×
19.10.2018
218.016.941a

Результат интеллектуальной деятельности: СПОСОБ БРИКЕТИРОВАНИЯ УГЛЕРОДНЫХ ВОССТАНОВИТЕЛЕЙ

Вид РИД

Изобретение

№ охранного документа
0002669940
Дата охранного документа
17.10.2018
Аннотация: Изобретение описывает способ брикетирования углеродных восстановителей, преимущественно буроугольного или каменного полукокса (кокса), включающий смешение связующих материалов с полукоксом (коксом), прессование и сушку брикетов, отличающийся тем, что в качестве связующих материалов используют комбинированное связующее, содержащее высокотемпературный и низкотемпературный компоненты, причем сначала смешивают углеродный восстановитель с высокотемпературным компонентом, затем добавляют низкотемпературный компонент, при этом в качестве высокотемпературного компонента используют кубовые продукты переработки нефти в виде смолы пиролиза или каталитического газойля в количестве 25-30 масс. %, а в качестве низкотемпературного компонента используют органические вещества в виде раствора клейковины или мелассы в количестве 70-75 масс. %. Технический результат заключается в повышении механической и термической прочности брикета. 4 з.п. ф-лы, 4 пр., 3 табл.

Изобретение относится к области технологии подготовки и производства брикетов, применяемых в качестве восстановителя для получения технического кремния и других металлургических процессов.

Известно техническое решение «Способ приготовления формованного материала для производства кремния» (патент RU 2151738, С01В 33/025, опубл. 27.06.2000 г.), направленное на переработку кремния, сущность которого заключается в способе получения одного из компонентов шихты. При этом шихта для производства кремния включает кварцит, древесную щепу, нефтяной кокс, древесный уголь, мелкодисперсный кремнезем и щелочное связующее, содержит мелкодисперсный кремнезем в виде пыли электрофильтров газоочистки производства кремния при следующем соотношении компонентов, масс. %: кварцит 35-45; древесная щепа 19-26; нефтяной кокс 11-15; древесный уголь 7-10; пыль электрофильтров газоочистки производства кремния 4,5-11; щелочное связующее 0,5-1,3, причем часть кремнезем-углеродсодержащей шихты представлена в виде предварительно сформованного материала в количестве 10-30% от массы шихты. Приготовление ее компонента - формованного материала включает смешение мелкодисперсного кремнеземсодержащего материала с углеродсодержащим восстановителем и щелочным связующим, формование и сушку, в качестве кремнеземсодержащего материала используют пыль электрофильтров газоочистки производства кремния, восстановителя - нефтяной кокс, на формование подают шихту следующего состава, масс. %: нефтяной кокс 55-70, пыль электрофильтров газоочистки производства кремния 25-50, щелочное связующее 3-5 и формуют материал крупностью 6-50 мм и сушат до влажности 6-8%, кроме того, на формование подают нефтекокс, содержащий фракцию не более 8 мм, в количестве не менее 70 масс. %, а на смешение подают 10-15%-ный водный раствор щелочи натрия. Однако в данном техническом решении из-за высокого содержания летучих компонентов в брикетах, полученных из брикетированной смеси, часть кремнийсодержащего сырья в виде тонкодисперсной фракции не участвует в технологическом процессе и уносится из шихты с дымовыми газами, что уменьшает реакционную способность углеродного восстановителя и снижает качество получаемого металлического кремния из рудного сырья.

Известен состав углебрикетной шихты, содержащий, масс. %: коксовую мелочь 34-36; древесные опилки 1,5-2,5; жидкое стекло 6,5-7,4; нефтяной битум 2,5-3,5; антрацитовую мелочь - остальное (а.с. SU 1546469, C10L 5/10, опубл. 28.02.1990 г.).

Недостатком такого известного состава является наличие нефтяного битума, требующего нагрева перед смешением до температуры 220-250°С и пропарки приготовленной брикетной массы острым паром с температурой 210°С, что значительно усложняет процесс брикетирования, делает его энергоемким. Все это, с учетом использования дорогостоящего жидкого стекла (до 7,4 масс. %), что повышает себестоимость брикетов.

Известен угольный брикет, обладающий повышенной прочностью, а также способ его изготовления (патент RU 2224007, C10L 5/02, опубл. 12.12.2001 г.). Брикет, обладающий повышенной начальной прочностью и состоящий из 100 вес. ч. угольной мелочи, 1-5 вес. ч. негашеной извести и 7-15 вес. ч. мелассы. Брикет имеет сопротивление дробимости не ниже 70% и интенсивность пылеобразования не более 20% и пригоден для применения в плавильно-восстановительном процессе получения железа. В брикете угольная мелочь содержит от 6 до 15 вес. % влаги. В брикете негашеная известь содержит частицы размерами не более 1 мм, причем доля частиц размерами не более 0,3 мм составляет не менее 50% по весу. Способ изготовления таких брикетов включает в себя операции: смешивания 1-5 вес. ч. негашеной извести со 100 вес. ч. угольной мелочи и выдерживания смеси; смешивания 7-15 вес. ч. мелассы с выдержанной смесью и их перемешивания и прямого формирования перемешанной смеси с целью получения брикетов. Способ, при котором угольная мелочь содержит от 6 до 15 вес. % влаги. Способ, при котором негашеная известь содержит частицы размерами не более 1 мм, причем доля частиц размерами не более 0,3 мм составляет не менее 50% по весу. Способ, в котором осуществляют выдерживание от 2 мин до 2 ч для превращения негашеной извести в гашеную. Способ, в котором перемешивание осуществляют в течение 2-50 мин для повышения скорости отвердения. Способ, в котором после прямого формирования не осуществляют операцию нагрева и сушки.

Недостатком данного изобретения является то, что для достижения повышенной прочности используется связующая способность сахарата кальция, образующегося в результате химической реакции между негашеной известью и мелассой. Однако химическая реакция между негашеной известью и мелассой ограничивается коротким временем нахождения в системе. Негашеная известь быстро реагирует с влагой и с мелассой, способствует отвердению ингредиентов, что препятствует равномерному распределению негашеной извести по смеси, это снижает механическую прочность и затрудняет хранение и транспортировку.

Наиболее близким по техническому решению и достигаемому результату является способ получения углеродсодержащих брикетов (патент RU 2376342, C10L 5/12, опубл. 20.12.2009 г.). Способ брикетирования полукокса, преимущественно буроугольного, включает стадии подготовки исходных компонентов, смешивание, прессование, сушку и пропитку, предусматривает измельчение исходных компонентов на стадии подготовки до гранулометрического состава 0-7 мм и добавление гашеной извести с водоизвестковым отношением 3/1-5/1 с содержанием СаО от 5 до 15%, а после смешивания компонентов, прессования и сушки пропитку брикетов раствором жидкого стекла.

Недостатком изобретения является сложность технологического процесса изготовления брикетов и высокое содержание золы и нежелательных примесей.

Решаемой задачей изобретения является создание эффективных углеродных брикетов восстановителей на основе полукокса бурого угля, применяемых для производства кристаллического кремния и улучшающих технико-экономические показатели процесса плавки.

При этом техническим результатом является повышение механической и термической прочности брикета.

Технический результат достигается за счет того, что в способе брикетирования углеродных восстановителей, преимущественно буроугольного или каменного полукокса (кокса), включающем смешение связующих материалов с полукоксом (коксом), прессование и сушку брикетов, согласно заявляемому изобретению, в качестве связующих материалов используют комбинированное связующее, содержащее высокотемпературный и низкотемпературный компоненты, причем сначала смешивают углеродный восстановитель с высокотемпературным компонентом, затем добавляют низкотемпературный компонент, при этом в качестве высокотемпературного компонента используют кубовые продукты переработки нефти в виде смолы пиролиза или каталитического газойля в количестве 25-30 масс. %, а в качестве низкотемпературного компонента используют органические вещества в виде раствора клейковины или мелассы, в количестве 70-75 масс. %.

Заявляемое изобретение дополняют следующие уточняющие признаки. Соотношение смеси комбинированного связующего и полукокса (кокса) составляет 1:2.

Углеродный восстановитель перед смешением его со связующим может быть измельчен до гранулометрического состава до 3 мм.

Брикетирование углеродных восстановителей ведут под давлением 50-100 МПа.

Сушку брикетов осуществляют при температуре 150-170°C в течение 40-60 мин.

Отличительным признаком предлагаемого изобретения является: использование в качестве связующего для углеродных восстановителей-комбинированного связующего, состоящего из органических компонентов в виде растворов клейковины, крахмала или мелассы отвечающих за механическую прочность и кубовых остатков от переработки нефти в виде смолы пироллиза или каталитического газойля, обеспечивающих прочность брикетов при высоких температурах, с последующим брикетированием на валковом или экструдерном прессе и сушкой.

Комбинированное связующее представляет собой совокупность низкотемпературных и высокотемпературных компонентов, обеспечивающих высокую прочность брикетов во всем температурном интервале использования данного восстановителя. В первую очередь в восстановитель (например, в полукокс бурого угля) добавляется связующее, обеспечивающее прочность брикета при высокой температуре (высокотемпературный компонент). Частицы углеродного восстановителя, например, на основе бурого угля, имеют высокую удельную поверхность и пропитываются сначала высокотемпературными кубовыми остатками от переработки нефти, затем к углеродному восстановителю добавляется низкотемпературный компонент - органическое связующее, которое концентрируется на поверхности частиц углеродного восстановителя. Во время сушки полученных брикетов органическое связующее схватывается, образуя прочный каркас, что обеспечивает структурную прочность брикета при транспортировке и пересылках материала по технологическим переделам. При попадании брикета на колошник руднотермической печи, например при производстве кремния, в условиях высоких температур, органическое связующее начинает выгорать, при этом начинает снижаться механическая прочность брикета. Одновременно с этим процессом начинает нагреваться высокотемпературный компонент связующего, находящийся внутри угольных частиц полукокса. В условиях высоких температур кубовые остатки от переработки нефти начинают коксоваться, образуя мостики между частицами, не давая брикету развалиться в руднотермической печи, что обеспечивает полноту протекания процесса карботермического восстановления кремния и предотвращает вынос мелких частиц восстановителя в газоход печи и его перерасход при получении технического кремния.

В качестве низкотемпературного компонента используют органические вещества и на общую массу брикетируемого угольного восстановителя, используют сухие растворимые вещества, такие как клейковина (мука), 15-20 масс. % в водном растворе (50-60 масс. %), либо жидкие связующие материалы, такие как патока (меласса), 70-75 масс. %. Это необходимо для обеспечения достаточной механической прочности брикета при протекании процесса плавки, исключающего переизмельчение восстановителя при транспортировке его до электропечи, что способствует его сгоранию на колошнике печи и выносу с газами. В качестве высокотемпературного компонента, обеспечивающую прочность брикетов при высоких температурах, образовывая коксовый остаток, применяют кубовые продукты переработки нефти (газойль каталитический или смола пиролиза) 25-30 масс. %. Необходимая термостойкость проявляется в устойчивости к раздавливанию и истиранию восстановителя в условиях высоких температур на колошнике печи.

Способ включает смешивание углеродного восстановителя, например на основе бурого угля, который перед смешением может быть измельчен до фракционного состава до 3 мм, сначала с кубовыми остатками от переработки нефти (каталитический газойль, смола пиролиза нефти), затем добавляют органические компоненты связующего (клейковина, мука, патока, меласса), после этого шихту снова перемешивают в течение 5 минут, брикетирование проводят под давлением 50-100 МПа на валковом или экструдерном прессе, сушку ведут при температуре 150-170°C в течение 40-60 минут.

В технологии производства брикетов, применяемых в качестве углеродного восстановителя для получения технического кремния и в других металлургических процессах, важную роль играют свойства углеродного восстановителя:

Реакционная способность не менее 2,0 см3/г×с
Удельное электросопротивление не менее 1,37×103 Ом×см
Удельная площадь 120-500 м2
Механическая прочность на сжатие не менее 5,0 МПа
Термопрочность не менее 2,0 МПа

Примеры осуществления заявляемого способа.

Пример 1. Углеродистый восстановитель (полукокс бурого угля с фракционным составом до 3 мм (67-72 масс. %) сначала смешивали с каталитическим газойлем (8-10 масс. %), затем добавляли воду (15-20 масс. %) и снова перемешивали не менее 2-х минут, после этого добавляли сухую клейковину (муку 5-8 масс. %) и перемешивали в течение 5 минут.

При снижении содержания клейковины менее 5 масс. % снижается механическая прочность брикета до критичного значения. При увеличении клейковины более 8 масс. % прочность не значительно увеличивается, при этом увеличивается содержание летучих компонентов и затраты на приобретение данного связующего.

При содержании воды в составе брикетируемой смеси менее 15 масс. %, шихта, состоящая из мелкодисперсного полукокса, плохо брикетируется, при этом значительно снижается прочность брикета. При содержании воды в угольной шихте более 20 масс. % во время брикетирования выделяется избыточная влага и увеличивается время на сушку брикета.

При снижении содержания каталитического газойля менее 8 масс. % снижается термическая прочность брикета до критичного значения. При увеличении газойля более 10 масс. % термическая прочность не значительно увеличивается, при этом увеличивается содержание летучих компонентов и затраты на приобретение данного связующего. Результаты эксперимента представлены в табл. 1.

Пример 2. Углеродистый восстановитель-полукокс бурого угля измельчали до фракционного состава до 3 мм (70-77 масс. %), смешивали со смолой пиролиза (8-10 масс. %), затем добавляли мелассу (15-20 масс. %), предварительно нагретую до 70°C и перемешивали в течение 5 минут.

При снижении содержания мелассы менее 15 масс. % снижается механическая прочность брикета до критичного значения. При увеличении мелассы более 20 масс. % прочность не значительно увеличивается, при этом увеличивается содержание летучих компонентов и затраты на приобретение данного связующего.

При снижении содержания смолы пиролиза менее 8 масс. % снижается термическая прочность брикета до критичного значения. При увеличении смолы пиролиза более 10 масс. % термическая прочность не значительно увеличивается, при этом увеличивается содержание летучих компонентов и затраты на приобретение данного связующего. Результаты эксперимента представлены в табл. 2.

Пример 3. Полукокс бурого угля с фракционным составом до 3 мм (65-72 масс. %)) смешивали со смолой пиролиза (8-10 масс. %), затем добавляли мучной клейстер (20-25 масс. %) и перемешивали в течение 5 минут. Концентрация сухой муки в клейстере составляло 18%).

При снижении содержания мучного клейстера менее 20 масс. % снижается механическая прочность брикета до критичного значения. При увеличении мучного клейстера более 25 масс. % прочность не значительно увеличивается, при этом увеличивается содержание летучих компонентов и затраты на приобретение данного связующего. При снижении содержания смолы пиролиза менее 8 масс. % снижается термическая прочность брикета до критичного значения. При увеличении смолы пиролиза более 10 масс. % термическая прочность не значительно увеличивается, при этом увеличивается содержание летучих компонентов и затраты на приобретение данного связующего. Результаты эксперимента представлены в табл. 3.

Пример 4. Подготовленные по примерам 1-3 углеродные восстановители брикетировали под давлением 50-100 МПа. При давлении брикетирования менее 50 МПа снижается прочность брикета при испытании на сжатие, при давлении более 100 МПа прочность брикета повышается не значительно. Брикеты сушили при температуре 150°C-170°C в течение 40-60 минут.

При температуре сушки менее 150°C увеличивается продолжительность процесса сушки брикета. Увеличение температуры сушки более 170°C приводит к возгоранию брикета.

При снижении времени менее 40 минут процесса сушки брикета при заданных температурах снижается механическая прочность брикета. При увеличении продолжительности сушки более 60 минут механическая прочность брикета повышается не значительно.

Источник поступления информации: Роспатент

Показаны записи 171-180 из 230.
20.03.2019
№219.016.e7d0

Способ электролитического получения металлов при одновременном осаждении примесей

Изобретение относится к способу электролитического получения металлов. В электролизере, содержащем катод, анод и коллекторы растворенных в электролите примесей, выполненные в виде электродов, потенциал которых поддерживают положительнее потенциала восстановления металла и отрицательнее...
Тип: Изобретение
Номер охранного документа: 0002425177
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.ee26

Способ получения силуминов

Изобретение относится к металлургии цветных металлов, а именно к получению силуминов с использованием в качестве источника кремния аморфного микрокремнезема. Способ получения силуминов включает введение кремнийсодержащего оксидного сырья в алюминиевый расплав, перемешивание расплава и разливку...
Тип: Изобретение
Номер охранного документа: 0002683176
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.f527

Способ управления алюминиевым электролизером

Способ относится к цветной металлургии, в частности к электролитическому получению алюминия на электролизерах с предварительно обожженным анодом, и может быть применен для управления пневматическим цилиндром пробойника системы автоматической подачи глинозема в расплавленный электролит. Способ...
Тип: Изобретение
Номер охранного документа: 0002425180
Дата охранного документа: 27.07.2011
30.03.2019
№219.016.f9c7

Сплав на основе алюминия

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для получения изделий, в том числе сварных конструкций, работающих в коррозионных средах под действием высоких нагрузок, в том числе при повышенных и криогенных температурах....
Тип: Изобретение
Номер охранного документа: 0002683399
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.f9de

Способ переработки огнеупорной части отработанной футеровки алюминиевого электролизера

Изобретение относится к способу переработки огнеупорной части отработанной футеровки алюминиевых электролизеров. Способ включает измельчение футеровки в водной среде, выщелачивание, разделение жидкой и твердой фаз пульпы, обработку раствора с выделением фтористого продукта, пульпу обрабатывают...
Тип: Изобретение
Номер охранного документа: 0002683400
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.fa31

Пробойник для систем автоматизированного питания сырьем алюминиевых электролизеров

Изобретение относится к пробойнику для систем автоматизированного питания алюминиевого электролизера, имеющего балку-коллектор с нижним фланцем, выполненным с конической обечайкой. Пробойник содержит корпус, соединенный с корпусом пневмоцилиндр со штоком и узел герметизации. Узел герметизации...
Тип: Изобретение
Номер охранного документа: 0002683401
Дата охранного документа: 28.03.2019
10.04.2019
№219.017.072a

Способ производства металлов с керамическим анодом

Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере с анодом,...
Тип: Изобретение
Номер охранного документа: 0002452797
Дата охранного документа: 10.06.2012
23.04.2019
№219.017.36ad

Способ переработки угольной пены электролитического производства алюминия

Изобретение относится к способу переработки угольной пены. Способ включает обратную флотацию угольной пены водой с разделением ее на хвосты флотации и флотационный криолит, который после сгущения и фильтрации возвращают на электролитическое производство, выщелачивание хвостов флотации с...
Тип: Изобретение
Номер охранного документа: 0002685566
Дата охранного документа: 22.04.2019
23.04.2019
№219.017.36d4

Система автоматической подачи сырья в алюминиевый электролизер с обожженными анодами

Изобретение относится к системе автоматической подачи сырья в алюминиевый электролизер с обожженными анодами при поперечном или продольном их расположении в корпусе. Система содержит элементы крепления на балке-коллекторе электролизера, бункер с размещенным в нем дозатором сырья и пробойник со...
Тип: Изобретение
Номер охранного документа: 0002685615
Дата охранного документа: 22.04.2019
25.04.2019
№219.017.3ae9

Катодное устройство алюминиевого электролизера

Изобретение относится к конструкции катодного устройства электролизера для производства алюминия электролизом. Катодное устройство содержит металлический кожух, футерованный боковыми блоками, установленными на бровку, подовые углеграфитовые блоки с токоподводящими стержнями, цоколь из...
Тип: Изобретение
Номер охранного документа: 0002685821
Дата охранного документа: 23.04.2019
Показаны записи 11-20 из 20.
09.09.2018
№218.016.8537

Способ получения восстановителя для производства технического кремния

Изобретение относится к технологии производства восстановителей для металлургии. Предложен способ переработки углеродсодержащего сырья с получением восстановителя для производства технического кремния, который включает термообработку углеродсодержащего сырья в кипящем слое при температуре...
Тип: Изобретение
Номер охранного документа: 0002666420
Дата охранного документа: 07.09.2018
22.09.2018
№218.016.8932

Способ формирования футеровочных слоев в катодном кожухе алюминиевых электролизеров и устройство для его осуществления

Изобретение относится к способу и устройству для футеровки катодного устройства электролизера для получения алюминия. Способ включает укладку материалов одновременно с его распределением по поверхности цоколя и выравниванием по уровню, отсчитываемому от плоскости верхнего края кожуха катодного...
Тип: Изобретение
Номер охранного документа: 0002667270
Дата охранного документа: 18.09.2018
20.02.2019
№219.016.bf0a

Футеровка катодного устройства электролизера для производства первичного алюминия

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, и может быть использовано при монтаже катодного устройства электролизера для производства первичного алюминия. В футеровке катодной части алюминиевого электролизера, включающей подовые секции,...
Тип: Изобретение
Номер охранного документа: 0002318921
Дата охранного документа: 10.03.2008
25.04.2019
№219.017.3ae9

Катодное устройство алюминиевого электролизера

Изобретение относится к конструкции катодного устройства электролизера для производства алюминия электролизом. Катодное устройство содержит металлический кожух, футерованный боковыми блоками, установленными на бровку, подовые углеграфитовые блоки с токоподводящими стержнями, цоколь из...
Тип: Изобретение
Номер охранного документа: 0002685821
Дата охранного документа: 23.04.2019
18.05.2019
№219.017.54e8

Катодное устройство электролизера для производства алюминия

Изобретение относится к области цветной металлургии, а именно к конструкции катодного устройства электролизера для производства алюминия. Технический результат заключается в снижении теплового сопротивления между футеровкой и фланцевым листом катодного устройства электролизера. Оно включает...
Тип: Изобретение
Номер охранного документа: 0002299277
Дата охранного документа: 20.05.2007
18.05.2019
№219.017.5502

Способ футеровки катодного устройства алюминиевого электролизера

Изобретение относится к области цветной металлургии, в частности к электролитическому производству алюминия, а именно к способам футеровки катодного устройства для производства алюминия. Способ включает кладку верхних рядов цоколя из шамотных кирпичей с использованием кладочного раствора,...
Тип: Изобретение
Номер охранного документа: 0002294403
Дата охранного документа: 27.02.2007
19.06.2019
№219.017.8451

Футеровка катодной части алюминиевого электролизера

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, и может быть использовано при монтаже катодного узла алюминиевого электролизера. Техническим результатом изобретения является устранение попадания паров натрия, других компонентов фторсолей и...
Тип: Изобретение
Номер охранного документа: 0002276700
Дата охранного документа: 20.05.2006
05.02.2020
№220.017.fdc2

Углеродистый восстановитель для производства технического кремния и способ его получения

Изобретение относится к металлургии и может быть использовано для получения металлов и сплавов восстановительной плавкой в электрических рудовосстановительных печах. Углеродистый восстановитель содержит следующие компоненты, мас. %: обогащенный бурый и/или обогащенный каменный угли и/или...
Тип: Изобретение
Номер охранного документа: 0002713143
Дата охранного документа: 03.02.2020
24.07.2020
№220.018.35ed

Способ рециклинга футеровочного материала катодного устройства электролизера и устройство для его осуществления

Изобретение относится к способу рециклинга отработанного футеровочного материала электролизера для производства первичного алюминия для футеровки катодных устройств электролизеров. Способ включает вырезание технологического окна в нижней части торцевой стенки кожуха катодного устройства...
Тип: Изобретение
Номер охранного документа: 0002727377
Дата охранного документа: 21.07.2020
16.06.2023
№223.018.7c9b

Углеродный восстановитель для производства технического кремния и способ его получения

Изобретение относится к области технологии получения брикетов из углеродного материала, применяемых в качестве восстановителя для получения технического кремния и других металлургических процессов. Изобретение касается брикетированного углеродного восстановителя на основе углеродного материала...
Тип: Изобретение
Номер охранного документа: 0002740994
Дата охранного документа: 22.01.2021
+ добавить свой РИД