×
23.10.2018
218.016.9540

Результат интеллектуальной деятельности: Способ работы двухрежимного реактивного двигателя

Вид РИД

Изобретение

Аннотация: Изобретение относится к ракетной технике, а именно к двухрежимным реактивным двигателям. Способ работы двухрежимного реактивного двигателя включает работу на первом режиме при повышенном давлении и работу на втором режиме при пониженном давлении в камере сгорания. При этом цилиндрическую часть корпуса камеры сгорания оснащают наружной коаксиальной оболочкой и обеспечивают ее неподвижное положение относительно корпуса путем временного скрепления с ним в краевых зонах оболочки на первом режиме работы двигателя. Затем осуществляют сбрасывание оболочки с сохранением ее целостности при переходе на второй режим работы. Изобретение позволяет повысить баллистическую эффективность летательного аппарата за счет снижения пассивного веса двигателя путем создания условий, позволяющих уменьшить толщину стенки камеры сгорания на втором режиме работы. 3 ил.

Изобретение относится к ракетной технике, а именно к двухрежимным реактивным двигателям.

Двухрежимный реактивный двигатель - двигатель, имеющий два режима работы: первый режим - при повышенном давлении и второй режим при пониженном давлении в камере сгорания.

Двухрежимные реактивные двигатели могут быть, в частности, ракетными двигателями твердого топлива (РДТТ), ракетно-прямоточными двигателями (РПД) интегральной схемы, у которых заряд стартового двигателя не имеет собственного корпуса и размещен в камере сгорания маршевого двигателя, в которой дожигаются продукты неполного сгорания заряда последнего. В указанных типах двигателей стенка камеры сгорания - суть стенка корпуса двигателя. Ее толщина остается постоянной на обоих режимах работы двигателя.

Известны способы работы двухрежимных РДТТ, приведенные в описаниях к патентам РФ №№2379539 (опубл. 20.01.2010 г.), 2435979 (опубл. 10.12.2011 г.), каждый из которых включает работу на первом режиме при повышенном давлении и работу на втором режиме при пониженном давлении в камере сгорания.

Недостатком известных способов работы двухрежимного РДТТ является низкая баллистическая эффективность летательного аппарата (ракеты), в конструкции которого использован такой двигатель, обусловленная избыточной толщиной стенки камеры сгорания при работе двигателя на втором режиме, что увеличивает его пассивный вес.

Известен способ работы двухрежимного РПД (Б.В. Орлов, Г.Ю. Мазинг, А.Л. Рейдель, М.Н. Степанов, Ю.И. Топчеев Основы проектирования ракетно-прямоточных двигателей для беспилотных летательных аппаратов - М.: Машиностроение, 1967, с. 14-15), включающий работу на первом режиме при повышенном давлении и работу на втором режиме при пониженном давлении в камере сгорания.

Недостатком известного способа работы двухрежимного РПД является низкая баллистическая эффективность летательного аппарата (ракеты), в конструкции которого использован такой двигатель, обусловленная избыточной толщиной стенки камеры сгорания при работе двигателя на втором режиме, что увеличивает его пассивный вес.

Наиболее близким к заявляемому техническому решению является способ работы двухрежимного РДТТ, приведенный в описании к патенту РФ №2362036 (опубл. 20.09.2009 г.), включающий работу на первом режиме при повышенном давлении и работу на втором режиме при пониженном давлении в камере сгорания.

Недостатком прототипа является низкая баллистическая эффективность летательного аппарата (ракеты), в конструкции которого использован такой двигатель, обусловленная избыточной толщиной стенки камеры сгорания при работе двигателя на втором режиме, что увеличивает его пассивный вес.

На втором режиме работы двигателя давление газов в камере сгорания существенно ниже, чем на первом. При этом толщина стенки камеры сгорания остается неизменной, определенной из условия работы двигателя на первом режиме при повышенном давлении.

Задачей предлагаемого технического решения является создание способа работы двухрежимного реактивного двигателя с расширенными эксплуатационными возможностями, пригодного как для РДТТ, так и РПД, обеспечивающего повышение баллистической эффективности летательного аппарата за счет снижения пассивного веса двигателя путем создания условий, позволяющих уменьшить толщину стенки камеры сгорания на втором режиме работы.

Поставленная задача решается заявляемым способом работы двухрежимного реактивного двигателя, включающим работу на первом режиме при повышенном давлении и работу на втором режиме при пониженном давлении в камере сгорания. Особенность заключается в том, что цилиндрическую часть корпуса камеры сгорания оснащают наружной коаксиальной оболочкой, обеспечивают ее неподвижное положение относительно корпуса путем временного скрепления с ним в краевых зонах оболочки на первом режиме работы двигателя, и осуществляют сбрасывание оболочки с сохранением ее целостности при переходе на второй режим работы.

Проведенный анализ уровня техники показывает, что заявляемый способ работы двухрежимного реактивного двигателя отличается от прототипа и аналогов возможностью оптимизации толщины стенки камеры сгорания в процессе работы двигателя за счет совместной работы корпуса и коаксиальной оболочки, обеспечивающих работоспособность двигателя на первом режиме работы, и наличия операции сбрасывания коаксиальной оболочки при переходе на второй режим работы.

В уровне техники отсутствует способ работы двухрежимного реактивного двигателя, в котором бы имело место предложенное сочетание существенных признаков, но именно такое сочетание обусловило решение поставленной задачи.

Предложенное техническое решение иллюстрируется графическими изображениями.

На фиг. 1 представлен продольный разрез двухрежимного РДТТ с канально-щелевым зарядом. На первом режиме работы двигателя полностью выгорает щелевая зона заряда и частично канальная, что создает высокое давление газов в камере сгорания, а на втором режиме работы выгорает оставшаяся часть канальной зоны заряда, что создает более низкое давление в камере сгорания, вследствие уменьшения поверхности горения.

На фиг. 2 представлен продольный разрез двухрежимного РПД интегральной схемы. На первом режиме работы двигателя выгорает заряд стартового двигателя, что создает высокое давление в камере сгорания, а на втором режиме работы в камере сгорания дожигаются продукты сгорания заряда маршевого двигателя, что создает более низкое давление.

На фиг. 3 представлен вид А на фиг. 2.

Двухрежимный РДТТ (фиг. 1) содержит корпус 1, камеру сгорания 2, коаксиальную оболочку 3, сопло 4. Внутренняя поверхность оболочки 2 снабжена антифрикционным покрытием 5. В корпусе 1 размещен заряд, имеющий канальную 6 и щелевую 7 зоны. Оболочка 2 временно скреплена с корпусом 1. Оболочка 2 может быть оснащена выдвижными аэродинамическими поверхностями 8.

Заявляемый способ работы двухрежимного реактивного двигателя применительно к РДДТ осуществляют следующим образом.

Коаксиальную оболочку 3, выполненную по размеру всей цилиндрической части корпуса 1, временно крепят к нему в краевых зонах (например, приклеивают или скрепляют с помощью срезных болтов, которые условно не показаны).

При работе на первом режиме под действием высокого давления корпус 1 за счет радиальной деформации прижимается к оболочке 3. При этом неподвижное положение оболочки 3 в полете обеспечивается как силой прижатия к ней корпуса 1, так и прочностью ее временного скрепления с корпусом 1, которую определяют расчетным путем в зависимости от силы аэродинамического напора, соответствующей конкретной скорости полета в конце первого режима работы двигателя.

При переходе двигателя на второй режим работы при пониженном давлении деформация корпуса 1 уменьшится, он отойдет от оболочки 3, нарушится временное крепление к нему оболочки 3, которая будет сброшена силой аэродинамического напора. Этому будет способствовать наличие антифрикционного покрытия 5 на внутренней поверхности оболочки 3, а также, в частности, выдвигаемые в расчетный период времени по команде системы управления над поверхностью оболочки 3 аэродинамические поверхности 8 (щитки).

Двухрежимный РПД (фиг. 2) содержит корпус 1, камеру сгорания 2, коаксиальную оболочку 3, сопло 4. Внутренняя поверхность оболочки 3 снабжена антифрикционным покрытием 5. В корпусе 1 размещены стартовый твердотопливный интегральный двигатель 9 со сбрасываемым соплом 10 и маршевый двигатель 11. Сбрасываемое сопло 10 оснащено механической связью (фиг. 3) с оболочкой 3, например, в виде отдельных силовых элементов 12 (в частности, металлические уголки).

Заявляемый способ работы двухрежимного реактивного двигателя применительно к РПД осуществляют следующим образом.

Коаксиальную оболочку 3, выполненную с длиной, соответствующей длине стартового двигателя 9, временно крепят к корпусу 1 в краевых зонах оболочки 3 (например, приклеивают или скрепляют с помощью срезных болтов, которые условно не показаны).

При работе на первом режиме под действием высокого давления корпус 1 за счет радиальной деформации прижимается к оболочке 3. При этом неподвижное положение оболочки 3 обеспечивается как силой прижатия к ней корпуса, так и прочностью ее временного скрепления с корпусом 1, которую определяют расчетным путем в зависимости от силы аэродинамического напора, соответствующей конкретной скорости полета в конце первого режима работы двигателя.

После окончания работы стартового двигателя 9 сгорает его переднее днище 13 и его остатки выбрасываются через сопло 10, летательный аппарат переходит на второй режим работы при пониженном давлении. При этом деформация корпуса 1 уменьшится, он отойдет от оболочки 3, нарушится временное крепление к нему оболочки 3. Сила, действующая на сопло 10 стартового двигателя 9, при сбрасывании сопла 10 за счет механической связи 12 будет передаваться на оболочку 3 и, в дополнение к силе аэродинамического напора, будет способствовать сбрасыванию оболочки 3 с корпуса 1. Этому же будет способствовать наличие антифрикционного покрытия 5 на внутренней поверхности оболочки 3, а также, в частности, выдвигаемые в расчетный период времени по команде системы управления над поверхностью оболочки 3 аэродинамические поверхности 8 (щитки).

Пример 1.

Для двухрежимного РДТТ (фиг. 1) с канально щелевым зарядом массой 3,5 т на первом режиме работы давление в камере сгорания 2 составляет 8,8-9,0 МПа, на втором - 3,0-3,5 МПа. Длительность первого режима составляет 34 с, второго - 65 с. Диаметр корпуса с оболочкой - 0,8 м, длина цилиндрической части - 2,5 м.

При этом, при использовании способа согласно изобретению общая масса корпуса 1 и оболочки 3 на первом режиме работы двигателя составляет 850 кг, что соответствует постоянной массе корпуса на всех режимах работы двигателя, конструкция которого не предусматривает наличие оболочки, а общая толщина стенки корпуса 1 и оболочки 3 на первом режиме составляет 0,02 м, что соответствует постоянной толщине стенки камеры сгорания (корпуса) на всех режимах работы в конструкции двигателя, не предусматривающего наличие оболочки.

Для обеспечения прочности, устойчивости и предотвращения деформации корпуса 1 при работе на втором режиме при использовании сбрасываемой оболочки 3 достаточно толщины стенки камеры сгорания (корпуса) 1 равной 0,01 м.

После сбрасывания оболочки 3 пассивный вес двигателя на втором режиме работы уменьшится на 250 кг.

Усилие аэродинамического напора, действующего на оболочку 3 для рассматриваемого РДТТ, рассчитывают по формуле:

R1=CfS1ρV2/2,

где:

R1 - усилие аэродинамического напора, действующее на оболочку, н;

Cf - полный коэффициент сопротивления трения;

S1=6,28 м2 - площадь цилиндрической поверхности оболочки;

ρ=1,17 кг/м3 - плотность воздуха;

V - скорость полета летательного аппарата (ракеты), м/с.

В конце первого режима работы двигателя скорость ракеты достигнет значения 3М (1020 м/с).

При такой скорости полета Cf=0,0025 [Шлихтинг Г. Теория пограничного слоя - М.: Наука, 1969, с 664].

Подставив значения величин в формулу для R1 получим:

R1=0,0025⋅6,28 м2⋅1,18 кг/м2⋅10202/2 м22=9637 н

Прочность временного скрепления оболочки 3 с корпусом 1 должна быть рассчитана исходя из этого значения.

Пример 2.

Для двухрежимного РПД (фиг. 2) со стартовым интегральным твердотопливным двигателем 9 с размерами корпуса 1, приведенными в примере 1 и с такой же скоростью полета ракеты (3М) в конце первого режима работы двигателя при переходе на второй режим работы давление Рк в камере сгорания 2 составляет 0,5 МПа (5⋅105 н/м2).

Наружный диаметр D сопла 10 стартового двигателя 9 составляет 0,55 м, а диаметр d его критического сечения - 0,21 м.

Площадь S2 поперечного сечения сопла 10, на которую действует давление Рк, составляет:

S2=π(D2-d2)/4 м2=3,14(0,552-0,212)/4 м2=0,203 м2

Под действием давления Рк в камере сгорания 2 на втором режиме работы РПД на сбрасываемое сопло 10 действует усилие:

R2=Pк⋅S2=5⋅105 н/м2⋅0,203 м2=101500 н

Это усилие, за счет механической связи 12 между соплом 10 и оболочкой 3, добавится к усилию аэродинамического напора R1, действующего на оболочку 3 при ее сбрасывании с корпуса 1.

Антифрикционное покрытие 5 применительно и к РДТТ и к РПД выполняют, например, из листового фторопласта (ГОСТ 24222-80) или путем напыления расплавленного фторопласта. Параметры аэродинамических поверхностей 8 и необходимость их применения определяются особенностями конкретного двухрежимного реактивного двигателя.

Предлагаемое техническое решение практически реализуемо. Использование заявляемого способа работы двухрежимного реактивного двигателя особенно перспективно для двигателей последних ступеней беспилотных летательных аппаратов (ракет).

Способ работы двухрежимного реактивного двигателя, включающий работу на первом режиме при повышенном давлении и работу на втором режиме при пониженном давлении в камере сгорания, отличающийся тем, что цилиндрическую часть корпуса камеры сгорания оснащают наружной коаксиальной оболочкой, обеспечивают ее неподвижное положение относительно корпуса путем временного скрепления с ним в краевых зонах оболочки на первом режиме работы двигателя, и осуществляют сбрасывание оболочки с сохранением ее целостности при переходе на второй режим работы.
Способ работы двухрежимного реактивного двигателя
Способ работы двухрежимного реактивного двигателя
Способ работы двухрежимного реактивного двигателя
Источник поступления информации: Роспатент

Показаны записи 21-30 из 46.
25.08.2017
№217.015.be57

Смеситель компонентов смесевого ракетного твердого топлива

Изобретение относится к ракетной технике, а именно к устройствам для приготовления смесевого ракетного твердого топлива (СРТТ). Смеситель компонентов СРТТ содержит вращающийся корпус с днищами, загрузочный и разгрузочный люки, линию вакуумирования. В верхней части корпуса размещен уплотненный...
Тип: Изобретение
Номер охранного документа: 0002616913
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.d182

Комбинированный прямоточный воздушно-реактивный двигатель

Комбинированный прямоточный воздушно-реактивный двигатель содержит маршевый и скрепленный с ним разгонный двигатель, воздухозаборное устройство, оснащенное заглушками, сопло и камеру сгорания. В корпусе камеры сгорания размещен элемент, центрирующий разгонный двигатель. Корпус камеры сгорания...
Тип: Изобретение
Номер охранного документа: 0002621588
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d1c8

Способ изготовления смесевого ракетного твердого топлива

Изобретение относится к способу изготовления смесевого ракетного твердого топлива (СРТТ). СРТТ готовят смешением связующего с металлическим горючим, порошкообразными компонентами, технологическими добавками и отвердителем с последующим сливом топливной массы в корпус. Отвердитель, смешанный с...
Тип: Изобретение
Номер охранного документа: 0002621789
Дата охранного документа: 07.06.2017
25.08.2017
№217.015.d205

Способ изготовления зарядов смесевого ракетного твердого топлива

Изобретение относится к ракетной технике, а именно к способам изготовления крупногабаритных зарядов смесевого ракетного твердого топлива методом свободного литья. Изготовление зарядов смесевого ракетного твердого топлива осуществляют методом свободного литья топливной смеси из смесителя через...
Тип: Изобретение
Номер охранного документа: 0002621800
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d564

Биологически активная добавка к пище

Изобретение относится к пищевой и фармацевтической промышленности, где может быть использовано для создания биологически активных лечебно-профилактических композиций, содержащих сухие и жидкие экстракты лекарственных растений, функциональных продуктов питания, повышающих иммунобиологическую...
Тип: Изобретение
Номер охранного документа: 0002623152
Дата охранного документа: 22.06.2017
20.01.2018
№218.016.17c4

Ракетный двигатель на твердом топливе

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых ступеней ракетных двигателей на твердом топливе. Двигатель содержит корпус с днищами, скрепленный с корпусом канальный заряд, снабженный компенсатором поверхности горения в виде кольцевой щели,...
Тип: Изобретение
Номер охранного документа: 0002635427
Дата охранного документа: 13.11.2017
13.02.2018
№218.016.21f0

Способ получения катализатора и способ его применения для многократного использования в промышленном процессе двухстадийного гидрогенолиза при производстве 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазатетрацикло[5,5,0,0,0]додекана

Изобретение относится к области органической химии, а именно к разработке высокоэффективных методов синтеза полициклического нитрамина 2,4,6,8,10,12-гексанитро-2,4,6,8,10,12-гексаазатетрацикло [5,5,0,0,0]додекана (гексанитрогексаазаизовюрцитан, ГАВ, CL-20). Предлагается способ получения и...
Тип: Изобретение
Номер охранного документа: 0002641694
Дата охранного документа: 22.01.2018
13.02.2018
№218.016.22ba

Полимерная композиция для нанесения на эндопротезы для реконструктивно-восстановительной хирургии

Изобретение относится к области медицины, а именно к полимерным композициям для нанесения на эндопротезы в виде нерассасывающихся хирургических нитей и нерассасывающихся хирургических сеток для реконструктивно-восстановительной хирургии. Полимерная композиция для нанесения на эндопротезы...
Тип: Изобретение
Номер охранного документа: 0002642303
Дата охранного документа: 24.01.2018
10.05.2018
№218.016.4cb1

Способ получения 2-(2,6-дихлорфениламино)-2-имидазолина гидрохлорида

Изобретение относится к органической химии, а именно к способу получения 2-(2,6-дихлорфениламино)-2-имидазолина гидрохлорида, который включает конденсацию в среде хлорокиси фосфора 2,6-дихлоранилина с 1-ацетилимидазолидоном-2, полученным посредством ацетилирования этиленмочевины ангидридом...
Тип: Изобретение
Номер охранного документа: 0002652125
Дата охранного документа: 25.04.2018
29.05.2018
№218.016.5641

Способ определения скорости горения заряда ракетного двигателя твердого топлива

Изобретение относится к области ракетной и измерительной техники и может быть использовано при огневых стендовых испытаниях ракетных двигателей твердого топлива (РДТТ). С помощью датчиков измеряют величину виброускорения, преобразуют полученные данные в вейвлет-коэффициенты по алгоритму...
Тип: Изобретение
Номер охранного документа: 0002654554
Дата охранного документа: 21.05.2018
Показаны записи 21-30 из 55.
10.03.2016
№216.014.c0f6

Ракетный двигатель на твердом топливе

Изобретение относится к ракетной технике и может быть использовано в конструкциях маршевых двигателей на твердом топливе для верхних ступеней, которые характеризуются малым отношением длины к диаметру. Ракетный двигатель содержит корпус с днищами и скрепленный с корпусом канальный заряд,...
Тип: Изобретение
Номер охранного документа: 0002576411
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c766

Способ контроля качества адгезионного соединения

Изобретение относится к области ракетной и измерительной техники и может быть использовано при выходном контроле на предприятии-изготовителе корпуса ракетного двигателя и входном контроле на предприятии-изготовителе твердотопливного заряда. Сущность: осуществляют зондирование контролируемой...
Тип: Изобретение
Номер охранного документа: 0002578659
Дата охранного документа: 27.03.2016
27.03.2016
№216.014.c76d

Способ определения скорости горения твердого ракетного топлива

Изобретение относится к ракетной технике и может быть использовано для определения скорости горения твердого ракетного топлива при стационарном и переменном давлении в камере сгорания. Способ включает подготовку, монтаж и сжигание цилиндрического образца твердого ракетного топлива в камере...
Тип: Изобретение
Номер охранного документа: 0002578787
Дата охранного документа: 27.03.2016
20.05.2016
№216.015.3e10

Фильтрующий материал

Изобретение относится к прикладной химии, а именно к фильтрующим материалам (ФМ) на основе природного песка, предназначенным для изготовления фильтров очистки высокотемпературных газов от мелкодисперсных частиц и шлаковых образований в газогенераторах на твердых топливах. Предложенный ФМ...
Тип: Изобретение
Номер охранного документа: 0002584206
Дата охранного документа: 20.05.2016
20.08.2016
№216.015.4f07

Неуправляемый реактивный снаряд

Изобретение относится к области вооружения, а именно к реактивным боеприпасам. Активно - реактивный снаряд стартует из пусковой трубы, заглушенной с донной части. Снаряд содержит ракетную часть с канальным маршевым зарядом, воспламенителем и сопловым блоком, газогенератор с дополнительным...
Тип: Изобретение
Номер охранного документа: 0002595070
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6c49

Способ изготовления зарядов смесевого ракетного твердого топлива

Изобретение относится к производству ракетной техники, а именно к изготовлению зарядов смесевого ракетного твердого топлива (СРТТ). Способ изготовления заряда смесевого ракетного твердого топлива включает последовательное механическое перемешивание окислителя и смеси горюче-связующего на основе...
Тип: Изобретение
Номер охранного документа: 0002592599
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.83b7

Твердое горючее

Изобретение относится к прикладной химии, а именно к твердым горючим (ТГ) для прямоточных воздушно-реактивных двигателей (ПВРД) активно-реактивных снарядов (АРС). Твердое горючее содержит органическое горючее-связующее, ультрадисперсный порошок высокоэнергетического металла и карборан и/или...
Тип: Изобретение
Номер охранного документа: 0002601760
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8d22

Способ ликвидации крупногабаритных зарядов твердого ракетного топлива

Изобретение относится к области ликвидации крупногабаритных зарядов твердого ракетного топлива на стенде, а именно к способам сжигания канальных зарядов твердого ракетного топлива непосредственно в корпусах ракетных двигателей. Способ ликвидации крупногабаритных зарядов, скрепленных с корпусом,...
Тип: Изобретение
Номер охранного документа: 0002604612
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9c71

Способ пассивирования тонкого порошка алюминия

Изобретение относится к пассивированию тонкого порошка алюминия. Способ включает термическую обработку и последующее охлаждение порошка, при этом порошок алюминия нагревают до температуры пассивации 200-350°С и ведут термическую обработку порошка алюминия в воздушной среде с влажностью 8-12 г/м...
Тип: Изобретение
Номер охранного документа: 0002610580
Дата охранного документа: 13.02.2017
25.08.2017
№217.015.a2a3

Способ изготовления заряда смесевого ракетного твердого топлива

Изобретение относится к изготовлению зарядов смесевого ракетного топлива, а именно к технологии формования зарядов методом свободного литья. Формование заряда осуществляют методом свободного литья топливной массы в корпус, установленный в барокамере. При этом барокамеру или каналообразующую...
Тип: Изобретение
Номер охранного документа: 0002607223
Дата охранного документа: 10.01.2017
+ добавить свой РИД