×
21.11.2018
218.016.9f88

Результат интеллектуальной деятельности: Способ получения производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения замещенных 2,6-бис[1-(фенилимино)этал]пиридина конденсацией 2,6-диацетилпиридина и замещенного анилина в присутствии гетерогенного катализатора, отличающемуся тем, что процесс проводят в среде органического растворителя, в качестве катализатора используют обработанный метилалюмоксаном силикагель, в качестве водоотнимающего средства - молекулярные сита с размером пор 3 или 4 Å, а в качестве замещенного анилина используют анилин, содержащий один или несколько электроноакцепторных заместителей (F, CI, Br, CF) в ароматическом кольце. Технический результат - разработан новый способ синтеза замещенных 2,6-бис[1-(фенилимино)этал]пиридина, с увеличенным выходом продукта реакции за счет практически полного подавления побочных процессов. 1 з.п. ф-лы, 1 табл., 12 пр.

Изобретение относится к области органической химии и катализа, а именно, к разработке нового метода синтеза производных 2,6-бис[1-(фенилимино)этил]пиридина - тридентатных органических лигандов, образующих комплексные соединения состава LMX2 (М=Fe, Со, Ni) либо LMX3 (М=V, Cr) с различными переходными металлами, где L - производное 2,6-бис[1-(фенилимино)этил]пиридина, X - атом галогена, М - атом металла. Данные комплексные соединения входят в состав катализаторов, демонстрирующих высокую активность в полимеризации и олигомеризации этилена, полимеризации циклических олефинов.

Настоящее изобретение относится к усовершенствованному способу каталитического синтеза производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями (F, Cl, Br, CF3) в ароматических фрагментах лиганда, связанных с иминными атомами азота.

Данные комплексные соединения входят в состав катализаторов, демонстрирующих высокую активность в процессах димеризации этилена в бутены, олиго- и полимеризации этилена, полимеризации циклических олефинов.

Настоящее изобретение относится к усовершенствованному способу электроноакцепторными заместителями (F, Cl, Br, CF3) в ароматических фрагментах лиганда, связанных с иминными атомами азота.

Комплексы переходных металлов (Fe, Со, Ni, V, Cr) с производными 2,6-бис[1-(фенилимино)этил]пиридина, в сочетании с такими алюминийорганическими активаторами, как метилалюмоксан (МАО) и триалкилы алюминия, обладают высокой активностью и селективностью в процессах димеризации этилена в бутены (Xie, G.Y., Li, Т.С., Zhang, A.Q. Inorg. Chem. Commun. 2010, 13, 1199-1202; Thiele, D., de Souza, R.F.J. Mol. Catal. A. Chemical 2011, 340, 83-88; Antonov, A.A., Semikolenova, N.V., Zakharov, V.A., Zhang, W., Wang, Y., Sun, W.-H., Talsi, E.P., Bryliakov, K.P. Organometallics, 2012, 31, 1143-1149), олигомеризации и полимеризации олефинов, позволяют получать линейный полиэтилен, линейные α-олефины, высокомолекулярные полимеры на основе циклических олефинов (Ma J., Feng С., Wang S., Zhao K.-Q., Sun W.-H., Redshaw C., Solan G.A. Inorg. Chem. Front. 2014., v. 1, p. 14-34; Flisak Z., Sun W.-H. ACS Catal. 2015, v. 5, p. 4713-4724).

Простота синтеза данных комплексов и их низкая оксофильность делают эти соединения перспективными для разработки на их основе новых высокоактивных каталитических систем полимеризации олефинов. Возможность варьировать строение органического лиганда путем введения различных заместителей в ароматические фрагменты позволяет оказывать влияние как на величину каталитической активности данных комплексов, так и на молекулярно-массовые характеристики образующегося полимерного продукта. Кроме того, данные комплексы могут быть нанесены на твердый носитель, что улучшает их технические характеристики. Так, нанесенные катализаторы на основе комплексов LFeX2 обладают повышенной термической стабильностью, позволяют проводить процесс полимеризации при высоких температурах (70-90°С) и образуют полимеры с хорошей морфологией. Эти особенности комплексов железа с производными 2,6-бис[1-(фенилимино)этил]пиридина открывают перспективы использования данных катализаторов в процессах суспензионной или газофазной полимеризации этилена в промышленных условиях (Пат. РФ 2302292, B01J 37/00, C08F 4/70, B01J 21/08, C07F 15/02, 10.07.2007).

Особый интерес представляют комплексы переходных металлов с производными 2,6-бис[1-(фенилимино)этил]пиридина, содержащими в ароматических фрагментах при иминных атомах азота электроноакцепторные заместители. Подобная модификация каталитических систем на основе комплексов Fe(II) и Со(II) позволяет повысить стабильность катализатора и приводит к резкому увеличению каталитической активности (Tellmann K.P., Gibson V.С., White A.J.P., Williams D.J. Organometallics 2005, v. 24, p. 280-286).

На схеме 1 представлены примеры комплексов железа с производными 2,6-бис[1-(фенилимино)этил]пиридина, способные полимеризовать этилен с высокой активностью.

Производные 2,6-бис[1-(фенилимино)этил]пиридина синтезируют путем конденсации двух эквивалентов замещенного анилина и одного эквивалента 2,6-диацетилпиридина в присутствии катализатора (схема 2).

Наиболее простой метод синтеза производных 2,6-бис[1-(фенилимино)этил]пиридина заключается в том, что раствор 2,6-диацетилпиридина (1 эквив.) и замещенного анилина (2 эквив.) в абсолютном этаноле кипятят с обратным холодильником в присутствии уксусной кислоты, либо перемешивают в метаноле в присутствии слабой органической кислоты (муравьиная, уксусная). Целевой продукт получается с выходом 60-80% (Britovsek G.J.P., Bruce M., Gibson V.С., Kimberley В.S., Maddox P.J., Mastroianni S., McTavish S.J., Redshaw C., Solan G.A., S., White A.J.P., Williams D.J.J. Am. Chem. Soc. 1999, v. 121, p. 8728-8740; WO 98/27124, C08F 10/00, C07F 15/02, C07D 213/53, 25.06.1998; Пат. US 6458739, B01J 31/18, 01.10.2002). Существенным ограничением данного метода является то, что он допускает использование в качестве нуклеофилов только анилинов с электронодонорными (R1-R5 = алкил, Н) заместителями.

Для синтеза производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями используют другой метод, заключающийся в том, что раствор замещенного анилина и 2,6-диацетилпиридина в бензоле или толуоле кипятят с отгонкой азеотропа (бензол/вода либо толуол/вода соответственно) в присутствии сильных протонных кислот: n-толуолсульфокислоты, серной кислоты (Chen Y., Qian С., Sun J. Organometallics 2003, v. 22, p. 1231-1236; Tellmann K.P., Gibson V.C., White A.J.P., Williams D.J. Organometallics 2005, v. 24, p. 280-286; C., Englmann Т., Alt H. G. Appl. Catal. A: Gen. 2011, v. 403, p. 25-35). Такой метод позволяет использовать в качестве нуклеофилов замещенные анилины с различным количеством и расположением электроноакцепторных заместителей в ароматическом фрагменте, в том числе с атомами галогенов (F, Cl, Br, I) в орто-положениях ароматического кольца анилина. Недостатками данного метода синтеза являются низкий выход производного 2,6-бис[1-(фенилимино)этил]пиридина (от 13 до 50%), длительное время синтеза (до 160 ч), необходимость тщательного контроля температурного режима и скорости отгонки азеотропа, большой расход органических растворителей, необходимость дополнительной очистки продукта методом перекристаллизации или колоночной хроматографии из-за протекания побочных процессов и осмоления реакционной смеси.

Наиболее близким является способ синтеза производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями с использованием гетерогенного катализатора. В частности, целевые продукты получают перемешиванием раствора замещенного анилина и 2,6-диацетилпиридина в толуоле при температуре 30-40°С в присутствии катализатора - силикагеля, модифицированного оксидом алюминия, и поглощающих воду молекулярных сит с размером пор 3 или 4 (Qian С., Gao F., Chen Y., Gao L. Synlett 2003, n. 10, p. 1419-1422; Chen Y., Chen R., Qian C., Dong X., Sun J.J. Mol. Catal. A: Chem. 2012, v. 352, p. 110-127). Данный метод синтеза позволяет получать производные 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями с выходами более 50%. Недостатками данного метода синтеза являются необходимость больших загрузок катализатора и осушителя (до 15 г молекулярных сит и 0.5 г катализатора при загрузке 3 ммоль 2,6-диацетилпиридина). Помимо этого, данный способ синтеза не применим для конденсации 2,6-диацетилпиридина с замещенными анилинами, содержащими два объемных электроноакцепторных заместителя в орто-положениях ароматического кольца.

Настоящее изобретение решает задачу увеличения выхода продукта реакции -замещенного 2,6-бис[1-(фенилимино)этил]пиридина до 56-83%, упрощения способа синтеза путем использования в качестве катализатора нанесенного на силикагель метилалюмоксана (MAO/SiO2), обеспечения безопасности процесса для окружающей среды за счет использования меньшего количества органических растворителей, снижения загрузки катализатора и поглощающего воду реагента, упрощения процедур выделения и очистки основного продукта за счет практически полного подавления побочных процессов.

Предложен способ получения производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями (R1-R5 = F, Cl, Br, CF3) путем каталитической конденсации конденсации одного эквивалента 2,6-диацетилпиридина и 2.5 эквивалентов замещенного анилина, которую проводят в среде органического растворителя, в качестве катализатора используют предварительно обработанный метилалюмоксаном силикагель, в качестве водоотнимающего средства - молекулярные сита с размером пор 3 или 4 . После завершения реакции молекулярные сита и катализатор отделяют от раствора фильтрованием, оставшийся раствор упаривают в вакууме и промывают сухой остаток небольшим количеством метанола, в качестве замещенных анилинов используют анилин, содержащий один или несколько электроноакцепторных заместителей (F, Cl, Br, CF3) в ароматическом кольце. Процесс проводят в среде ароматических органических растворителей - гомологов бензола, предпочтительно, в толуоле.

В таблице представлены результаты синтеза производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями.

Снижение загрузки катализатора почти в 2 раза не привело к значительному изменению выхода продукта (эксперименты 1-2). В то же время, увеличение загрузки замещенного анилина с 2.5 до 3.5 эквивалентов по отношению к 2,6-диацетилпиридину позволило увеличить выход продукта на 18% (эксперименты 3-4)/

Таким образом, разработан способ синтеза производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями с использованием в качестве катализатора нанесенного на силикагель метилалюмоксана.. Данный метод позволяет проводить синтез при невысокой (предпочтительно при 20-60°С) температуре и получать требуемые продукты конденсации галоген- и трифторметилзамещенных анилинов с 2,6-диацетилпиридином с высокими выходами и практически полным отсутствием побочных процессов.

Сущность изобретения иллюстрируется следующими примерами.

Пример 1.

Синтез 2,6-бис[1-(2-хлор-4-фторфенилимино)этил]пиридина

Метилалюмоксан (МАО) наносят на силикагель с удельной поверхностью 260 м2/г согласно описанной методике (Panchenko V.N., Semikolenova N.V., Danilova I.G., Paukshtis E.A., Zakharov V.A., J. Mol. Catal. A: Ghem. 1999, - v. 142, p. 27-37). Полученный порошок белого цвета хранят в атмосфере аргона, используют для синтеза 2,6-бис[1-(2-хлор-4-фторфенилимино)этил]пиридина в качестве катализатора.

2.7 г молекулярных сит с размером пор 4 активируют в колбе Шленка при 600°С в вакууме в течение 15 мин, дают колбе остыть до комнатной температуры, заполняют колбу аргоном. В атмосфере аргона помещают в колбу навеску 2,6-диацетилпиридина (0.326 г, 2 ммоль), 2-хлор-4-фторанилин (0.6 мл, 5 ммоль). Добавляют 12 мл толуола, дегазируют раствор 3-4 циклами замораживания/откачки в вакууме с последующим оттаиванием в вакууме. В токе аргона добавляют катализатор MAO/SiO2 (0.2 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 44 ч.

Молекулярные сита и МАО/SiO2 отфильтровывают на стеклянном пористом фильтре, промывают хлористым метиленом. Полученный раствор упаривают досуха на ротационном испарителе. Сухой остаток промывают метанолом, отфильтровывают и высушивают в вакууме. Получают чистый 2,6-бис[1-(2-хлор-4-фторфенилимино)этил]пиридин, выход 0.671 г (1.6 ммоль, 80%).

Пример 2.

Синтез 2,6-бис[1-(2-хлор-4-фторфенилимино)этил]пиридина

2,6-бис[1-(2-хлор-4-фторфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в колбу помещают навеску 2,6-диацетилпиридина (0.245 г, 1.5 ммоль), 2-хлор-4-фторанилин (0.45 мл, 3.75 ммоль) и добавляют катализатор MAO/SiO2 (0.06 г, 9% Al вес.), термостатируют реакционную смесь при 55°С и перемешивают в течение 60 ч. Получают чистый 2,6-бис[1-(2-хлор-4-фторфенилимино)этил]пиридин, выход 0.519 г (1.24 ммоль, 83%).

Пример 3.

Синтез 2,6-бис[1-(2-фторфенилишшо)этил]пиридина

2,6-бис[1-(2-фторфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в качестве замещенного анилина используют 2-фторанилин (0.483 мл, 5 ммоль), добавляют катализатор MAO/SiO2 (0.165 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 65 ч. Получают чистый 2,6-бис[1-(2-фторфенилимино)этил]пиридин, выход 0.426 г (1.22 ммоль, 61%).

Пример 4.

Синтез 2,6-бис[1-(2-фторфенилимино)этил]пиридина

2,6-бис[1-(2-фторфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в колбу помещают навеску 2,6-диацетилпиридина (0.245 г, 1.5 ммоль), 2-фторанилин (0.512 мл, 5.3 ммоль) и добавляют катализатор MAO/SiO2 (0.05 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 72 ч. Получают чистый 2,6-бис[1-(2-фторфенилимино)этил]пиридин, выход 0.415 г (1.19 ммоль, 79%).

Пример 5.

Синтез 2,6-бис[1-(3,5-дихлорфенилимино)этил]пиридина

2,6-бис[1-(3,5-дихлорфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в качестве замещенного анилина используют 3,5-дихлоранилин (0.828 г, 5 ммоль), добавляют катализатор MAO/SiO2 (0.165 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 40 ч. Получают чистый 2,6-бис[1-(3,5-дихлорфенилимино)этил]пиридин, выход 0.708 г (1.57 ммоль, 79%).

Пример 6.

Синтез 2,6-бис[1-(2-трифторметилфенилимино)этил]пиридина

2,6-бис[1-(2-трифторметилфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в качестве замещенного анилина используют 2-трифторметиланилин (0.62 мл, 5 ммоль), добавляют катализатор MAO/SiO2 (0.16 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 45 ч. Получают чистый 2,6-бис[1-(2-трифторметилфенилимино)этил]пиридин, выход 0.262 г (0.58 ммоль, 39%).

Пример 7.

Синтез 2,6-бис[1-(3,5-дифторфенилимино)этил]пиридина

2,6-бис[1-(3,5-дифторфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в колбу помещают навеску 2,6-диацетилпиридина (0.241 г, 1.48 ммоль), 3,5-дифторанилин (0.477 г, 3.7 ммоль) и добавляют катализатор MAO/SiO2 (0.15 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 69 ч. Получают чистый 2,6-бис[1-(3,5-дифторфенилимино)этил]пиридин, выход 0.393 г (1.02 ммоль, 69%).

Пример 8.

Синтез 2,6-бис[1-(2-трифторметил-4-фторфенилимино)этил]пиридина

2,6-бис[1-(2-трифторметил-4-фторфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в колбу помещают навеску 2,6-диацетилпиридина (0.245 г, 1.5 ммоль), 2-трифторметил-4-фторанилин (0.49 мл, 3.75 ммоль) и добавляют катализатор MAO/SiO2 (0.18 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 46 ч. Получают чистый 2,6-бис[1-(2-трифторметил-4-фторфенилимино)этил]пиридин, выход 0.51 г (1.05 ммоль, 70%).

Пример 9.

Синтез 2,6-бис[1-(3-трифторметил-4-фторфенилимино)этил]пиридина

2,6-бис[1-(3-трифторметил-4-фторфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в колбу помещают навеску 2,6-диацетилпиридина (0.245 г, 1.5 ммоль), 3-трифторметил-4-фторанилин (0.49 мл, 3.75 ммоль) и добавляют катализатор MAO/SiO2 (0.17 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 69 ч. Получают чистый 2,6-бис[1-(2-трифторметил-4-фторфенилимино)этил]пиридин, выход 0.534 г (1.1 ммоль, 74%).

Пример 10.

Синтез 2,6-бис[1-(2,4,6-трифторфенилимино)этил]пиридина

2,6-бис[1-(2,4,6-трифторфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в качестве замещенного анилина используют 2,4,6-трифторанилин (0.735 г, 5 ммоль), добавляют катализатор MAO/SiO2 (0.15 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 65 ч. Получают чистый 2,6-бис[1-(2,4,6-трифторфенилимино)этил]пиридин, выход 0.488 г (1.16 ммоль, 58%).

Пример 11.

Синтез 2,6-бис[1-(3-хлорфенилимино)этил]пиридина

2,6-бис[1-(3-хлорфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в колбу помещают навеску 2,6-диацетилпиридина (0.245 г, 1.5 ммоль), 3-хлоранилин (0.4 мл, 3.75 ммоль) и добавляют катализатор MAO/SiO2 (0.045 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 65 ч. Получают чистый 2,6-бис[1-(3-хлорфенилимино)этил]пиридин, выход 0.32 г (0.84 ммоль, 56%).

Пример 12.

Синтез 2,6-бис[1-(2-бромфенилимино)этил]пиридина

2,6-бис[1-(2-бромфенилимино)этил]пиридин получают в условиях примера 1, за исключением того, что в качестве водоотнимающего средства используют молекулярные сита с размером пор 3 , в качестве замещенного анилина используют 2-броманилин (0.86 г, 5 ммоль), добавляют катализатор MAO/SiO2 (0.115 г, 9% Al вес.), термостатируют реакционную смесь при 40°С и перемешивают в течение 72 ч. Получают чистый 2,6-бис[1-(2-бромфенилимино)этил]пиридин, выход 0.685 г (1.45 ммоль, 73%).

Технический результат - упрощение способа синтеза за счет загрузки катализатора в форме порошка, повышение безопасности процесса для окружающей среды за счет использования меньшего количества органических растворителей, увеличение выхода продукта реакции по сравнению с известными методами синтеза, упрощение процедур выделения и очистки основного продукта за счет практически полного подавления побочных процессов.


Способ получения производных 2,6-бис[1-(фенилимино)этил]пиридина с электроноакцепторными заместителями
Источник поступления информации: Роспатент

Показаны записи 31-40 из 60.
20.01.2018
№218.016.1abe

Способ получения 5-гидроксиметилфурфурола и этанола из целлюлозы

Изобретение относится к биотехнологии и гидролизной промышленности. Предложен способ получения этанола и 5-гидроксиметилфурфурола из целлюлозы. Способ включает каталитическую гидролиз-дегидратацию механически активированной микроскопической целлюлозы с использованием модифицированного...
Тип: Изобретение
Номер охранного документа: 0002636004
Дата охранного документа: 17.11.2017
13.02.2018
№218.016.21b1

Установка каталитической ароматизации легкого углеводородного сырья и способ ее работы

Изобретение относится к установке каталитической ароматизации легкого углеводородного сырья, включающей расположенные на линии подачи сырья по меньшей мере один блок каталитической переработки и блок выделения концентрата ароматических углеводородов с линией подачи циркулирующего газа в блок...
Тип: Изобретение
Номер охранного документа: 0002641692
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.2630

Реактор для проведения реакций гидролиза

Изобретение относится к химическим реакторам для проведения реакций гидролиза в гидротермальных условиях, например, для гидролиза неорганических солей, получения оксидов и гидроксидов путем гидролиза солей металлов. Реактор для проведения процессов гидролиза в гидротермальных условиях включает...
Тип: Изобретение
Номер охранного документа: 0002643976
Дата охранного документа: 06.02.2018
04.04.2018
№218.016.2f40

Катализатор гидроочистки сырья гидрокрекинга

Изобретение относится к катализаторам предварительной гидроочистки нефтяных фракций с температурой начала кипения выше 360°С для получения сырья с низким содержанием серы и азота, которое далее перерабатывается в процессе гидрокрекинга. Описан катализатор, содержащий, мас.%: [Ni(HO)][MoO(CHO)]...
Тип: Изобретение
Номер охранного документа: 0002644563
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.30ee

Способ подготовки попутных нефтяных газов селективной паровой конверсией

Изобретение относится к способам подготовки углеводородных газов паровой конверсией и может быть применено, например, для подготовки попутного нефтяного газа к использованию или трубопроводному транспорту в нефтяной и газовой промышленности. Способ подготовки попутных нефтяных газов селективной...
Тип: Изобретение
Номер охранного документа: 0002644890
Дата охранного документа: 14.02.2018
04.04.2018
№218.016.3438

Способ получения системы доставки фрагментов нуклеиновых кислот в клетки млекопитающих

44 Изобретение относится к области молекулярной биологии, биоорганической химии и медицины. Предложен способ получения системы доставки фрагментов нуклеиновых кислот (ФНК) в клетки млекопитающих. Осуществляют синтез основы для доставки ФНК. В качестве основы используют аминозамещенный силанол...
Тип: Изобретение
Номер охранного документа: 0002646113
Дата охранного документа: 01.03.2018
10.05.2018
№218.016.3bf5

Способ сжигания топлива

Изобретение относится к способам сжигания газообразных жидких и твердых топлив для нагрева газов, жидкостей и твердых тел, а также обезвреживания газообразных, жидких и твердых отходов. Способ сжигания топлива в псевдоожиженном слое заключается в подаче воздуха через газораспределительную...
Тип: Изобретение
Номер охранного документа: 0002647744
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3c84

Катализатор, способ его приготовления и способ очистки отходящих газов от оксидов азота

Изобретение относится к катализатору, способу его приготовления и способу очистки отходящих газовых выбросов от оксидов азота в окислительных условиях в присутствии аммиака. Катализатор для очистки отходящих газов от оксидов азота методом селективного каталитического восстановления аммиаком в...
Тип: Изобретение
Номер охранного документа: 0002647847
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.43c0

Способ сжигания топлива

Изобретение относится к области энергетики, способам сжигания топлива в псевдоожиженном слое твердого теплоносителя для нагрева газов, жидкостей и твердых тел, а также обезвреживания газообразных, жидких и твердых отходов. Способ сжигания топлива в псевдоожиженном слое дисперсных частиц...
Тип: Изобретение
Номер охранного документа: 0002649729
Дата охранного документа: 04.04.2018
10.05.2018
№218.016.441b

Способ гидроочистки сырья гидрокрекинга

Изобретение относится к способам получения сырья гидрокрекинга. Описан способ гидроочистки, заключающийся в превращении нефтяных фракций, имеющих температуру начала кипения выше 360°С, содержащих до 3,5% серы и до 0,2% азота при температуре 360-420°С, давлении 9,0-20,0 МПа, расходе сырья...
Тип: Изобретение
Номер охранного документа: 0002649384
Дата охранного документа: 05.04.2018
Показаны записи 1-3 из 3.
25.08.2017
№217.015.9aa7

Способ получения композита на основе полиолефинов и углеродных нанотрубок

Изобретение относится к способу введения углеродных нанотрубок в полиолефины для получения нанокомпозитов, используемых при получении различных изделий из полимерных композиционных материалов. Способ получения композита на основе полиолефинов и углеродных нанотрубок - УНТ с повышенным...
Тип: Изобретение
Номер охранного документа: 0002610071
Дата охранного документа: 07.02.2017
02.10.2019
№219.017.cc46

Катализатор димеризации этилена в бутены и способ его приготовления

Настоящее изобретение относится к катализатору селективной димеризации этилена на основе комплексных соединений никеля(II), отличающийся тем, что в качестве лигандов он содержит производные 2-иминопиридинов, а именно: производное 2-[(фенилимино)метил]-6-метилпиридина либо...
Тип: Изобретение
Номер охранного документа: 0002701511
Дата охранного документа: 27.09.2019
29.11.2019
№219.017.e766

Способ получения бутенов в процессе димеризации этилена

Предложен способ получения бутенов в процессе селективной димеризации этилена с использованием высокоактивных двухкомпонентных катализаторов на основе комплексных соединений никеля(II). Процесс осуществляют в присутствии гомогенных катализаторов - комплексных соединений никеля(II), а именно...
Тип: Изобретение
Номер охранного документа: 0002707299
Дата охранного документа: 26.11.2019
+ добавить свой РИД