмерной частицы менее λ/2 локальная концентрация акустического поля вблизи поверхности частицы не возникает.

При относительной скорости звука в материале частицы относительно скорости звука в окружающей среде менее 0.5 поперечный размер локальной области концентрации поля становится порядка дифракционного предела и не может быть обеспечен формирующей системой.

При относительной скорости звука в материале частицы относительно скорости звука в окружающей среде более 0.83 локальная концентрация акустического поля возникает внутри частицы и не может быть использована для облучения исследуемого объекта.

На Фиг. 1 показан пример схемы устройства, реализующего предлагаемый способ.

Обозначения: 1 – источник акустического излучения, 2 – формирующее устройство, 3 – область фокусировки, 4 – мезоразмерная частица, 5 – концентрация акустического поля в непосредственной близости от поверхности частицы с субволновыми поперечными размерами, 6 – объект исследования, 7 - приемник излучения, 8 – система визуализации изображения, 9 – иммерсионная среда.

Устройство, реализующее способ, работает следующим образом. Источник акустического излучения 1 излучает ультразвуковое излучение в направлении формирующего устройства (акустической линзы) 2, которое фокусирует падающее излучение в область фокусировки 3 в направлении на объект исследования 6. В области фокуса 3 формирующего устройства 2 размещается мезоразмерная частица 4, например кубик или сфера, выполненные из материала со скоростью звука в материале частицы относительно скорости звука в окружающей среде в диапазоне от 0.5 до 0.83, и с характерным размером порядка длины волны излучения. При этом пространство между акустической линзой 2 и объектом исследования 6 заполнено иммерсионной средой 9. Частица 4 преобразует падающую акустическую волну со сходящимся сферическим волновым фронтом в локальную область, формируемую непосредственно у внешней границы по направлению распространения акустического излучения 5, с поперечными размерами порядка λ/3–λ/4 и протяженностью не более 10λ.

Объект исследования 6 размещается в локальной области акустического поля с субволновыми размерами. Прошедшее излучение через объект исследования 6 регистрируется приемником излучения 7 и далее визуализируется системой визуализации изображения 8, например, на электронно-лучевой трубке. Для построения изображения объект исследования 6 может перемещаться.

В другом варианте реализации способа отраженное от объекта акустическое излучение поступает на приемник излучения 7 и систему визуализации изображения.

Например, для системы формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн, предназначенной для работы в жидкости, например в воде при 25°С (скорость звука 1490 м/с), в качестве материала частицы может использоваться рексолит (скорость звука 2311 м/с), относительная скорость звука 0.645 и т.д.

Пространственное разрешение по прототипу составило порядка длины волны излучения λ, а по предлагаемому способу - порядка 0.3λ. Повышение пространственного разрешения по предлагаемому способу эквивалентно повышению частоты ультразвукового излучения в 3-4 раза в прототипе. Кроме того, повышение пространственного разрешения по предлагаемому способу приводит к одновременному повышению интенсивности акустического поля на объекте исследования без повышения интенсивности излучения источника акустического поля.

Способ формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн, включающий формирование акустического излучения источником, облучение источником акустического излучения формирующей системы в виде акустической линзы, размещение объекта исследования в фокальной области акустической линзы, при этом между линзой и объектом размещается иммерсионная среда, связанная с исследуемым объектом, и прием отраженного или прошедшего излучения от объекта исследования, преобразование принятого излучения в электрические сигналы и формирование по данным электрическим сигналам визуально воспринимаемого изображения объекта наблюдения, отличающийся тем, что в области фокусировки излучения формирующей системы размещают мезоразмерную частицу с характерным размером не более поперечного размера области фокусировки и не менее λ/2, где λ - длина волны используемого излучения в среде, со скоростью звука в материале частицы относительно скорости звука в окружающей среде в диапазоне от 0.5 до 0.83, формируют на ее внешней границе с противоположной стороны от падающего излучения область с повышенной интенсивностью излучения с поперечными размерами порядка λ/3-λ/4 и протяженностью не более 10λ и размещают объект исследования в этой области.
Способ формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн
Способ формирования изображения объектов с субдифракционным разрешением в акустическом диапазоне длин волн
Источник поступления информации: Роспатент

Показаны записи 1-10 из 26.
04.04.2018
№218.016.366e

Способ упорядочения расположения наночастиц на поверхности подложки

Использование: для формирования на подложках структурных образований из микро- и наночастиц. Сущность изобретения заключается в том, что по способу упорядочения расположения наночастиц на поверхности подложки путем их перемещения с помощью лазерного излучения, в соответствии с изобретением,...
Тип: Изобретение
Номер охранного документа: 0002646441
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.47c6

Способ аэрокосмического геоинформационного мониторинга природных и техногенных объектов с применением метода вейвлет-преобразования для аэрокосмических цифровых фотоснимков

По предлагаемому способу аэрокосмического геоинформационного мониторинга природных и техногенных объектов производят аэрокосмическую цифровую фотосъемку заданной территории не менее двух раз с помощью одной и той же съемочной аэрокосмической системы с привязкой к заданной системе координат ПВО....
Тип: Изобретение
Номер охранного документа: 0002650700
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.4edb

Способ адекватного измерения s-параметров транзисторов на имитаторе-анализаторе усилителей и автогенераторов свч

Изобретение относится к радиоизмерительной технике СВЧ и может быть использовано для адекватного измерения S-параметров транзисторов, предназначенных для включения в микрополосковую линию. Задачей заявляемого способа является обеспечение адекватного измерения S-параметров транзисторов,...
Тип: Изобретение
Номер охранного документа: 0002652650
Дата охранного документа: 28.04.2018
10.05.2018
№218.016.4f63

Способ геодезического геоинформационного мониторинга природных и техногенных объектов с применением метода автоматизированного дешифрирования многоспектральных цифровых аэрокосмических фотоснимков

Изобретение относится к способам обработки многоспектральных цифровых аэрокосмических фотоснимков и может быть использовано при геодезическом геоинформационном мониторинге природных и техногенных объектов. Сущность: на контролируемом участке выполняют аэрокосмическую цифровую фотосъемку с...
Тип: Изобретение
Номер охранного документа: 0002652652
Дата охранного документа: 28.04.2018
29.05.2018
№218.016.58b2

Способ измерения s-параметров четырехполюсников свч, предназначенных для включения в микрополосковую линию

Изобретение относится к радиоизмерительной технике СВЧ и может быть использовано измерения S-параметров четырехполюсников. Способ измерения S-параметров четырехполюсников СВЧ, предназначенных для включения в микрополосковую линию, заключается в том, что четырехполюсник включают в анализатор,...
Тип: Изобретение
Номер охранного документа: 0002653569
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5b1f

Способ регистрации электромагнитного излучения в ик, свч и терагерцовом диапазонах длин волн

Изобретение относится к области измерительной техники и касается способа регистрации электромагнитного излучения в ИК, СВЧ и терагерцовом диапазонах длин волн. Способ включает в себя направление электромагнитного излучения на чувствительный элемент приемника излучения, преобразование его в...
Тип: Изобретение
Номер охранного документа: 0002655714
Дата охранного документа: 29.05.2018
04.10.2018
№218.016.8f0f

Способ получения, обработки, отображения и интерпретации геопространственных данных для геодезического мониторинга деформационного состояния инженерного объекта

Изобретение относится к области создания трехмерных цифровых моделей. Технический результат – повышение достоверности и точности получаемых геопространственных данных за счет использования технологий лазерного сканирования в трехмерном пространстве. Способ получения, обработки, отображения и...
Тип: Изобретение
Номер охранного документа: 0002668730
Дата охранного документа: 02.10.2018
23.11.2018
№218.016.9fee

Микроскопное покровное стекло

Изобретение относится к области оптического приборостроения, нанотехнологий в оптике, в частности к области микроскопических исследований биологических объектов, клеток крови и т.д. Устройство микроскопного покровного стекла включает покровное стекло, на заднюю поверхность которого нанесена...
Тип: Изобретение
Номер охранного документа: 0002672980
Дата охранного документа: 21.11.2018
03.03.2019
№219.016.d244

Способ геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах с применением технологии лазерного сканирования

Изобретение относится к области геодезического мониторинга и может быть использовано для геодезического мониторинга деформационного состояния земной поверхности в сейсмоопасных районах, где возведены сложные технологические инженерные объекты. Технический результат: повышение эффективности...
Тип: Изобретение
Номер охранного документа: 0002680978
Дата охранного документа: 01.03.2019
11.07.2019
№219.017.b2cf

Способ формирования изображения объектов с субдифракционным разрешением в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах длин волн

Изобретение относится к способам радиовидения в миллиметровом, терагерцевом, инфракрасном и оптическом диапазонах электромагнитного излучения и может быть использовано для построения радиоизображений различных объектов, в том числе в оптически непрозрачных средах, например в устройствах...
Тип: Изобретение
Номер охранного документа: 0002694123
Дата охранного документа: 09.07.2019
Показаны записи 1-10 из 28.
10.08.2013
№216.012.5df2

Материал облицовки кумулятивного заряда на основе металла

Изобретение относится к кумулятивным зарядам. Облицовка кумулятивного заряда выполнена из материала на основе железа и содержит предельную массовую долю элементов примеси и легирующих элементов, %, не более: углерод - 0.005, марганец - 0.005, кремний - 0.02, сера - 0.003, фосфор - 0.003, хром -...
Тип: Изобретение
Номер охранного документа: 0002489671
Дата охранного документа: 10.08.2013
27.08.2013
№216.012.6504

Способ и устройство формирования кумулятивных струй с устранением эффекта вращения кумулятивных зарядов

Группа изобретений относится к способу и устройству формирования кумулятивных струй. Способ заключается в том, что кумулятивную выемку выполняют в форме усеченной конической поверхности, покрывают ее вспомогательной облицовкой, с плотностью материала более плотности заряда взрывчатого вещества,...
Тип: Изобретение
Номер охранного документа: 0002491497
Дата охранного документа: 27.08.2013
10.02.2015
№216.013.245a

Взрывной генератор плоской волны для кумулятивных перфораторов

Изобретение относится к нефте- и газодобывающей промышленности и может быть использовано в кумулятивных перфораторах, применяемых для перфорации нефтяных и газовых скважин. Взрывной генератор плоской волны для кумулятивных перфораторов состоит из инициатора, корпуса с размещенными в нем...
Тип: Изобретение
Номер охранного документа: 0002540759
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2947

Способ получения составных кумулятивных струй в зарядах перфоратора

Изобретение относится к области нефтедобывающей промышленности. Преимущественная область использования - формирование кумулятивных струй в перфораторах, предназначенных для вскрытия продуктивного пласта в нефтяных и газовых скважинах. Способ получения составных кумулятивных струй в зарядах...
Тип: Изобретение
Номер охранного документа: 0002542024
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.2f08

Способ создания импульсной плазменной антенны

Изобретение относится к технике радиосвязи, в частности к способам создания плазменных антенн. Способ создания импульсной плазменной антенны включает облицовку внутренней поверхности выемки в заряде взрывчатого вещества, инициирование заряда взрывчатого вещества со стороны, противоположной...
Тип: Изобретение
Номер охранного документа: 0002543508
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.397e

Способ заканчивания скважин

Изобретение относится к нефтегазодобывающей промышленности и предназначено для вскрытия продуктивных пластов в нефтяных и газовых скважинах путем создания перфорационных каналов и дополнительной обработки приканальной зоны химическим реагентом. Способ заканчивания скважин включает инициирование...
Тип: Изобретение
Номер охранного документа: 0002546206
Дата охранного документа: 10.04.2015
27.06.2015
№216.013.5a82

Устройство управления формой фронта детонационной волны

Изобретение относится к вооружению и может быть использовано в кумулятивных боеприпасах. Устройство управления формой фронта детонационной волны содержит осесимметричные промежуточный заряд взрывчатого вещества с детонатором и основной заряд взрывчатого вещества с кумулятивной выемкой, инертную...
Тип: Изобретение
Номер охранного документа: 0002554711
Дата охранного документа: 27.06.2015
20.08.2015
№216.013.6ee9

Способ перфорации скважины сдвоенными гиперкумулятивными зарядами

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам вскрытия продуктивных пластов в нефтяных скважинах. Способ перфорации скважины заключается в соосном расположении в общем герметичном корпусе двух разнесенных в пространстве между собой кумулятивных зарядов,...
Тип: Изобретение
Номер охранного документа: 0002559963
Дата охранного документа: 20.08.2015
20.03.2016
№216.014.c993

Кумулятивный заряд

Изобретение относится к взрывным устройствам для вскрытия продуктивных пластов в нефтяных скважинах и может использоваться в кумулятивных боевых частях. Кумулятивный заряд содержит корпус с размещенной в нем шашкой взрывчатого вещества, имеющей кумулятивную выемку, покрытую облицовкой,...
Тип: Изобретение
Номер охранного документа: 0002577661
Дата охранного документа: 20.03.2016
13.01.2017
№217.015.6770

Устройство квазиоптической линии передачи терагерцовых волн

Устройство квазиоптической линии передачи терагерцовых волн содержит набор диэлектрических линз, пространственно разнесенных между собой и расположенных вдоль направления распространения волн. Причем линзы выполнены в виде кубоида с величиной стенки, лежащей в диапазоне от 0.85λ до 1.3λ, где λ...
Тип: Изобретение
Номер охранного документа: 0002591282
Дата охранного документа: 20.07.2016
+ добавить свой РИД