×
04.10.2018
218.016.8f0b

Результат интеллектуальной деятельности: Способ получения длинномерных цилиндрических стержней из материалов на основе Ti-Al-C

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии, в частности к получению длинномерных цилиндрических стержней из материалов на основе Ti-Al-C. Может быть использовано для получения электродных материалов при электролизе цветных металлов. Способ включает предварительное перемешивание исходных компонентов смеси порошков титана, алюминия и сажи в молярном соотношении 3Ti-xAl-2C, где 1≤х≤2,5, и прессование исходной смеси в цилиндрическую заготовку. Осуществляют нагрев заготовки до температуры 50-300°C и инициируют реакцию самораспространяющегося высокотемпературного синтеза, после чего проводят пластическое деформирование синтезированного материала через формующую матрицу с углом конусной части матрицы 120-180° при скорости перемещения плунжера пресса 60-100 мм/с. Способ обеспечивает получение материалов с заданным составом, позволяет упростить технологический процесс и увеличить производительность. 2 з.п. ф-лы, 7 пр.

Область техники

Изобретение относится к области порошковой металлургии, в частности к получению длинномерных цилиндрических стержней из материалов на основе Ti-Al-C методом самораспространяющегося высокотемпературного синтеза (СВС) и последующего горячего пластического деформирования, и может быть использовано для получения электродных материалов при электролизе цветных металлов.

Уровень техники

Известен способ получения компактных материалов системы Ti2AlC из исходных компонентов Ti, Al и С методом горячего спекания. Сущность метода заключается в следующем. Производят подготовку смеси порошков Ti, Al и С, добавляя диспергатор стеарат натрия в смесь, выполняют сухое размалывание шарами до механического получения сплава и мелкого порошка TiAl, TiC. Загружают полученную смесь в графитовую оболочку и спекают под давлением в аргоне или вакууме (CN 1958514 (А), С04В 35/56, 05.09.2007). Недостатками данного способа являются: низкая производительность процесса за счет использования дополнительных операций по размалыванию исходных порошков и получению механического сплава; большие энергетические затраты на нагрев и спекание смеси; использование дополнительного диспергатора стеарата натрия, что снижает чистоту полученного продукта и как следствие снижает эксплуатационные характеристики жаростойких покрытий. При этом в способе также возникают трудности при изготовлении длинномерных стержней при соотношении их длины к диаметру более 2-3.

Известен способ получения материалов системы Ti3AlC2 методом самораспространяющегося высокотемпературного синтеза при сочетании с одноосным прессованием. Сущность способа заключается в предварительном перемешивании исходных компонентов титана, алюминия и сажи, масс. %: 73,7:15,2:11,1; 67,7:23,8:8,5; 64,6:27,3:8,1, прессовании полученной смеси в исходную цилиндрическую заготовку, помещение ее между прессовыми рамами, инициирование реакции самораспространяющегося высокотемпературного синтеза, одноосное прессование синтезируемого материала (Y. Khoptiar, I. Gotman, and E.Y. Gutmanas "Pressure-Assisted Combustion Synthesis of Dense Layered Ti3AlC2 and Mechanical Properties", J. Am.Ceram. Soc, 2005, Vol. 88, No.1, pp. 28-33). Недостатками данного способа являются следующие признаки. При данном способе необходим нагрев прессовых рам, между которых находится спрессованная заготовка синтезируемого материала, что увеличивает энергетические затраты процесса, а также технологическое время на нагрев прессовых рам перед синтезом материала, что приводит к снижению производительности процесса.

Наиболее близким по технической сущности к заявляемому изобретению является способ получения материалов на основе Ti-Al-C (RU 2479384 C1, С04В 35/56, С22С 1/03, 20.04.2013), который включает предварительное перемешивание исходных компонентов титана, алюминия и сажи, прессование полученной смеси в исходную цилиндрическую заготовку, инициирование реакции самораспространяющегося высокотемпературного синтеза, причем исходные компоненты титана, алюминия и сажи берут в соотношении, масс. %: 59,2-71,5 (Ti): 24,0-33,4 (Al): 4,5-7,4 (С) и после реакции горения производят горячее пластическое деформирование через формующую матрицу с диаметром выходного отверстия 1-20 мм при температуре 1350-1500°C и временем задержки 3-7 секунд. Недостатком указанного прототипа является сложность контролирования температуры при горении, при которой необходимо осуществить пластическое деформирование синтезированного материала.

Раскрытие изобретения

Техническим результатом предлагаемого способа является упрощение технологического процесса получения длинномерных стержней, увеличение производительности процесса, получение материалов с заданным составом.

Технический результат достигается тем, что в способе получения длинномерных цилиндрических стержней из материалов на основе Ti-Al-C, включающем предварительное перемешивание исходных компонентов смеси порошков титана, алюминия и сажи, прессование исходной cмеси в цилиндрическую заготовку, инициирование реакции самораспространяющегося высокотемпературного синтеза (СВС) и пластическое деформирование синтезированного материала через формующую матрицу, новым является то, что исходные порошки титана, алюминия и сажи берут в молярном соотношении: 3Ti-xAl-2C, где количество алюминия соответствует 1≤х≤2,5, при этом перед инициированием реакции СВС заготовку нагревают до температуры 50-300°C, а пластическое деформирование осуществляют через формующую матрицу с углом конусной части 120-180°, при скорости перемещения плунжера пресса 60-100 мм/с.

Способ характеризуется частными случаями его реализации.

Так, деформирование синтезированного материала осуществляют в кварцевый калибр, диаметр которого меньше отверстия матрицы на 0,5-2 мм, перед установкой в пресс-форму исходной цилиндрической заготовки, на матрицу могут устанавливать заглушку из алюминиевого или медного сплава толщиной 0,1-1 мм.

Сущность изобретения заключается в следующем.

Смешивают исходные порошковые компоненты титана, алюминия, сажи в молярном соотношении 3Ti-xAl-2C, где количество алюминия соответствует 1<=х<=2,5. При х<1 доля пластичной фазы при горении исходных компонентов мала, из-за чего формование продуктов горения

затруднительно, либо невозможно. При х>2,5 снижается температура и скорость горения выбранного состава, что, как следствие, приводит к потере пластичности продуктов горения и закупорке выходного отверстия матрицы. При соотношении 1<=х<=2,5 материал обладает наилучшей способностью к формованию и получению готовых изделий. Из полученной смеси порошков формуют заготовку диаметром 30 мм, высотой 45-50 мм и относительной плотностью 0,5-0,7. Перед установкой в пресс-форму исходной цилиндрической заготовки, на матрицу могут устанавливать заглушку из алюминиевого или медного сплава толщиной 0,1-1 мм. При толщине менее 0,1 мм заглушка сгорает при синтезе, при толщине более 1 мм ухудшает экструзию синтезированного материала. Заглушку целесообразно использовать для минимизирования дефектной части экструдированного стержня и при их длине менее 100 мм. Полученную заготовку нагревают в печи до 50-300°C. Без предварительного нагрева исходной заготовки до 50°C синтезируемый материал не способен пластически деформироваться и закупоривает матрицу, что выводит ее из рабочего состояния. При нагреве более 300°C происходит самовоспламенение исходной заготовки в печи. В пресс-форму помещают кварцевый калибр, который улучает качество получаемого стержня. При этом диаметр калибра меньше отверстия матрицы на 0,5-2 мм для дополнительного обжатия экструдируемого материала. При этом соотношении менее 0,5 дополнительного обжатия не происходит, а при соотношении более 2 мм - качество выдавленного стержня снижается. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью реакцию горения в режиме СВС и синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с углом конусной части 120-180°, при скорости перемещения плунжера пресса 60-100 мм/с. В результате получают длинномерные стержни из материалов на основе МАХ-фазы системы Ti-Al-C длиной до 160 мм. При угле конусной части матрицы менее 120° - качество выдавленного стержня неудовлетворительное. При скорости перемещения плунжера пресса менее 60 мм/с материал за счет быстрого остывания не успевает полностью экструдироваться через формующую матрицу, а при скоростях более 100 мм/с материал не консолидируется.

Приведенная схема процесса СВС-экструзии для данного стехиометрического состава 3Ti-xAl-2C позволяет производить выдавливание образцов при температуре, соответствующей температуре горения, без использования дополнительных датчиков температуры и дополнительной теплоизоляции, что снимает необходимость в контролировании и регулировании температуры выдавливания.

Также данная схема при указанном стехиометрическом составе позволяет увеличить выход годного продукта на 30-35% по сравнению с прототипом по причине более высокой полноты выдавливания бездефектного образца.

Варьированием количества исходных компонентов титана, алюминия и сажи в исходной заготовке, а также технологического режима процесса получения, возможно изготавливать длинномерные стержни с заданной структурой.

Сущность предлагаемого способа подтверждается следующими примерами.

Пример 1.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):l(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 50 мм и массой 50 г, нагревают в печи до 150°C. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 3 секунды при скорости перемещения плунжера пресса 60 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 8 мм и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 130 мм. Фазовый состав полученного стержня соответствует масс %.: 90(Ti3AlC2), 10(TiC).

Пример 2.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):1(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 50 мм и массой 50 г, нагревают в печи до 50°C. Перед установкой нагретой заготовки в пресс-форму на матрицу устанавливают заглушку из алюминиевого сплава толщиной 0,1 мм. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 2,8 секунды при скорости перемещения плунжера пресса 80 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 10 мм при использовании направляющего калибра диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 2 мм) и углом конусной части 120°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 120 мм. Фазовый состав полученного стержня соответствует масс %.: 85(Ti3AlC2), 15(TiC).

Пример 3.

В условиях примера 1, формуют из смешанных порошков заготовку диаметром 30 мм, высотой 45 мм и массой 50 г, нагревают в печи до 50°C. Перед установкой нагретой заготовки в пресс-форму на матрицу устанавливают заглушку из медного сплава толщиной 0,5 мм. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 1 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 10 мм и углом конусной части 160° при использовании направляющего кварцевого калибра диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 2 мм). В результате получен цилиндрический стержень диаметром 8 мм и длиной 90 мм. Фазовый состав полученного стержня соответствует масс %.: 80(Ti3AlC2), 20(TiC).

Пример 4.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):1,5(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 50 мм и массой 50 г, нагревают в печи до 300°C. Перед установкой нагретой заготовки в пресс-форму на матрицу устанавливают заглушку из алюминиевого или медного сплав толщиной 1 мм. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 4 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 10 мм, кварцевым направляющем калибром диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 2 мм) и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 90 мм. Фазовый состав полученного стержня соответствует масс %.: 86(Ti3AlC2), 9 (TiC), 5(TiAl3).

Пример 5.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):2(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 43 мм и массой 50 г, нагревают в печи до 300°C. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 4,9 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 10 мм, кварцевым направляющем калибром диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 2 мм) и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 150 мм. Фазовый состав полученного стержня соответствует масс %.: 53 (Ti3AlC2), 40(TiC), 7(TiAl3).

Пример 6.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):2,3(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 48 мм и массой 50 г, нагревают в печи до 300°C. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 8 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 12 мм, кварцевым направляющем калибром диаметром 11 мм (диаметр калибра меньше диаметра матрицы на 1 мм) и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 11 мм и длиной 115 мм. Фазовый состав полученного стержня соответствует масс %.: 46 (Ti3AlC2), 42(TiC), 12 (TiAl3).

Пример 7.

Смешивают исходные порошки титана (ПТМ), алюминия (АСД-1) и сажи в молярном соотношении: 3(Ti):2,5(Al):2(C). Далее формуют из смешанных порошков заготовку диаметром 30 мм, высотой 50 мм и массой 50 г, нагревают в печи до 300°C. Нагретую заготовку помещают в пресс-форму, инициируют вольфрамовой спиралью волну горения в режиме СВС. После времени задержки 4,1 секунды при скорости перемещения плунжера пресса 100 мм/с, происходит приложение давления плунжером пресса, при этом синтезированный материал подвергают горячему пластическому деформированию через формующую матрицу с диаметром выходного отверстия 9,5 мм, кварцевым направляющем калибром диаметром 8 мм (диаметр калибра меньше диаметра матрицы на 0,5 мм) и углом конусной части 180°. В результате получен цилиндрический стержень диаметром 8 мм и длиной 200 мм. Фазовый состав полученного стержня соответствует масс %.: 49 (Ti3AlC2), 36(TiC), 15(TiAl3).

Таким образом, предлагаемая совокупность признаков изобретения позволяет получать длинномерные цилиндрические стержни из материалов на основе Ti-Al-C без контролирования температуры, при которой необходимо пластически деформировать синтезированный материал через формующую матрицу, что позволяет упростить технологический процесс получения длинномерных стержней, и соответственно увеличить производительность заявляемого способа. Полученные материалы могут быть использованы в качестве электродных материалов при электролизе цветных металлов.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 230.
27.12.2014
№216.013.1449

Катодный кожух алюминиевого электролизера

Изобретение относится к конструкции катодного кожуха электролизера для получения алюминия электролитическим способом. Катодный кожух содержит продольные и торцевые стенки с вертикальными ребрами жесткости, днище, шпангоуты, которые охватывают стенки и днище, и фланцевый лист. Фланцевый лист...
Тип: Изобретение
Номер охранного документа: 0002536617
Дата охранного документа: 27.12.2014
10.02.2015
№216.013.225b

Способ автоматического контроля криолитового отношения

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, а именно к области управления электролизом алюминия. Способ автоматического контроля криолитового отношения электролита алюминиевого электролизера, включающий измерение силы тока, напряжения на...
Тип: Изобретение
Номер охранного документа: 0002540248
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2653

Зонт открытой рудовосстановительной электропечи

Изобретение относится к области металлургии, в частности к элементам конструкции газоотводящего оборудования открытой рудовосстановительной печи для производства, преимущественно, кристаллического кремния и ферросилиция. Зонт состоит из крышки, стен корпуса меньшего диаметра и подвижного...
Тип: Изобретение
Номер охранного документа: 0002541264
Дата охранного документа: 10.02.2015
20.03.2015
№216.013.3238

Алюминиевый сплав

Изобретение относится к металлургии алюминиевых сплавов и может быть использовано преимущественно для изготовления катанки электротехнического назначения, а также деформированных полуфабрикатов, используемых в строительстве, машиностроении и других областях народного хозяйства. Сплав содержит...
Тип: Изобретение
Номер охранного документа: 0002544331
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.3265

Способ создания противофильтрационного экрана гидротехнического сооружения для хранения промышленных отходов

Изобретение относится к способам предотвращения загрязнения грунтов и подземных вод компонентами промышленных отходов, в частности к созданию противофильтрационных экранов полигонов захоронения и складирования отходов, шламовых полей. При создании противофильтрационного экрана гидротехнического...
Тип: Изобретение
Номер охранного документа: 0002544376
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.326b

Изолирующий материал для шламохранилищ промышленных отходов

Предложенное изобретение относится к строительным материалам и утилизации отходов электротермического производства. Изолирующий материал для шламохранилищ промышленных отходов включает глиносодержащий материал и материал в виде техногенного отхода, в качестве глиносодержащего материала он...
Тип: Изобретение
Номер охранного документа: 0002544382
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.33c2

Способ кислотной переработки красных шламов

Изобретение относится к способу кислотной переработки красных шламов, получаемых в процессе производства глинозема, и может применяться в технологиях утилизации отходов шламовых полей глиноземных заводов. Способ включает выщелачивание с использованием в качестве выщелачивающего реагента...
Тип: Изобретение
Номер охранного документа: 0002544725
Дата охранного документа: 20.03.2015
20.03.2015
№216.013.33c4

Футеровка алюминиевого электролизера с инертными анодами

Изобретение относится к футеровке алюминиевого электролизера. Футеровка включает подину и токоотводящие элементы из алюминия, выполненные жидкими в верхней части в контакте с расплавом алюминия и твердыми - в нижней части и установленные проходящими вертикально через подину. Подина выполнена из...
Тип: Изобретение
Номер охранного документа: 0002544727
Дата охранного документа: 20.03.2015
20.04.2015
№216.013.41d6

Ошиновка алюминиевых электролизеров продольного расположения

Изобретение относится к ошиновке последовательно соединенных электролизеров получения алюминия с продольным расположением в корпусе. Ошиновка содержит анодные шины, стояки и катодные стержни, разделенные на группы, каждая из которых соединена с отдельной катодной шиной. Катодные шины групп...
Тип: Изобретение
Номер охранного документа: 0002548352
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.41d8

Устройство для дозированной подачи сырья в алюминиевый электролизер

Изобретение относится к устройствам для подачи сырья, в частности глинозема, фторида алюминия, дробленого электролита, в алюминиевый электролизер. Устройство содержит бункер дозируемого материала, дозировочную камеру с установленным штоком и пневмоцилиндром. На штоке жестко закреплен в верхней...
Тип: Изобретение
Номер охранного документа: 0002548354
Дата охранного документа: 20.04.2015
Показаны записи 31-40 из 53.
05.02.2019
№219.016.b6ee

Способ получения порошка на основе тугоплавких соединений

Изобретение относится к получению порошка на основе тугоплавких соединений. Способ включает приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме...
Тип: Изобретение
Номер охранного документа: 0002678858
Дата охранного документа: 04.02.2019
20.03.2019
№219.016.e7d0

Способ электролитического получения металлов при одновременном осаждении примесей

Изобретение относится к способу электролитического получения металлов. В электролизере, содержащем катод, анод и коллекторы растворенных в электролите примесей, выполненные в виде электродов, потенциал которых поддерживают положительнее потенциала восстановления металла и отрицательнее...
Тип: Изобретение
Номер охранного документа: 0002425177
Дата охранного документа: 27.07.2011
29.03.2019
№219.016.ef48

Электролит для получения алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземного расплава. Технический результат заключается в интенсификации процесса получения алюминия, повышении его технико-экономических показателей, увеличении срока службы электролизера,...
Тип: Изобретение
Номер охранного документа: 0002288977
Дата охранного документа: 10.12.2006
29.03.2019
№219.016.f29c

Способ крепления ребер охлаждения на катодный кожух алюминиевого электролизера

Изобретение относится к металлургии алюминия электролизом расплавленных солей, в частности к способу крепления ребер охлаждения на катодный кожух алюминиевого электролизера. Способ крепления ребер охлаждения на катодный кожух алюминиевого электролизера, содержащий футеруемую изнутри...
Тип: Изобретение
Номер охранного документа: 0002376402
Дата охранного документа: 20.12.2009
29.03.2019
№219.016.f449

Катодное устройство электролизера для производства алюминия

Изобретение относится к электролитическому получению алюминия, а именно к конструкции катодного устройства алюминиевого электролизера. Устройство содержит кожух, катодные блоки с катодными стержнями, футеровку под катодными блоками. Футеровка выполнена из слоя выравнивающего насыпного...
Тип: Изобретение
Номер охранного документа: 0002320782
Дата охранного документа: 27.03.2008
29.03.2019
№219.016.f468

Электрический контактный узел инертного анода для получения алюминия в солевом расплаве и способ его монтажа

Изобретение относится к изготовлению инертных анодов для электролитического получения алюминия в криолит-глиноземном расплаве. Электрический контактный узел инертного анода содержит полый корпус инертного анода, выполненный из оксидной керамики на основе SnO, и металлический токоподводящий...
Тип: Изобретение
Номер охранного документа: 0002418889
Дата охранного документа: 20.05.2011
29.03.2019
№219.016.f615

Инертный анод электролизера для производства алюминия

Изобретение относится к цветной металлургии, в частности к производству алюминия электролизом, а именно к конструкции инертных анодов электролизеров для производства алюминия. Инертный анод электролизера для производства алюминия содержит корпус, выполненный из электропроводного материала,...
Тип: Изобретение
Номер охранного документа: 0002408743
Дата охранного документа: 10.01.2011
10.04.2019
№219.016.ffe2

Способ автоматического устранения анодных эффектов

Изобретение относится к области электролитического получения алюминия из расплавов и предназначено для автоматического устранения анодных эффектов в электролизерах с самообжигающимся анодом. Техническим результатом является увеличение надежности гашения, снижение времени гашения анодного...
Тип: Изобретение
Номер охранного документа: 0002285755
Дата охранного документа: 20.10.2006
10.04.2019
№219.017.072a

Способ производства металлов с керамическим анодом

Изобретение относится к области цветной металлургии и может быть использовано для получения металлов электролизом расплавленных электролитов с инертными анодами, в частности для электролитического производства алюминия из глиноземсодержащего фторидного расплава в электролизере с анодом,...
Тип: Изобретение
Номер охранного документа: 0002452797
Дата охранного документа: 10.06.2012
29.04.2019
№219.017.3e6c

Многополярная электролизная ванна для получения жидких металлов электролизом расплавов и способ установки электролизных ванн

Группа изобретений относится к цветной металлургии, а именно к конструкциям для производства металлов электролизом расплавленного электролита, в частности алюминия, и способу установки электролизных ванн. Получаемыми металлами помимо алюминия могут быть магний, литий, натрий, свинец....
Тип: Изобретение
Номер охранного документа: 0002275443
Дата охранного документа: 27.04.2006
+ добавить свой РИД