×
27.10.2018
218.016.9701

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПОЧВЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области спектроскопических измерений и касается способа определения тяжелых металлов в почве. При осуществлении способа исследуемый образец почвы наносят слоем толщиной 5-10 микрон на атомно-гладкую поверхность кристалла меди, отжигают при температуре 150°С в течение 5 минут и помещают в вакуумную камеру с давлением остаточных газов на уровне 10 миллибар. Далее наводят на объект исследований электронный луч диаметром 3-4 мм с энергией 3 килоэлектроновольта и по образовавшейся эмиссии Оже-электронов, регистрируемых спектрометром, определяют количество и качество химических элементов. Технический результат заключается в повышении точности измерений и обеспечении возможности определения всех элементов от лития до плутония в одном измерении без использования реперных образцов или образцов сравнения.

Изобретение относится к физике твердого тела, в частности к мессбауэрской спектроскопии, и может найти применение при оценке почв, загрязненных тяжелыми металлами.

Известен способ, при котором определяют тяжелые металлы с помощью химических анализов (патент №2192300, опубликован 10.11.2002, МПК: B01D 15/08, D01J 20/22, G01N 30/48).

Известный способ достаточно трудоемкий, требующий значительное количество реактивов, и с его помощью определяют только несколько элементов при определенной кислотности раствора.

Известен также оптический способ контроля качества монокристаллических ферритов-гранатов (патент №2157576, опубликован 10.10.2000, МПК: H01L 21/66, Бюл. №28).

Однако данный способ не дает возможности количественных измерений концентрации ионов Pb в монокристаллических ферритах-гранатах. Причем определяют только элемент свинец.

Наиболее близким техническим решением является способ определения свинца в монокристаллических ферритах-гранатах, используя при этом спектроскопию (патент №2206143, опубликован 10.04.2003, Бюл. №16, МПК: H01L 21/66), а также способ спектроскопического определения тяжелых металлов в почве (Статья: Giusti L. Heavy metals in urban soils of Bristol (UK). Initial screening for contaminated land. // Journal of Soils and Sediments. 2011. 11: 1385-1398).

Известный способ - прототип малоэффективный, поскольку при его использовании определяют только один элемент, используя при этом математические расчеты и определение свинца в соответствие с формулой. Для каждого элемента необходимо наличие стандартного образца. При этом в каждом измерении можно определить только один образец. Время, необходимое для определения 5-10 элементов, может достигать нескольких дней. Набор таких стандартных образцов ограничен, порядка 10-15. Подготовка каких-то особых стандартных образцов - процедура дорогостоящая. Срок годности стандартных образцов ограничен, они нуждаются в постоянном обновлении.

Технический результат - повышение эффективности способа, определение всех химических элементов, содержащихся в почве в одном измерении.

Техническое решение заявленного объекта достигается тем, что исследуемый образец почвы наносится слоем толщиной 5-10 микрон на атомно-гладкую поверхность кристалла меди, отжигается при температуре 150°С в течение 5 минут, помещается в вакуумную камеру с давлением остаточных газов на уровне 10-8 миллибар, с последующим наведением на объект исследований электронного луча диаметром 3-4 мм с энергией 3 кэВ (килоэлектроновольт) и по образовавшейся эмиссии Оже-электронов, регистрируемых спектрометром, определяют количество и качество химического элемента.

Способ осуществляется следующим образом

Медь является хорошим электрическим проводником и, при толщине слоя почвы на ее поверхность (5-10 мк) облучающие образец электроны проходят через слой почвы и попадают на медь, тем самым замыкая электрическую цепь спектрометра. Медь имеет кристаллографическую ориентацию 111. Это соответствует наиболее плотной атомной упаковке, что существенно для достижения большей адгезии и равномерности наносимого слоя почвы, а также удобно для проведения Оже-измерений. Обоснование выбранных параметров толщины слоя почвы на поверхности медной пластины объясняется тем, что при меньшей толщине, в силу особенностей электронной Оже-спектроскопии (ЭОС), снижается чувствительность к регистрации разных химических элементов. При большей толщине слоя будет происходить электрическая зарядка образца, поскольку почва (в данном случае высушенная) является недостаточно хорошим проводником электрического тока. А поскольку в методе электронной спектроскопии образец облучается электронным лучом, то на плохо проводящей поверхности скапливается электрический заряд неконтролируемой величины, что существенно снижает достоверность измерений. Эти параметры являются оптимальными и определены экспериментальным путем. Сам метод Оже-спектроскопии основан на эффекте Оже, открытом в 1925 г. французским ученым Пьером Оже, и носит его имя.

При отжиге почвы в обычных условиях для полного удаления влаги обычно требуется температура 150°С и время отжига 5 минут. Влагу необходимо удалить для того, чтоб образец, т.е. кристалл меди с нанесенным на ее поверхность слоем почвы, для измерения мог быть установлен в сверхвысоковакуумную металлическую камеру (в среднем, сфера из нержавеющей стали диаметром порядка одного метра), в которой и реализуется метод электронной Оже-спектроскопии. Для того чтобы метод ЭОС работал, нужно обеспечить вакуум на уровне давления остаточных газов не выше 10-8 миллибар. В противном случае первичный электронный луч метода ЭОС не сможет двигаться, рассеиваясь на молекулах газов в камере (по аналогии с телевизионным кинескопом, из которого удален воздух для того, чтобы там мог двигаться электронный луч, создавая изображения на экране). Поэтому содержимое (воздух) камеры откачивается специальными насосами, которые удаляют из нее воздух. Если в такую высоковакуумную камеру поместить не высушенную (влажную) почву, то вода в вакууме мгновенно испарится, тем самым существенно повысив давление, и нарушит работу электронного Оже-спектрометра.

Параметры способа объясняются следующим образом. Энергия первичного луча должна составлять 3 кэВ, поскольку именно при этой энергии в силу особенностей ЭОС, имеет место оптимальная чувствительность ко всем элементам Периодической таблицы. Если взять большую энергию первичных электронов, чувствительность к легким элементам (где-то до титана) снижается, при меньшей энергии - наоборот, снижается чувствительность к более тяжелым элементам. При 3 кэВ элементная зависимость чувствительности метода более равномерна по всем элементам.

В принципе диаметр электронного луча может быть сфокусирован до одного микрона и это считается большим преимуществом для многих приложений, то есть при этом достигается высокая пространственная локальность анализа. Но луч может быть расфокусирован, в среднем, до диаметра 1 см. В данном способе высокая локальность первичного пучка электронов в 1 микрон - недостаточна, поскольку можно упустить элементы, находящиеся за пределами анализа в один микрон. В связи с этим необходим больший диаметр электронного пучка. Экспериментальным путем установлено, что наиболее оптимальным для данного способа является диаметр первичного электронного пучка диаметром 3-4 см. При значении диаметра выше 4 см чувствительность метода существенно снижается

ПРИМЕР 1. Образец почвы объемом 0,5 см3 помещали в муфельную печь при температуре 1500°С и выдерживали в течение 5 минут. После охлаждения до 25°С образец с помощью очищенной фарфоровой палочки помещали на поверхность кристалла меди (111) в виде слоя толщиной 5 микрон. Подготовленный образец помещали в предварительную камеру электронного Оже-спектрометра и после ее откачивания до давления остаточных газов на уровне 10-6 мбар через шлюз перемещали в измерительную часть спектрометра с давлением остаточных газов на уровне 10-8-10-9 мбар. С помощью перемещающего штока образец перемещали на держатель, после чего устанавливали в фокус электронного спектрометра. При воздействии первичным электронным лучом с энергией 3 кэВ и силой тока 0,1 микроампер, происходит возбуждение Оже-электронов и регистрация Оже-спектров соответствующих элементам: Cd, Sb, Mn, V, Pb, As, Hg, Cu, Ni, Zn, Cr в концентрациях от 1 до 500 мг/кг.

ПРИМЕР 2. Образец почвы объемом 0,5 см3 помещается в муфельную печь, нагревается до температуры 150°С, выдерживается при этой температуре в течение 5 мин, после чего нагрев отключается. После охлаждения образца до 25°С образец с помощью очищенной в ультразвуковой ванне фарфоровой палочки наносится на поверхность кристалла Cu (111) в виде слоя толщиной 5 микрон. Подготовленный таким образом образец помещается в предварительную камеру электронного Оже-спектрометра и после ее откачивания до давления остаточных газов на уровне 10-6 мбар через шлюз перемещается в измерительную часть спектрометра с давлением остаточных газов на уровне 10-8 мбар. С помощью перемещающего штока образец помещается на держатель, после чего происходит его установка в фокус электронного спектрометра. Путем воздействия на образец первичным электронным лучом с энергией 3 кэВ и силой тока 0,1 микроампер, происходит возбуждение Оже-электронов и регистрация Оже-спектров в интервале энергий 25-2000 электронвольт, что позволяет определить наличие всех элементов с порядковыми номерами от 3 атомных единиц массы (литий) до 94 атомных единиц массы (плутоний) в концентрациях от 1 до 500 мг/кг (миллиграмм на килограмм).

Способ позволяет зарегистрировать наличие всех элементов от лития до плутония, в одном измерении с точностью по содержанию в пределах 0,01-0,02%.

Способ не требует наличия реперных образцов или образцов сравнения по каждому химическому элементу.

Поскольку измерение проводится в сверхвысоком вакууме, внешние факторы неконтролируемого воздействия окружающей среды на результат измерения сведены к минимуму.

Способ определения тяжелых металлов в почве, включающий оценку по содержанию химических элементов методом спектроскопии, отличающийся тем, что исследуемый образец почвы наносят слоем толщиной 5-10 микрон на атомно-гладкую поверхность кристалла меди, отжигают при температуре 150°С в течение 5 минут, помещают в вакуумную камеру с давлением остаточных газов на уровне 10 миллибар, с последующим наведением на объект исследований электронного луча диаметром 3-4 мм с энергией 3 килоэлектроновольта и по образовавшейся эмиссии Оже- электронов, регистрируемых спектрометром, определяют количество и качество химического элемента.
Источник поступления информации: Роспатент

Показаны записи 11-16 из 16.
09.03.2020
№220.018.0ab6

Способ лечения хронического генерализованного пародонтита легкой степени тяжести

Изобретение относится к области медицины, в частности к стоматологии, и может быть использовано для лечения хронического генерализованного пародонтита легкой степени тяжести. Предлагаемый способ включает прием внутрь средства растительного происхождения в виде фитококтейля на основе комплексных...
Тип: Изобретение
Номер охранного документа: 0002716162
Дата охранного документа: 06.03.2020
12.04.2023
№223.018.4321

Способ определения индекса загрязнения почвы населенных мест по состоянию жизненности почвенных беспозвоночных животных

Способ определения индекса загрязнения почвы населенных мест по состоянию жизненности почвенных беспозвоночных животных относится к экологическому мониторингу почвы территории населенных мест. Цель изобретения - снижение затрат и повышение достоверности результатов оценки загрязнения почвы в...
Тип: Изобретение
Номер охранного документа: 0002793461
Дата охранного документа: 04.04.2023
21.04.2023
№223.018.50d5

Способ повышения продуктивности кукурузы

Изобретение относится к области биотехнологии. Изобретение представляет собой способ повышения продуктивности кукурузы, включающий внекорневую обработку растений, отличающийся тем, что обработку растений кукурузы проводят двукратно в фазу ВВСН 65-71 цветения, налива зерна раствором фермента...
Тип: Изобретение
Номер охранного документа: 0002794153
Дата охранного документа: 12.04.2023
10.05.2023
№223.018.5385

Способ коррекции нарушений микрогемодинамики при экспериментальном метаболическом синдроме

Изобретение относится к медицине, а именно, к экспериментальной эндокринологии, и может быть использовано для коррекции нарушений микроциркуляции при экспериментальном метаболическом синдроме. Воздействуют на животных электромагнитным излучением миллиметрового диапазона. При этом воздействие...
Тип: Изобретение
Номер охранного документа: 0002795213
Дата охранного документа: 02.05.2023
26.05.2023
№223.018.701f

Способ получения наноразмерной пленки гамма-alo(111)

Изобретение относится к нанотехнологиям. Порошок оксида алюминия в условиях сверхвысокого вакуума нагревают до температуры 2700-2800°С с образованием при испарении потока частиц AlO и (AlO), которые осаждают на поверхность чистых кристаллографически ориентированных кристаллических металлических...
Тип: Изобретение
Номер охранного документа: 0002796218
Дата охранного документа: 18.05.2023
01.06.2023
№223.018.74d8

Способ возделывания озимой тритикале

Изобретение относится к области сельского хозяйства, а именно к растениеводству, и может быть использовано для получения корма в зеленом конвейере на склоновых землях. Способ включает подготовку почвы и осенний посев кормовых зерновых. Высевают полосами поперек склона смеси озимой тритикале с...
Тип: Изобретение
Номер охранного документа: 0002792243
Дата охранного документа: 21.03.2023
Показаны записи 151-160 из 174.
08.12.2019
№219.017.eb17

Способ стимуляции роста и развития растений

Изобретение относится к сельскому хозяйству. Предложен способ стимуляции роста и развития растений, включающий замачивание семян водным раствором растительного происхождения, их экстракцию. Семена замачивают в водном растворе измельченной шелухи рыжика озимого, которую в количестве 1 кг...
Тип: Изобретение
Номер охранного документа: 0002708325
Дата охранного документа: 05.12.2019
08.12.2019
№219.017.eb84

Способ мульчирования овощных культур

Изобретение относится к области сельского хозяйства, в частности к овощеводству, и может найти применение при возделывании овощных культур. Способ мульчирования овощных культур, включающий сидерацию, мульчирование растений по всходам, отличающийся тем, что осенью высевают однолетний клевер...
Тип: Изобретение
Номер охранного документа: 0002708132
Дата охранного документа: 04.12.2019
14.12.2019
№219.017.edae

Способ возделывания рыжика озимого на семена

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает размещение посева широкорядно и внесение в качестве удобрений отхода спиртового производства спиртовой барды, смешанной с минеральной серосодержащей водой в соотношении 1:1. Высевают широкорядно...
Тип: Изобретение
Номер охранного документа: 0002708914
Дата охранного документа: 12.12.2019
25.12.2019
№219.017.f235

Способ отбора высокопродуктивных селекционных образцов озимых зерновых культур

Изобретение относится к области биотехнологии. Сущность изобретения заключается в том, что высокопродуктивные селекционные образцы выделяют по максимальному показателю индекса продуктивности растений (ИПР), который определяется в фазу полного созревания по длине колоса, числу зерен в колосе и...
Тип: Изобретение
Номер охранного документа: 0002710056
Дата охранного документа: 24.12.2019
25.01.2020
№220.017.f9de

Способ экологизации кормления перепелов

Изобретение относится к ветеринарии, в частности к способу повышения продуктивности перепелов и снижения их заболеваемости за счет кормления экологически безопасными продуктами. Способ экологизации кормления перепелов заключается в использовании растительности альпийских лугов горных...
Тип: Изобретение
Номер охранного документа: 0002711933
Дата охранного документа: 23.01.2020
04.02.2020
№220.017.fd27

Штамм бактерий paenibacillus jamilae вкпм-13067, используемый как фунгицид и стимулятор клубеньковых бактерий

Изобретение относится к области биотехнологии. Предложен штамм бактерий Раеnibacillus jamilae ВКПМ В-13067, используемый как фунгицид и стимулятор клубеньковых бактерий. Штамм обладает высокими свойствами повышать азотфиксирующую способность возделываемых бобовых культур с одновременным...
Тип: Изобретение
Номер охранного документа: 0002712745
Дата охранного документа: 30.01.2020
07.03.2020
№220.018.0a08

Способ защиты атмосферного воздуха на автодорогах

Изобретение относится к области экологии, в частности к очистке воздуха от токсических веществ, и может быть использовано в обеспечении благоприятного микроклимата на автодорогах. Способ включающий посадку лесополос - аккумуляторов токсических элементов. Между лесопосадками участки покрывают...
Тип: Изобретение
Номер охранного документа: 0002716111
Дата охранного документа: 05.03.2020
21.03.2020
№220.018.0e18

Способ приготовления фитоинсектицида

Изобретение относится к области сельского хозяйства, в частности, к безопасным методам борьбы с вредителями деревьев урбанизированной территории. Способ приготовления фитоинсектицида заключается в том, что молодые ветки тополя замачивают в сероводородной воде в соотношении 1:5 и выдерживают 3-4...
Тип: Изобретение
Номер охранного документа: 0002717295
Дата охранного документа: 19.03.2020
15.05.2020
№220.018.1d10

Способ определения химического участия активатора хемилюминесценции в липопероксидазной реакции

Изобретение относится к медицине и может быть использовано для определения химического участия активатора хемилюминесценции в липопероксидазной реакции. Для этого изучают липопероксидазную реакцию и регистрируют несколько спектров оптической плотности при разных концентрациях изучаемого...
Тип: Изобретение
Номер охранного документа: 0002720807
Дата охранного документа: 13.05.2020
05.06.2020
№220.018.2456

Способ повышения всхожести мелкосеменных сельскохозяйственных культур

Изобретение относится к области сельского хозяйства, в частности к обработке семян перед посевом. Способ повышения всхожести мелкосеменных сельскохозяйственных культур заключается в смешивании мелких семян с маслом из зародышей семян озимой пшеницы в соотношении 20:1. После чего обволакивают их...
Тип: Изобретение
Номер охранного документа: 0002722756
Дата охранного документа: 03.06.2020
+ добавить свой РИД