×
11.10.2018
218.016.906f

Результат интеллектуальной деятельности: СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике и может быть использовано при тарировке датчика микроускорений на космическом аппарате (КА) в условиях штатного космического полета. Сущность изобретения заключается в том, что в способе тарировки датчика микроускорений в условиях космического полета дополнительно воздействие на жесткозакрепленный на КА датчик микроускорений выполняют путем приложения к КА калибровочного импульса посредством включения двигательной установки КА, до и после интервала приложения калибровочного импульса измеряют параметры орбиты КА, по изменению параметров орбиты КА определяют фактическое значение приложенного к КА импульса, по показаниям датчика определяют значения микроускорений на интервале приложения калибровочного импульса, производят сравнение величины импульса, определенной по показаниям датчика на интервале приложения калибровочного импульса, с фактическим значением приложенного калибровочного импульса, определенным по изменению параметров орбиты КА, и по результатам данного сравнения осуществляют тарировку датчика. Технический результат – повышение эффективности выполнения тарировки. 1 ил.

Изобретение относится к космической технике и может быть использовано при тарировке датчика микроускорений на космическом аппарате (КА) в условиях космического полета.

Для измерения ускорений используются специальные датчики и приборы - акселерометры. В процессе их использования вследствие различных причин происходит ухудшение точности измерений и появляется необходимость установления величины погрешности прибора, т.е. его тарировка. Такая задача возникает и перед началом использования прибора.

Известен способ тарировки датчиков ускорений - акселерометров, реализуемый устройством для создания нормированных ускорений при поверке акселерометров (патент РФ RU 2393488 С1, 27.06.2010 Бюл. №18). Данный способ обеспечивает выполнение тарировки датчиков и позволяет исключить волновые процессы и получить необходимый закон изменения ускорения. Недостатком данного способа является то, что он не в полной мере обеспечивает выполнение тарировки датчиков в диапазоне ускорений, возникающих на КА в условиях космического полета.

Известен способ тарировки датчика микроускорений, основанный на сопоставлении измерений с калиброванными значениями и определении погрешностей в измерениях датчика микроускорений (патент США US 3779065 А, 18.12.1973). В данном способе тарировка датчиков осуществляется путем воздействия на датчик бойком с последующим измерением воздействия и фиксированием показаний датчика.

На КА в штатных условиях космического полета возникают обычно малые ускорения, значение которых не превышает 10-3 g, где g=9,8 м/с2 (М.Ю. Беляев. «Научные эксперименты на космических кораблях и орбитальных станциях», М.: «Машиностроение», 1984). Точное измерение таких ускорений является весьма сложной технической задачей и для ее решения используются различные датчики микроускорений (Д.М. Климов, В.И. Полежаев, М.Ю. Беляев, А.И. Иванов, С.Б. Рябуха, В.В. Сазонов. «Проблемы и перспективы использования невесомости в экспериментах на орбитальных станциях». РКТ, серия 12, выпуск 1-2, 2011). В процессе полета возникают неизбежные погрешности в показаниях используемых датчиков и появляется необходимость выполнения их тарировки.

Известен способ тарировки датчика микроускорений в космическом полете (патент РФ RU 2583882 С1, 10.05.2016 Бюл. №13 - прототип), согласно которому фиксируют в связанной с КА системе координат вектор, определяющий положение датчика микроускорений, измеряют угловую скорость КА и его угловое ускорение, определяют угловое положение и орбиту КА, по изменению орбиты КА и определенному его угловому положению оценивают плотность атмосферы на высоте полета КА и ускорение его торможения, по предложенной формуле определяют калиброванное значение микроускорения и погрешность в измерениях датчика микроускорений определяют в результате сопоставления измеренного датчиком значения с упомянутым калиброванным значением микроускорения. Способ-прототип обеспечивает возможность тарировка датчика микроускорений в требуемом диапазоне ускорений малой величины, характерных для условий космического полета.

К недостаткам способа-прототипа относится то, что для тарировки необходимо включить в программу полета КА специальные полетные операции - дополнительные по отношению с штатной программе полета КА, - в ходе которых требуемым образом изменяются угловые скорость и ускорение КА, при этом необходимо выполнить высокоточное измерение требуемых параметров, включая текущие угловые скорость и ускорение КА, текущее угловое положение КА относительно орбитальной системы координат, текущее значение баллистического коэффициента КА, текущее значение плотности атмосферы на высоте полета КА и т.д.

Возможность выполнения необходимых бортовых измерений определяется составом и техническими характеристиками бортовой измерительной аппаратуры КА, поэтому для использования способа-прототипа необходимо наличие на КА соответствующей измерительной аппаратуры.

Таким образом, реализация способа-прототипа требует определенных затрат (финансовых, ресурсных, организационных, управленческих), связанных с обеспечением КА необходимым составом высокоточной измерительной аппаратуры и включением в программу полета КА специальных полетных операций тарировки.

Задачей, на решение которой направлено настоящее изобретение, является выполнение тарировки размещенного на КА датчика микроускорений в условиях штатного космического полета.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в снижении затрат на выполнение тарировки (повышении эффективности выполнения тарировки) датчика микроускорений в полете за счет обеспечения возможности тарировки датчика микроускорений при реализации штатных полетных операций коррекции орбиты КА.

Технический результат достигается тем, что в способе тарировки датчика микроускорений в условиях космического полета, включающем воздействие заданной величины на датчик микроускорений, запоминание показаний датчика и сравнение расчетных данных и данных, полученных по показаниям датчика, дополнительно воздействие на жесткозакрепленный на КА датчик микроускорений выполняют путем приложения к КА калибровочного импульса посредством включения двигательной установки КА, до и после интервала приложения калибровочного импульса измеряют параметры орбиты КА, по изменению параметров орбиты КА определяют фактическое значение приложенного к КА импульса, по показаниям датчика определяют значения микроускорений на интервале приложения калибровочного импульса, производят сравнение величины импульса, определенной по показаниям датчика на интервале приложения калибровочного импульса, с фактическим значением приложенного калибровочного импульса, определенным по изменению параметров орбиты КА, и по результатам данного сравнения осуществляют тарировку датчика.

Изобретение поясняется иллюстрацией, на которой представлены графики, отображающие данные по орбите МКС на двух последовательных витках для двух вариантов орбиты: вариант 1 - с выдачей между первым и вторым витками импульса коррекции орбиты, вариант 2 - без импульса.

Поясним предложенные в способе действия.

Как правило установленные на КА датчики микроускорений жесткозакреплены на корпусе КА. Например, на международной космической станции (МКС) размещенные на ней датчики микроускорений ИМУ, ИМУ-Ц, MAMS, SAMS являются стационарными, т.е. жестко закрепляются на различных модулях российского и американского сегментов МКС. Для выполнения тарировки переносного датчика микроускорений он предварительно жестко закрепляется на корпусе КА.

В полете КА его орбита формируется путем выполнения маневров КА. Например, программа маневров такого КА как МКС составляется исходя из требований обеспечения функционирования МКС - запуска и возвращения экипажей, приема грузовых кораблей, уклонения от осколков, поддержания высоты орбиты в требуемом диапазоне значений и т.д. Дальнейшие действия способа осуществляются на фоне выполнения штатной полетной операции коррекции орбиты КА.

Выполнение полетной операции коррекции орбиты КА осуществляется посредством включения двигательной установки КА, в результате чего к КА прикладывается необходимый расчетный импульс. В приложении к решаемой задаче тарировки любой приложенный к КА импульс рассматриваем как калибровочный. Поскольку датчик микроускорений жесткозакреплен на корпусе КА, то данный калибровочный импульс воздействует на указанный датчик.

До и после интервала приложения калибровочного импульса измеряют параметры орбиты КА.

По изменению параметров орбиты КА определяют фактическое значение приложенного к КА импульса.

По показаниям датчика определяют значения микроускорений на интервале приложения калибровочного импульса.

Производят сравнение величины импульса, определенной по показаниям датчика на интервале приложения калибровочного импульса, с фактическим значением приложенного калибровочного импульса, определенным по изменению параметров орбиты КА. По результатам данного сравнения осуществляют тарировку датчика. Например, сопоставление полученного значения калибровочного импульса с величиной импульса, определенной по показаниям датчика, позволяет определить погрешность в измерениях датчика путем расчета поправочного коэффициента, равного отношению величины импульса, определенной по показаниям датчика на интервале приложения калибровочного импульса, с фактическим значением приложенного калибровочного импульса, определенным по изменению параметров орбиты КА.

В качестве примера рассмотрим возможность применения предложенного способа для тарировки датчика микроускорений на КА типа МКС.

Для обеспечения функционирования МКС (запуска и возвращения экипажей, приема грузовых кораблей, уклонения от осколков и т.д.) и поддержание необходимой высоты полета МКС регулярно выполняются коррекции орбиты (маневры) МКС. Маневры МКС всегда выполняются на подъем орбиты и реализуются средствами служебного модуля или средствами пристыкованных к станции транспортных грузовых кораблей (ТГК) «Прогресс», при этом величина импульса маневра выбирается, как правило, в пределах от 0,3 до 1, 5 м/сек при продолжительности импульса от десятков до сотен секунд (в зависимости от величины импульса и средств его реализации). Например, при высоте орбиты МКС порядка 400 км импульс маневра МКС ΔVимп≈0.6 м/с обеспечивает подъем (увеличение высоты) орбиты на величину ΔН≈1,1 км; импульс маневра МКС ΔVимп≈1.3 м/с обеспечивает подъем орбиты на величину ΔН≈2,3 км.

При выполнении импульса на МКС возникают ускорения от 10-3 g (10-2 м/с2) до 10-2g (0,1 м/с2), g=9,8 м/с2, которые должны находиться в зоне чувствительности тарируемого датчика. Отметим, что данный уровень ускорений доступен измерению такими используемыми на МКС датчиками микроускорений как ИМУ, ИМУ-Ц, MAMS, SAMS. По показаниям тарируемого датчика микроускорений рассчитывается расчетная величина импульса ΔVрасч.датч, определяемая по показаниям датчика микроускорений на интервале приложения импульса.

Измерение параметров орбиты МКС, выполняемое с использованием имеющихся штатных навигационных средств (средств радиоконтроля орбиты и средств навигационных спутниковых систем GPS и ГЛОНАСС), позволяет определить местоположение МКС с точностью до единиц метров. По измерениям местоположения МКС на витках до и после выдачи импульса коррекции орбиты определяется скорость МКС перед моментом начала выдачи импульса маневра и скорость МКС после окончания выдачи импульса маневра, по которым определяется фактическое приращение скорости МКС за интервал времени импульса маневра ΔVфакт.имп с точностью 10-3 м/с.

В качестве иллюстрации приведен пример данных по орбите МКС на двух последовательных витках для двух вариантов орбиты: вариант 1 - с выдачей между первым и вторым витками импульса коррекции орбиты ΔVимп=1 м/с и вариант 2 - без импульса.

На верхнем графике представлены значения модуля вектора скорости МКС: сплошной линией показан график вектора скорости орбиты без выдачи импульса, пунктирной линией - орбиты с выдачей импульса.

На среднем и нижнем графиках представлены разность местоположений МКС и разность скоростей КА между указанными вариантами орбиты.

Представленные на графиках данные показывают, что величине импульса ΔVимп=1 м/с соответствует величина разности между местоположениями МКС при варианте орбиты с выдачей импульса и варианте орбиты без импульса, полученная на момент через виток после выдачи импульса, равная ≈17 км.

Используя данное соответствие можно получить вышеуказанную оценку точности определения ΔVфакт.имп: при величине точности определения местоположения МКС 10÷20 м на интервале времени, охватывающем виток до и виток после выдачи импульса коррекции орбиты, точность оценки/определения фактической величины импульса ΔVфакт.имп составляет 10-3 м/с.

При использовании полученной фактической величины импульса ΔVфакт.имп для тарировки датчика микроускорений необходимо, чтобы указанная точность определения ΔVфакт.имп соответствовала точности определения расчетной величины импульса ΔVрасч.датч, определяемой по показаниям датчика микроускорений на интервале приложения импульса, точность определения которой определяется чувствительностью датчика (минимальным измеримым изменением показаний датчика, отнесенным к единице измеряемой датчиком величины), умноженной на продолжительность импульса. Так, вышеуказанной оценке значения точности определения ΔVфакт.имп 10-3 м/с соответствует чувствительность датчика порядка 10-5g (10-4 м/с2) (например, данный уровень чувствительности имеют используемые на МКС датчики микроускорений MAMS, SAMS).

Полученная расчетная величина импульса ΔVрасч.датч, определенная по показаниям датчика на интервале приложения импульса, сопоставляется с полученным фактическим значением приложенного калибровочного импульса ΔVфакт.имп, определенным по изменению параметров орбиты КА. По результатам данного сопоставления осуществляется тарировка датчика - например, рассчитывается поправочный коэффициент к измерениям (показаниям) датчика, равный отношению ΔVрасч.датч к ΔVфакт.имп.

Отметим, что данная методика тарировки применима к датчикам, предназначенным в первую очередь для измерений квазипостоянных значений микроускорений - микроускорений, обусловленых вращением КА вокруг центра масс, неоднородностью гравитационного поля в пределах конструкции КА и действием на КА сопротивления атмосферы (М.Ю. Беляев. «Научные эксперименты на космических кораблях и орбитальных станциях», М.: «Машиностроение», 1984; Д.М. Климов, В.И. Полежаев, М.Ю. Беляев, А.И. Иванов, С.Б. Рябуха, В.В. Сазонов. «Проблемы и перспективы использования невесомости в экспериментах на орбитальных станциях». РКТ, серия 12, выпуск 1-2, 2011).

Опишем технический эффект предлагаемого изобретения.

За счет выполнения предлагаемых действий возможна тарировка датчика микроускорений на КА в условиях космического полета. В отличие от способа-прототипа, в котором тарировка датчика осуществляется с помощью создания на КА калиброванных значений микроускорений малой величины, в предлагаемом способе тарировка датчика осуществляется по калибровочному импульсу (интегралу ускорений по времени), при этом для создания на КА необходимого калибровочного импульса используется штатная полетная операция по выполнению коррекции орбиты КА. Измеряя и отслеживая изменения параметров орбиты КА, определяют фактическое значение приложенного к КА импульса, который в применении к решаемой задаче тарировки рассматривается как калибровочный. Сопоставление полученного значения калибровочного импульса с величиной импульса, определенной по показаниям датчика, позволяет осуществить тарировку датчика.

Таким образом, предлагаемое техническое решение позволяет снизить затраты на выполнение тарировки (повысить эффективность выполнения тарировки) датчика микроускорений в полете за счет обеспечения возможности тарировки датчика микроускорений при реализации штатных полетных операций коррекции орбиты КА (т.е. за счет использования для выполнения тарировки датчика микроускорений штатных полетных операций коррекции орбиты КА). В частности, предлагаемое техническое решение позволяет выполнить тарировку размещенного на КА датчика микроускорений в условиях космического полета без требования наличия на КА высокоточной измерительной аппаратуры для высокоточного измерения углового движения КА.

В настоящее время технически все готово для реализации предложенного способа, например, на таких КА как МКС, транспортный грузовой корабль «Прогресс» и др. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств. Система управления КА штатно позволяет осуществлять построение необходимой ориентации для выполнения маневров, а двигательная установка КА обеспечивает выдачу необходимых расчетных импульсов, корректирующих орбиту КА. Измерение параметров орбиты КА может быть выполнено с использованием существующих штатных навигационных средств - средств радиоконтроля орбиты и навигационных спутниковых систем GPS и ГЛОНАСС. Необходимые вычисления могут быть выполнены с использованием бортовых вычислительных средств КА.

Способ тарировки датчика микроускорений в условиях космического полета, включающий воздействие заданной величины на датчик микроускорений, запоминание показаний датчика и сравнение расчетных данных и данных, полученных по показаниям датчика, отличающийся тем, что дополнительно воздействие на жесткозакрепленный на космическом аппарате датчик микроускорений выполняют путем приложения к космическому аппарату калибровочного импульса посредством включения двигательной установки космического аппарата, до и после интервала приложения калибровочного импульса измеряют параметры орбиты космического аппарата, по изменению параметров орбиты космического аппарата определяют фактическое значение приложенного к космическому аппарату импульса, по показаниям датчика определяют значения микроускорений на интервале приложения импульса, производят сравнение величины импульса, определенной по показаниям датчика на интервале приложения импульса, с фактическим значением приложенного импульса, определенным по изменению параметров орбиты космического аппарата, и по результатам данного сравнения осуществляют тарировку датчика.
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
СПОСОБ ТАРИРОВКИ ДАТЧИКА МИКРОУСКОРЕНИЙ В УСЛОВИЯХ КОСМИЧЕСКОГО ПОЛЕТА
Источник поступления информации: Роспатент

Показаны записи 71-80 из 111.
10.08.2019
№219.017.bd68

Система хранения и подачи иода (варианты) и способ определения расхода и оставшейся массы иода в ней

Предложенная группа изобретений относится к области электроракетных двигателей (ЭРД), в частности к системам хранения и подачи в них рабочего тела. Система хранения и подачи иода (по первому варианту) содержит сообщенную с электроракетным двигателем трубопроводом с установленным на нем клапаном...
Тип: Изобретение
Номер охранного документа: 0002696832
Дата охранного документа: 06.08.2019
12.09.2019
№219.017.ca4f

Оптическая система формирования и наведения лазерного излучения

Изобретение может быть использовано для доставки мощного излучения на воздушные и космические объекты и в лазерных локационных систем наведения. Оптическая система включает устройство сканирования, передающий лазерный модуль с оптоволоконным выводом, блок фокусировки, включающий коллимирующую...
Тип: Изобретение
Номер охранного документа: 0002699944
Дата охранного документа: 11.09.2019
17.10.2019
№219.017.d63c

Устройство для забора проб космонавтом в скафандре с внешней поверхности гермооболочки космического объекта

Изобретение относится к космической технике, в частности к инструментам и приспособлениям, используемым космонавтом в процессе внекорабельной деятельности, а также в наземных условиях оператором в обычной одежде для широкого спектра объектов. Устройство для забора проб космонавтом в скафандре с...
Тип: Изобретение
Номер охранного документа: 0002703208
Дата охранного документа: 15.10.2019
22.11.2019
№219.017.e4c9

Способ определения ориентации космического аппарата по сигналам навигационных спутников

Изобретение относится к области космической техники. Способ определения ориентации космического аппарата по сигналам навигационных спутников содержит этапы, на которых: включают излучение радиосигналов навигационными спутниками с известными параметрами орбиты; формируют и выдают команды на...
Тип: Изобретение
Номер охранного документа: 0002706638
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e4e4

Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами

Изобретение относится к области космической техники. Способ контроля производительности солнечной батареи космического аппарата с инерционными исполнительными органами содержит этапы, на которых: - включают ориентацию солнечной батареи нормалью к рабочей поверхности на Солнце; - измеряют ток...
Тип: Изобретение
Номер охранного документа: 0002706643
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e547

Стыковочный механизм космического аппарата

Изобретение относится к космической технике, в частности к стыковочным устройствам космических аппаратов. Стыковочный механизм космического аппарата содержит подвижный корпус, связанный с основанием стыковочного механизма двухстепенным вращательным шарниром и боковым амортизатором с...
Тип: Изобретение
Номер охранного документа: 0002706639
Дата охранного документа: 19.11.2019
08.12.2019
№219.017.eb97

Устройство для опоры, используемое преимущественно космонавтом в скафандре в реальных и моделируемых условиях гипогравитации на поверхности луны и марса

Изобретение относится к космической технике, в частности к инструментально-техническим средствам обеспечения действий космонавта в скафандре. Устройство для опоры, используемое преимущественно космонавтом в скафандре, содержит телескопический стержень с заостренным наконечником и кольцом на...
Тип: Изобретение
Номер охранного документа: 0002708133
Дата охранного документа: 04.12.2019
10.12.2019
№219.017.eba7

Рукоятка ручного инструмента, используемая преимущественно космонавтом в скафандре в реальных и моделируемых условиях микрогравитации, гипогравитации на поверхности луны и марса

Изобретение относится к космической технике, а именно к ручным инструментам, используемым космонавтом в скафандре. Рукоятка ручного инструмента, используемая космонавтом в скафандре, выполнена в виде стержня. На стержне посредством клеммовых соединений установлены параллельные между собой и...
Тип: Изобретение
Номер охранного документа: 0002708405
Дата охранного документа: 06.12.2019
24.12.2019
№219.017.f16e

Пластырь для ремонта экранно-вакуумной теплоизоляции космического объекта, используемый космонавтом в процессе внекорабельной деятельности, и способ его эксплуатации

Группа изобретений относится к средствам и способам внекорабельной деятельности (ВКД) и м. б. использована при моделировании ВКД на Земле. Пластырь содержит полотнище (П), натянутое на жесткий замкнутый каркас, растяжки, присоединенные к углам П, и ручку, расположенную в центре П. П выполнено...
Тип: Изобретение
Номер охранного документа: 0002709977
Дата охранного документа: 23.12.2019
31.01.2020
№220.017.fb55

Комбинированный фиксатор объектов, преимущественно в невесомости

Изобретение относится к инструментам и приспособлениям, используемым главным образом космонавтами в условиях невесомости. Фиксатор содержит достаточно пластичную проволоку в неметаллической оболочке с кольцами на концах. Кольца соизмеримы с размерами пальцев наддутой перчатки скафандра...
Тип: Изобретение
Номер охранного документа: 0002712363
Дата охранного документа: 28.01.2020
Показаны записи 71-80 из 115.
20.02.2019
№219.016.be53

Устройство для выбора объектов наблюдения с орбитального космического аппарата

Устройство для выбора объектов наблюдения с орбитального космического аппарата (КА). Устройство для выбора объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой, два охватывающих глобус кольца, первое из которых закреплено над точками полюсов глобуса с возможностью...
Тип: Изобретение
Номер охранного документа: 0002346241
Дата охранного документа: 10.02.2009
20.02.2019
№219.016.bf8e

Способ определения альбедо земли

Изобретение относится к космической технике. Способ включает последовательное размещение над отражающей поверхностью не менее чем в двух пространственных положениях чувствительной к регистрируемой радиации аппаратуры и определение моментов нахождения Солнца в зенитной области над снабженным...
Тип: Изобретение
Номер охранного документа: 0002351919
Дата охранного документа: 10.04.2009
20.02.2019
№219.016.bf99

Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления

Изобретение относится к области космической техники, к системам электроснабжения космических аппаратов, и может быть использовано при эксплуатации солнечных батарей. Способ определения максимальной выходной мощности солнечных батарей космического аппарата включает измерение угла между...
Тип: Изобретение
Номер охранного документа: 0002353555
Дата охранного документа: 27.04.2009
11.03.2019
№219.016.dc11

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Изобретение относится к управлению ориентацией космического аппарата (КА) с неподвижными относительно корпуса КА панелями солнечных батарей (СБ). Способ управления включает гравитационную ориентацию КА и его закрутку вокруг продольной оси (минимального момента инерции). При нахождении Солнца...
Тип: Изобретение
Номер охранного документа: 0002457158
Дата охранного документа: 27.07.2012
11.03.2019
№219.016.dc1a

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению ориентацией космического аппарата (КА) и может быть использовано при выполнении экспериментов и исследований на его борту. Способ включает гравитационную ориентацию КА, после которой производят закрутку КА вокруг выставленной на центр Земли оси КА. Закрутку...
Тип: Изобретение
Номер охранного документа: 0002457159
Дата охранного документа: 27.07.2012
29.03.2019
№219.016.ed54

Способ контроля лесного пожара с космического аппарата

Изобретение относится к области дистанционного мониторинга. Способ контроля лесного пожара с космического аппарата. Способ контроля лесного пожара с космического аппарата включает выполнение съемки с космического аппарата и определение по изображению контура пожара. Дополнительно запоминают...
Тип: Изобретение
Номер охранного документа: 0002683142
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee1d

Способ контроля лесного пожара с космического аппарата

Изобретение относится к области дистанционного мониторинга. Способ контроля лесного пожара с космического аппарата. Способ контроля лесного пожара с космического аппарата включает выполнение съемки с космического аппарата подстилающей поверхности и определение по получаемому изображению контура...
Тип: Изобретение
Номер охранного документа: 0002683143
Дата охранного документа: 26.03.2019
08.04.2019
№219.016.fe47

Способ управления космическим аппаратом с имеющими одну степень свободы солнечными батареями

Изобретение относится к управлению ориентацией космического аппарата (КА) и установленных на нём солнечных батарей (СБ) с осью вращения (Y), перпендикулярной продольной оси (X) КА. По высоте орбиты определяют диапазон витков, когда угол () между направлением (S) на Солнце и плоскостью (4)...
Тип: Изобретение
Номер охранного документа: 0002684241
Дата охранного документа: 04.04.2019
29.04.2019
№219.017.44c6

Способ определения магнитной помехи на космическом аппарате в полете

Изобретение относится к управлению полетом космических аппаратов с использованием данных о магнитном поле Земли (МПЗ). Способ включает измерение векторов напряженности МПЗ и направления на выбранную звезду (в оптическом диапазоне). Последний вектор должен быть отклонен от нормали к плоскости...
Тип: Изобретение
Номер охранного документа: 0002408507
Дата охранного документа: 10.01.2011
29.04.2019
№219.017.44cf

Способ определения трехосной ориентации космического аппарата

Изобретение относится к управлению ориентацией космического аппарата (КА), оснащенного магнитометром для определения вектора напряженности магнитного поля Земли (МПЗ). Способ включает измерение напряженности МПЗ и параметров орбиты КА. При этом стабилизируют КА в инерциальном пространстве,...
Тип: Изобретение
Номер охранного документа: 0002408508
Дата охранного документа: 10.01.2011
+ добавить свой РИД