×
01.11.2018
218.016.9924

СИСТЕМА ГИДРОРАЗРЫВА ПЛАСТА В НЕОБСАЖЕННОМ СТВОЛЕ СКВАЖИНЫ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002671373
Дата охранного документа
30.10.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Гидроразрыв пласта проводят в необсаженном стволе скважины без изоляции кольцевого пространства. Кольцевое пространство перекрывается телескопическими элементами, размещенными за изолирующими клапанами. Данную группу телескопических элементов можно раскрывать и выдвигать телескопические элементы для перекрывания кольцевого пространства и герметичного соединения с пластом. Жидкость гидроразрыва пласта под давлением можно перекачивать через телескопически выдвинутые трубопроводы и проводить гидроразрыв необходимого участка пласта. В подходящем пласте не требуется цементирование для поддержания целостности скважины. Телескопические элементы могут, если необходимо, иметь фильтры. В нормальных условиях природные свойства пласта таковы, что устройство гравийного фильтра также не требуется. Эксплуатационную колонну можно спускать в колонну с телескопическими устройствами, и продуктивные участки пласта можно эксплуатировать через избирательно открытые телескопические элементы. Технический результат заключается в повышении эффективности гидравлического разрыва пласта. 17 з.п. ф-лы, 8 ил.
Реферат Свернуть Развернуть

Изобретение относится к гидроразрыву пласта и, более конкретно, способу гидроразрыва пласта в необсаженном стволе скважины без внешних изоляторов зон.

Имеется две обычно используемые методики гидроразрыва в способе заканчивания. На фиг.1 показан ствол 10 скважины c колонной 12 обсадных труб, с цементированием 14 в окружающем кольцевом пространстве 16. Цементирование обычно выполняют через цементировочный башмак (не показано) на нижнем конце колонны 12 обсадных труб. Во многих случаях, если предусмотрено дополнительное бурение, башмак разбуривают и проводят дополнительное бурение. После цементирования колонны 12 и затвердевания цемента 14 спускают и отстреливают перфоратор (не показано) для выполнения перфорационных каналов 18, в которых затем проводят гидроразрыв жидкостью, подаваемой с поверхности, затем следует спуск и установка пакера или мостовой пробки 20 для изоляции перфорационных каналов 18. После этого процесс повторяют, при этом за перфорированием следует гидроразрыв пласта, за которым следует установка еще одного пакера или мостовой пробки над вновь выполненными и обработанными гидроразрывом перфорационными каналами. Последовательно, пары 22, 24; 26, 28; 30, 32 и 34 перфорационных каналов и пакеров/мостовых пробок создают на месте работы в скважине 10, проводя работу от забоя 36 скважины к поверхности 38.

Изменение данной схемы направлено на исключение перфорации с установкой в стенку обсадной колонны телескопически выдвигающихся элементов, которые можно избирательно выдвигать через цемент до затвердевания цемента для создания трубопроводов, проходящих в пласт, и установления соединения через зацементированное кольцевое пространство. Использование выдвигающихся элементов вместо перфорирования показано в USP 4475729. Когда элементы выдвинуты, кольцевое пространство цементируют и снабженные фильтрами трубопроводы открывают для обеспечения прохода через выдвигающиеся элементы, так что в данном конкретном случае скважину можно использовать для нагнетания. Хотя использование выдвигающихся элементов исключает перфорирование, стоимость цементирования, плюс стоимость времени работы буровой установки может становиться очень высокой, и в некоторых местах усложнение снабжения буровой площадки может увеличивать стоимость.

В более новом решении используют внешние пакеры, набухающие в скважинных текучих средах, или с иной установкой, такие как пакеры 40, 42, 44, 46 и 48 на фиг.2, установленные снаружи на колонне 49 для изоляции зон 50, 52, 54 и 56, снабженные клапанами, обычно скользящими муфтами 58, 60, 62 и 64 в соответствующих зонах. Колонна 49 подвешена на обсадной колонне 66 и имеет заглушку на нижнем конце 67. Используя различные известные устройства для сдвига муфт, их можно открывать в любом необходимом порядке так, что кольцевые пространства 68, 70, 72 и 74 можно изолировать между двумя пакерами так, что жидкость гидроразрыва под давлением можно подавать в кольцевое пространство и передавать давление в окружающий пласт. Данный способ гидроразрыва пласта включает в себя соответствующее размещение пакеров при сборке колонны и задержки, связанные с обеспечением набухания пакеров для изоляции зон. Имеются также потенциальные неопределенности по достижению уплотнения всеми пакерами для надежного направления давления, нагнетаемого в колонне, в назначенные зоны при подаче давления в колонну 49 на поверхности. Некоторые примеры набухающих пакеров даны в USP 7441596, 7392841 и 7387158.

Необходимо создание методики, и такая методика создана способом настоящего изобретения, для точного приложения давления гидроразрыва к нужному пласту с исключением дорогостоящих процедур, таких как цементирование и пакерование кольцевого пространства, там, где пластовые характеристики позволяют сохранить целостность ствола скважины. Давление в колонне передается через выдвигающиеся напорные трубопроводы, проходящие в пласт. Данные группы напорных трубопроводов соединены с изолирующим устройством так, что только группа или группы в зоне, представляющей интерес и подлежащей разрыву, избирательно открываются в заданное время. Давление, нагнетаемое через выдвинутые напорные трубопроводы, идет прямо в пласт мимо кольцевого пространства. Данные и другие признаки настоящего изобретения должны стать лучше понятными специалистам в данной области техники из описания предпочтительного варианта осуществления и прилагаемой фиг. 3 с пониманием того, что объем изобретения определен объемом прилагаемой формулой изобретения и соответствующими эквивалентами.

Гидроразрыв пласта выполняют в необсаженном стволе скважины без изоляции кольцевого пространства. Кольцевое пространство перекрывается телескопическими элементами, размещенными за изолирующими клапанами. Данную группу телескопических элементов можно открывать и выдвигать телескопические элементы для перекрывания кольцевого пространства и герметичного соединения с пластом. Жидкость гидроразрыва под давлением можно перекачивать через телескопически выдвинутые трубопроводы и обрабатывать гидроразрывом необходимые участки пласта. В подходящем пласте не требуется цементирования для поддержания целостности скважины. Телескопические элементы могут, если необходимо, иметь фильтры. В нормальных условиях природные свойства пласта также не требуют установки гравийного фильтра. Эксплуатационную колонну можно спускать в колонну с телескопическими устройствами, и продуктивные участки пласта можно эксплуатировать через избирательно открытые телескопические элементы.

Сущность изобретения поясняется на чертежах, где:

на фиг. 1 показана известная система цементирования обсадной колонны и последовательно выполненные перфорирование и установка внутренних пакеров или мостовых пробок для изоляции зон после перфорирования и гидроразрыва.

На фиг. 2 показана другая известная система с использованием внешних набухающих пакеров в кольцевом пространстве для изоляции доступных зон с клапанами со скользящими муфтами.

На фиг. 3 показан способ настоящего изобретения с использованием выдвигающихся в пласт трубопроводов с избирательным доступом через клапан, так что пласт можно обрабатывать гидроразрывом напрямую из колонны, обходя кольцевое пространство необсаженного ствола скважины.

На фиг. 4 показан детальный вид телескопических трубопроводов в выдвинутом положении.

На фиг. 5a и 5b показано выдвижение с одновременным открытием телескопического элемента скользящей муфтой для создания доступа в пласт.

На фиг. 6a и 6b показан спуск колонны с выдвигающимися устройствами для выдвижения телескопических трубопроводов в пласт.

На фиг. 3 показан необсаженный ствол 100 скважины ниже обсадной колонны 102. Хвостовик 104 подвешен на обсадной колонне 102 с использованием подвески 106 хвостовика. Компоновка 108 гидроразрыва пласта является однотипной с другими компоновками, показанными на фиг. 3, и специалисту в данной области техники должно быть ясно, что можно использовать любое число компоновок 108, в большой степени аналогичных, но с возможностью внесения изменений для приведения в действие в необходимой последовательности, как описано ниже. Как показано на фиг. 4, каждая компоновка 108 имеет закрывающее устройство, предпочтительно, скользящую муфту 110, выполненную, если необходимо с возможностью приведения в действие шаром 114, сбрасываемым в гнездо 112. В одном варианте осуществления гнезда и шары, сбрасываемые в них, все имеют отличающиеся размеры, и муфты можно закрывать последовательно снизу вверх, сбрасывая первым шар меньшего размера в гнездо меньшего размера на нижней компоновке 108 и затем последовательно сбрасывая шары увеличивающихся размеров, встающие в другие гнезда для закрытия клапанов 110.

Комплект 116 телескопических элементов, избирательно перекрываемых клапаном 110, может иметь любое число или комплектацию или размер элементов, необходимых в варианте применения для прогнозируемых расходов гидроразрыва пласта или последующей добычи. Телескопическая компоновка 116 показана с втянутыми элементами на фиг. 3, а телескопические элементы 116' показаны на фиг.3 выдвинутыми и прижатыми к стенке ствола 100 скважины. В предпочтительном варианте осуществления все телескопические компоновки 116 первоначально закрыты пробками 118 так, что внутреннее давление в хвостовике 104 должно создавать телескопическое выдвижение элементов в каждой компоновке, таких как 120 и 122, или, вместе с тем, может потребоваться много перемещающихся относительно друг друга секций в зависимости от ширины кольцевого зазора, которую нужно пройти для такого прохода ведущими концами 124 в пласт, чтобы направленное давление попадало в пласт, а не в кольцевое пространство 126 необсаженного ствола. Пробки 118 выполнены для обеспечения выдвижения всех компоновок 116 в ответ на открытие клапанов 110 на каждой компоновке 116 и приложение давления внутри хвостовика 104. После выдвижения всех телескопических компоновок пробки 118 в каждой из них можно удалить. Удаление можно выполнить множеством способов, одним способом является использование пробок, которые могут исчезать, таких как пробки из алюминиевого сплава, которые должны растворяться введенной текучей средой. Каждая или некоторые из компоновок могут иметь фильтрующий материал 128 в сквозном трубопроводе, образующемся после выдвижения и после удаления пробки 118.

Клапаны 110, связанные с каждой телескопической компоновкой 116, можно также приводить в действие инструментом сдвига муфт в любом нужном порядке. Каждый клапан может иметь индивидуальный профиль для сцепления со сдвигающим инструментом в тех же или отдельных рейсах для выполнения гидроразрыва пласта с одним клапаном 110 и соответствующим телескопическим комплектом 116, подготовленными для гидроразрыва пласта или с несколькими подготовленными клапанами 110 и телескопическими комплектами 116.

Как альтернативу, для закрытия клапана 110 можно использовать поворотные гнезда под шары, принимающие шары заданного диаметра и обеспечивающие приведение в действие надлежащего клапана 110 и прохождение шара после перемещения гнезда, где такое перемещение создает другое гнездо в другом клапане 110 для приема другого предмета, имеющего диаметр, одинаковый с первым сброшенным предметом, и приведения в действие другого клапана 110. Другие методики можно использовать для обеспечения приведения в действие нескольких клапанов в одном рейсе в скважину. Например, поворотный сдвигающий инструмент можно спускать в скважину и приводить в действие так, что при подъеме из скважины или спуске в скважину им можно открывать или закрывать один или несколько клапанов, либо используя индивидуальные профили сцепления на каждом клапане, предпочтительно являющемся скользящей муфтой, или даже используя общие сдвигающие профили при известном местоположении каждого клапана, и приводить в действие сдвигающий инструмент при достижении конкретного клапана, требующего сдвига.

Альтернативно, можно использовать разрывные диски, подобранные для последовательного разрыва при различных уровнях давления, при этом телескопические трубопроводы должны открываться при заданном давлении и в конкретной последовательности. Вместе с тем, когда разрывной диск разрывается, открывая подачу через группу телескопических трубопроводов, данные трубопроводы нельзя вновь закрыть, когда другой комплект дисков разрывается для доступа в другую зону. Со скользящими муфтами весь имеющийся объем и давление можно направлять в заданную группу трубопроводов, но с разрывными дисками имеется меньше возможностей обработки конкретной зоны гидроразрывом в изоляции.

Способ настоящего изобретения обеспечивает гидроразрыв пласта в необсаженном стволе скважины с направлением жидкости гидроразрыва в надлежащий пласт, гидроразрыв может проходить в необсаженном стволе скважины без кольцевых барьеров и без цементирования хвостовика. Такaя методика в комбинации с клапанами на большинстве или всех телескопических компоновках обеспечивает точное выполнение гидроразрыва пласта в нужных местах и в необходимом порядке. После гидроразрыва пласта некоторые или все клапаны можно закрывать либо для закрытия всей скважины, в которой гидроразрыв пласта проведен, или для избирательноного оставления открытыми одного или нескольких мест для добычи через хвостовик в эксплуатационную колонну (не показано). Получающийся в результате способ экономит затраты на цементирование и на барьеры в кольцевом пространстве и обеспечивает нацеливание всего процесса на гидроразрыв пласта за меньшее время, чем известные способы, такие как описаны выше и показаны на фиг. 1 и 2.

Хотя телескопические компоновки рассмотрены в качестве предпочтительного варианта осуществления, предусматриваются другие конструктивные исполнения, которые могут эффективно перекрывать зазор окружающего кольцевого пространства для соединения с пластом способом, облегчающим передачу давления и уменьшающим потерю давления или текучей среды в окружающее кольцевое пространство. Специалисту в данной области техники должно быть ясно, что данный способ относится к скважинам в консолидированных пластах, где обрушение ствола скважины не является существенной проблемой.

Одной альтернативой гидравлического выдвижения компоновок 116 является их механическое выдвижение. Как показано позицией 130 на фиг. 5, телескопические блоки втянуты в обсадную колонну, так что не выступают за ее внешний диаметр 132 при установке в скважину. Когда скользящая муфта 134 сдвигается, как показано на фиг. 5b, при сбросе шара 138 в гнездо 140, скользящая муфта 134, имеющая конусный участок 136, прикладывает механическое усилие на телескопические блоки 130 и выдвигает их в соединение с пластом, показанным позицией 131. Хотя скользящая муфта является предпочтительной, любые механические устройства можно использовать для механического выдвижения телескопических блоков. В одном примере, показанном на фиг. 6a и 6b, используют спуск колонны 142 с вставными толкателями 144 для выталкивания наружу телескопических блоков, как показано на фиг. 6a и 6b. Толкатели могут выдвигаться внутренним давлением или другим средством. В данном случае закрывающее устройство используют, если необходимо.

Альтернативой выталкиванию компоновок 116 давлением с использованием телескопических компонентов является применение расширения хвостовика 104 для достижения компоновками окружающего пласта. Такое решение может представлять комбинацию телескопических компоновок с расширением трубчатого изделия. Расширение хвостовика может иметь калибрующую оправку, перемещение которой выдвигает компоновки, находящиеся внутри хвостовика 104 во время спуска в скважину. Альтернативно, расширение можно выполнять с помощью давления, которое не только расширяет хвостовик, но также выдвигает компоновки 116.

Если необходимо, ведущие концы передних телескопических секций 122 можно выполнить твердыми и заостренными, например со вставками из карбида или алмаза, помогающими проходу в пласт, а также уплотнению к нему. Ведущий конец может быть выполнен зубчатым или иметь другие рисунки с остриями, помогающими проходу в пласт.

Приведенное выше описание показывает предпочтительный вариант осуществления, и специалист в данной области техники может выполнить много его модификаций без отхода от объема изобретения и его эквивалентов, определенных формулой изобретения.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 41.
10.10.2014
№216.012.fb27

Способ обработки ствола скважины, имеющего кольцевую изолирующую систему

Изобретение относится к использованию текучей среды для обработки скважины. Способ повышения продуктивности формации, в которую проходит скважина, посредством введения в скважину текучей среды для обработки скважины, содержащей негидратированную борированную галактоманнановую камедь - НБГК, при...
Тип: Изобретение
Номер охранного документа: 0002530141
Дата охранного документа: 10.10.2014
10.07.2015
№216.013.5f6d

Составы для обработки скважин с замедленным высвобождением для использования в жидкостях для обработки скважин

Изобретение относится к составам для обработки скважин для применения в нефтедобывающей области. Состав для обработки скважины, содержащий реагент для обработки скважины, адсорбированный на водонерастворимом адсорбенте, где состав получают осаждением реагента для обработки скважины из жидкости,...
Тип: Изобретение
Номер охранного документа: 0002555970
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6496

Термофильная маннаногидролаза и содержащие ее жидкости разрыва

Изобретение относится к способу разрыва подземной формации, имеющей температуру в скважине, составляющую свыше 160°F, включающий введение в формацию водной гелеобразующей жидкости разрыва с рН от 9,5 до 11, включающей гидратируемый полимер, выбранный из группы, состоящей из гуаровой камеди и из...
Тип: Изобретение
Номер охранного документа: 0002557297
Дата охранного документа: 20.07.2015
20.01.2016
№216.013.a115

Состоящее из сегментов складывающееся гнездо шара, обеспечивающее извлечение шара

Изобретение относится к выборочно приводимым в действие барьерам для трубной колонны на подземной площадке. Технический результат заключается в предотвращении деформации отверстия гнезда шара, тем самым не допуская зависания шара. Выборочно приводимый в действие барьер для трубной колонны на...
Тип: Изобретение
Номер охранного документа: 0002572879
Дата охранного документа: 20.01.2016
20.03.2016
№216.014.cb09

Система и способ позиционирования компоновки низа бурильной колонны в горизонтальной скважине

Группа изобретений относится к системам заканчивания ствола и способам обработки нескольких зон горизонтальной скважины. Технический результат заключается в увеличении производительности при перемещении и определении местоположения колонны низа бурильной колонны в обозначенной зоне...
Тип: Изобретение
Номер охранного документа: 0002577566
Дата охранного документа: 20.03.2016
27.02.2016
№216.014.cd67

Устройство и способы предоставления информации об одной или более подземных переменных

Изобретение относится к области геофизики и может быть использовано для получения информации о подземной формации. В некоторых вариантах осуществления способ получения информации о по меньшей мере одной переменной, существующей при целевом местоположении в стволе подземной скважины и/или...
Тип: Изобретение
Номер охранного документа: 0002575940
Дата охранного документа: 27.02.2016
20.08.2016
№216.015.4a9b

Способы и системы обработки скважины

Изобретение относится к способам и системам обработки скважин. Способ обработки скважины, включающий перемещение растворителя от первого источника жидкости к первому насосу, перемещение смачивающей жидкости от второго источника жидкости ко второму насосу, подачу смачивающей жидкости через...
Тип: Изобретение
Номер охранного документа: 0002594915
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.5313

Высокопроницаемый расклинивающий агент для гидроразрыва

Изобретение относится к получению высокопроницаемой набивки расклинивающего агента при гидроразрыве. Способ увеличения проницаемости набивки из расклинивающего агента внутри разрыва, включающий: введение в, по меньшей мере, часть разрыва в подземном пласте смеси множества расклинивающих агентов...
Тип: Изобретение
Номер охранного документа: 0002594029
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.556d

Уплотнительные устройства для герметизации поверхностей стенки ствола скважины и способы их установки в стволе скважины

Группа изобретений относится к уплотнительным устройствам и способам для герметизации зоны нарушения в стволе скважины. Техническим результатом является изоляция участков ствола скважины. Уплотнительные устройства содержат трубный элемент, расширяющийся элемент и деформирующийся уплотнительный...
Тип: Изобретение
Номер охранного документа: 0002593397
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.5d87

Текучая среда для обслуживания скважин

Изобретение относится к текучей среде для обслуживания скважин газовых, геотермальных, угольнопластовых метановых или нефтяных месторождений. Способ обслуживания ствола скважины включает: смешивание агента для снижения трения, анионогенного поверхностно-активного вещества, катионогенного...
Тип: Изобретение
Номер охранного документа: 0002590914
Дата охранного документа: 10.07.2016
Показаны записи 1-6 из 6.
13.01.2017
№217.015.7265

Разрушающийся металлический конус, способ его изготовления и применение

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Элемент в форме конической призмы включает в себя металлический композит, который имеет сотовую наноматрицу, содержащую материал наноматрицы с металлическими свойствами; металлическую...
Тип: Изобретение
Номер охранного документа: 0002598103
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7330

Разрушающаяся трубная заанкеривающая система и способ ее применения

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Разрушающаяся трубная заанкеривающая система содержит элемент в форме конической призмы; втулку по меньшей мере с одной первой поверхностью, радиально изменяющейся в ответ на продольное...
Тип: Изобретение
Номер охранного документа: 0002598106
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8ccd

Способ и система гидравлического разрыва пласта

Группа изобретений относится к горному делу и может быть применена для гидравлического разрыва пласта. Гидравлический разрыв пласта проводится в зоне необсаженного ствола скважины без изоляции кольцевого пространства. Кольцевое пространство перекрывается выдвигающимися элементами,...
Тип: Изобретение
Номер охранного документа: 0002604600
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.e942

Разрушаемое и приспосабливаемое металлическое уплотнение и способ его изготовления

Группа изобретений относится к уплотнению и к способу временного уплотнения элемента. Техническим результатом является исключение удаления компонентов или инструментов из ствола скважины. Уплотнение содержит металлический композит. Металлический композит включает в себя сотовую наноматрицу,...
Тип: Изобретение
Номер охранного документа: 0002627779
Дата охранного документа: 11.08.2017
09.05.2019
№219.017.49c2

Система управления трансмиссией транспортного средства

Изобретение относится к транспортным средствам. Система управления трансмиссией транспортного средства, содержащего двигатель и соединенную с ним трансмиссию, содержит переключатели передач на рулевом колесе и контроллер, содержащий исполняемые инструкции, хранимые в долговременной памяти, для...
Тип: Изобретение
Номер охранного документа: 0002686977
Дата охранного документа: 06.05.2019
29.06.2019
№219.017.a0b7

Приемник sps с регулируемой линейностью

Изобретение относится к приемникам спутниковой системы позиционирования (SPS). Технический результат: улучшение функциональных характеристик с низким потреблением мощности. Приемником SPS можно управлять в одном из множества режимов, которые могут быть связаны с разными установками тока...
Тип: Изобретение
Номер охранного документа: 0002433529
Дата охранного документа: 10.11.2011
+ добавить свой РИД