×
04.10.2018
218.016.8e61

СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002668631
Дата охранного документа
02.10.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам определения ширины запрещенной зоны темновой и фотопроводимости органических полупроводников на основе гетероатомных соединений. Способ определения ширины запрещенной зоны темновой и фотопроводимости органических полупроводников на основе гетероатомных соединений включает регистрацию спектров поглощения образцов в оптически прозрачных растворителях в УФ и (или) видимой областях, при этом и определяются по I, вычисленному по электронному спектру в ультрафиолетовом и (или) видимом диапазонах. Технический результат заключается в упрощении способа и повышении его экспрессности и информативности за счет одновременного определения ширины запрещенной зоны темновой и фотопроводимости по интегральному параметру от автокорреляционной функции. 4 табл., 1 ил.
Реферат Свернуть Развернуть

Изобретение относится к способам определения ширины запрещенной зоны темновой и фотопроводимости органических полупроводников на основе гетероатомных соединений.

Ширина запрещенной зоны органических полупроводников на основе гетероатомных соединений является важной физической характеристикой, связанной с темновой и фотопроводимостью. Эта характеристика имеет особое значение в физике твердого тела, органической электронике и наноэлектронике. Известен способ определения ширины запрещенной зоны

фотопроводимости () органических полупроводников на основе гетероатомных соединений по краю фундаментальной полосы спектра поглощения или испускания электромагнитного излучения в оптической области [Павлов Л.П. Методы измерения параметров полупроводниковых материалов. -М.: Высшая школа - 1987. - 239 с.]. Способ основан на анализе спектра k2=f(λ).

где k - коэффициент поглощения, л/(г*см);

f(λ) - плотность распределения квадрата коэффициента поглощения, л2/(г*см)2;

λ - длина волны электромагнитного излучения монохроматического источника, нм.

определяется путем экстраполяции фундаментальной полосы поглощения такого спектра к нулю, определению соответствующей длины волны λ0 и расчету по формуле:

где h - постоянная Планка, 6,135667662(25)⋅10-15 эВ⋅с;

с - скорость света в вакууме, 299792458 м/с;

λ0 - граничная длина волны электромагнитного излучения, определенная путем экстраполирования, нм

Недостатки данного способа определения :

1. Невозможность использовать способ для систем, состоящих из молекул, содержащих большое количество компонентов, например, углеводородные фракции.

2. Невозможность использовать способ для веществ, с недостатком информации об их структуре и составе, поскольку идентификация полос в этом случаях затруднена вследствие перекрывания отдельных полос.

Известен способ определения ширины запрещенной зоны темновой проводимости () по показателям удельной электропроводности термостатированной ячейки, наполненной исследуемым веществом [Павлов Л.П. Методы измерения параметров полупроводниковых материалов. - М.: Высшая школа- 1987. - 239 с.]. В данном методе используется экспоненциальная зависимость удельной проводимости

где σ - удельная электропроводность при температуре Т;

Т - температура образца, К;

σ0 - некоторая константа.

определяется на основе формулы (2) при рассмотрении удельных электропроводностей σ1, σ2 при разных температурах Т1 и Т2:

Недостатки данного способа заключаются в том, что требуется измерять значения сопротивления ячейки, заполненной полупроводником, при этом не учитываются эффекты перколяции, которые возникают в сыпучих и пористых средах. Такой способ неприменим к метастабильным веществам, неустойчивым при нагреве. Кроме того, в данном способе требуется сравнительно сложная экспериментальная техника, включающая лабораторный термостат, прецизионную электронную аппаратуру по измерению проводимости.

Также известны расчетные квантово-химические способы оценки ширины запрещенной зоны методом функционала плотности в приближении TD-DFT BLYP. Эти способы рассматривают нестационарное уравнение для функционала плотности, позволяющее оценивать время электронных переходов из основного в возбужденное состояния и, следовательно, оценить ширину запрещенной зоны. Ширина запрещенной зоны в данном способе предполагается равной энергии возбуждения электронных состояний в УФ области. [Юренев, П.В., Щербинин, А.В., Степанов Н.Ф. Применимость методов TD-DFT для расчета электронного спектра поглощения гексааминорутения (п) в водном растворе // Журнал физической химии. - 2010. - том 84, №1. - С. 44-48.]. Недостатком данного способа является то, что не учитывается электронно-дырочная проводимость и влияние среды. А также не выделяются различия между темновой и фотопроводимостью, что затрудняет экспериментальную интерпретацию результатов.

Наиболее близким техническим решением к заявляемому способу является способ определения первых вертикальных потенциалов ионизации и сродства к электрону атомов и молекул по интегральному параметру от автокорреляционной функции в видимом и (или) УФ диапазонах электромагнитного спектра в интервале длин волн от 190 до 780 нм [Латыпов К.Ф., Доломатов М.Ю. Определение потенциала ионизации гетероциклических молекул по оптическим спектрам поглощения электромагнитного излучения в видимой и УФ области // Фотоника. - 2017. - №4. - С. 78-82. Доломатов М.Ю., Латыпов К.Ф. Применение методов статистической радиофизики для оценки потенциалов ионизации и сродства к электрону молекул по спектрам поглощения электромагнитного излучения в петагерцевой области // Электромагнитные волны и электронные системы. - 2017. - Т. 22. - №2. - С. 54-60]. В данном способе определение ширины запрещенной зоны, потолок и дно запрещенной зоны оценивается по первому вертикальному потенциалу ионизации и сродству к электрону молекул органических полупроводников. Первые вертикальные потенциалы ионизации и сродства к электрону изолированных частиц определяется по интегральному параметру от автокорреляционной функции оптического спектра, согласно зависимостям:

где ПИ - первый вертикальный потенциал ионизации, эВ;

СЭ - сродство к электрону, эВ;

А1 А2, В1 В2 - эмпирические коэффициенты, постоянные для близких по химической природе соединений, их размерности: А1 B1 - эВ, А2, В2 - безразмерные величины;

IA - интегральный параметр от автокорреляционной функции, эВ;

Е - энергия излучения, эВ;

n - число полос поглощения;

Е1 Еn - границы электромагнитного спектра, эВ;

ε - молярный коэффициент поглощения при энергии Е, л⋅моль-1⋅см-1. Зависимости (4)-(5) были подтверждены для ПИ и СЭ органических полупроводников, содержащих гетероатомы азота и кислорода.

Недостатки данного способа заключаются в невозможности определения ПИ и СЭ конденсированной среды, в частности, наночастиц, кластеров, квантовых точек и молекулярных органических кристаллов. Т.к. все определения проводятся относительно изолированной молекулы полупроводника. И, как следствие, некорректному определению ширины запрещенной зоны.

Целью изобретения является упрощение способа и повышение его экспрессности и информативности за счет одновременного определения ширины запрещенной зоны темновой и фотопроводимости по интегральному параметру от автокорреляционной функции.

Поставленная цель достигается за счет использования нового способа определения и органических полупроводников, содержащих гетероатомы.

Способ определения ширины запрещенной зоны темновой и фотопроводимости органических полупроводников, содержащий гетероатомы, включает регистрацию спектров поглощения образцов в оптически прозрачных растворителях в УФ и (или) видимой областях, при этом определяются по IA, вычисленному по электронному спектру в ультрафиолетовом и (или) видимом диапазонам. Ширина запрещенной зоны темновой и фотопроводимости определяются по формулам:

где - ширина запрещенной зоны темновой проводимости, эВ;

- ширина запрещенной зоны фотопроводимости, эВ;

IA - интегральный параметр от автокорреляционной функции спектра, эВ;

D1, D2, G1, G2 - эмпирические коэффициенты, постоянные для близких по химической природе органических полупроводников, размерность D1, G1 - эВ, D2, G2 - безразмерные величины.

Используется физическая характеристика спектра - интегральный параметр от автокорреляционной функции:

где ε - молярный коэффициент поглощения, л⋅моль-1⋅см-1;

Е - энергия электромагнитного излучения, эВ;

n - количество полос поглощения;

E1… En - границы спектра поглощения;

ΔЕ - шаг сканирования спектра;

где k(Е) - коэффициент поглощения, л/(г*см)

М - среднечисловая молярная масса, г/моль.

где св - концентрация поглощающего вещества; г/л;

D - оптическая плотность, безразмерная величина;

L - толщина кюветы, см;

IА характеризует взаимодействие возбужденных электронных состояний атомов и молекул во всей области ультрафиолетового и (или) видимого спектра. IА спектра поглощения определяется в диапазоне энергий от 6,53 до 1,59 эВ (соответствует диапазону 190-780 нм).

Определение и органических полупроводников, содержащих гетероатомы, производится по IА соответствующих спектров поглощения. При этом используется физический эффект связи IА с и . Предлагаемый способ осуществляется следующим образом:

1. Навеску вещества растворяют в оптически прозрачном растворителе. Регистрацию спектра осуществляют при помощи спектрофотометра в прозрачной кварцевой кювете с толщиной поглощающего слоя 1 см.

2. Регистрируют электронный спектр поглощения исследуемого соединения для оптически прозрачных сред, определяется оптическая плотность D в диапазоне длин воле 190-780 нм с шагом 1 нм.

3. При этом волновая шкала переводится в энергетическую по формуле:

где с - скорость света в вакууме, 299792458 м/с;

h - постоянная Планка, 6,135667662(25)⋅10-15 эВ⋅с;

λ - длина волны, нм.

4. Определяют коэффициент поглощения по формуле:

,

5. Определяют логарифмический молярный коэффициент поглощения lg ε(E),

ε(E)=k(E)⋅M

lgε(E)=lg(k(E)⋅M)

6. Определяют IA исследуемого соединения интегрированием спектра в диапазоне от 6,53 до 1,59 эВ (190-780 нм) численным методом трапеций:

7. и определяют по формулам:

Коэффициенты D1 D2, G1, G2 берут из таблиц 1, 2.

Пример 1. Определяют и для 1-диметиламино-2,3,4-трифторантрахинона (C16H10NO2). Раствор 1-диметиламино-2,3,4-трифторантрахинона в бензоле концентрации менее 10-2 моль/л заливают в кварцевую кювету спектрофотометра с толщиной поглощающего слоя 1 см. Регистрируют спектр в диапазоне длин волн от 190 до 780 нм (рисунок 1а). По спектру поглощения 1-диметиламино-2,3,4-трифторантрахинона вычисляют интегральный параметр от автокорреляционной функции IА=48,22 эВ. 1-диметиламино-2,3,4-трифторантрахинон относится к группе антрахинонов, значит, по таблицам 1, 2 берут соответствующие коэффициенты зависимостей (7), (8): D1=4,94эB, D2=-6,96⋅10-2; G1=l,56эB, G2=-5,15⋅10-3. И определяют по соотношениям (7)-(8) и :

Пример 2. Определяют и для 11-оксибензо[b]пирена (C20H12O). Раствор 11-оксибензо[b]пирена в этаноле концентрации менее 10-2 моль/л заливают в кварцевую кювету спектрофотометра с толщиной поглощающего слоя 1 см. Регистрируют спектр в диапазоне длин волн 190 до 780 нм (рисунок 1б). По спектру поглощения 11-оксибензо[b]пирена вычисляют интегральный параметр от автокорреляционной функции IА=47,60 эВ. 11-оксибензо[b]пирен относится к группе оксипиренов, значит, по таблицам 1, 2 берут соответствующие коэффициенты зависимостей (7), (8): D1=2,60эB, D2=-2,64⋅10-2; G1=l,68эB, G2=-6,84⋅10-3. И определяют по соотношениям (7)-(8) и :

Значения органических полупроводников (примеры 1-2), определенные по показателям удельной электропроводности термостатированной ячейки и предлагаемым способом приведены в таблице 3.

Значения органических полупроводников (примеры 1-2), определенные по краю фундаментальной полосы спектра поглощения и предлагаемым способом приведены в таблице 4.

Вывод: как следует из таблицы 3, средняя относительная погрешность определения ширины запрещенной зоны темновой проводимости органических полупроводников по предлагаемому способу в сравнении с методом определения по показателям удельной электропроводности термостатированной ячейки составляет 6,80%. Из таблицы 4 следует, что средняя относительная погрешность определения ширины запрещенной зоны фотопроводимости органических полупроводников по предлагаемому способу в сравнении с оптическим методом по краю фундаментальной полосы составляет 6,57%. Следовательно, предлагаемый способ определения ширины запрещенной зоны темновой и фотопроводимости дает адекватные результаты в сравнении с известными аналогами.

Преимущества заявляемого способа заключается в следующем:

1. Повышение информативности за счет одновременного определения ширины запрещенной зоны темновой и фотопроводимости за одно измерение

2. Упрощение аппаратуры - для реализации способа используется только спектрофотометр

3. Возможность расширения класса исследуемых органических полупроводников, содержащих гетероатомы за счет возможности применения способа к объектам, точная информация о структуре которых отсутствует

4. Возможность применения способа к многокомпонентным органическим полупроводникам, содержащим гетероатомы.

5. Сокращение времени определения значений ширины запрещенной зоны темновой и фотопроводимости.


СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ШИРИНЫ ЗАПРЕЩЁННОЙ ЗОНЫ ОРГАНИЧЕСКИХ ПОЛУПРОВОДНИКОВ НА ОСНОВЕ ГЕТЕРОАТОМНЫХ СОЕДИНЕНИЙ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 48.
13.02.2018
№218.016.22a7

Способ разработки горизонтальных и пологих рудных тел средней мощности

Изобретение относится к горнодобывающей промышленности Способ разработки горизонтальных и пологих рудных тел средней мощности подэтажным обрушением включает проведение выработок: доставочного орта, буродоставочных штреков, разделяющих рудное тело на панели, погрузочных заездов, разделяющих...
Тип: Изобретение
Номер охранного документа: 0002642193
Дата охранного документа: 24.01.2018
13.02.2018
№218.016.2584

Способ получения энантиоселективного сорбента

Изобретение относится к аналитической химии, в частности к способу создания энантиоселективных сорбентов. Cпособ заключатся в модифицировании графитированной термической сажи Carboblack С или инертного носителя Inerton NAW супрамолекулярной структурой циануровой кислоты. Модифицирование...
Тип: Изобретение
Номер охранного документа: 0002642796
Дата охранного документа: 26.01.2018
10.05.2018
№218.016.3bf7

Способ получения нефтяного высокотемпературного связующего пека

Изобретение относится к области нефтепереработки, в частности к способу получения нефтяных высокотемпературных связующих пеков, и может быть использовано в нефтехимической и нефтеперерабатывающей промышленности. Способ включает термополиконденсацию очищенной от низкокипящих компонентов тяжелой...
Тип: Изобретение
Номер охранного документа: 0002647735
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3f5b

Способ очистки возвратного растворителя

Изобретение относится к производству синтетических каучуков, получаемых растворной полимеризацией, в частности к регенерации возвратного растворителя со стадии выделения каучуков. Способ включает ректификацию возвратного растворителя на колонне, охлаждение паров в дефлегматоре, сбор дистиллята...
Тип: Изобретение
Номер охранного документа: 0002648754
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.4e1e

Способ исследования низкопроницаемых коллекторов с минимальными потерями в добыче

Изобретение относится к области нефтедобывающей промышленности и может быть использовано для определения фильтрационно-емкостных свойств низкопроницаемых пластов. Техническим результатом изобретения является повышение эффективности методов исследования скважин, а также снижение потерь добычи...
Тип: Изобретение
Номер охранного документа: 0002652396
Дата охранного документа: 26.04.2018
25.06.2018
№218.016.6596

Устройство для измерения электрофизических параметров нефти и ее компонентов

Использование: для измерения частотных зависимостей полной электропроводности, ее активной и реактивной составляющих для нефти и ее компонентов. Сущность изобретения заключается в том, что устройство для измерения электрофизических параметров нефти и ее компонентов содержит сенсор,...
Тип: Изобретение
Номер охранного документа: 0002658539
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.6739

Способ повышения эффективности селективного гидрирования

Изобретение относится к технологии промышленного проведения реакции каталитического гидрирования жидкофазных непредельных углеводородов и может быть использовано в нефтеперерабатывающей, нефтехимической и химической отраслях промышленности. Способ формирования комплекта газораспределительных...
Тип: Изобретение
Номер охранного документа: 0002658417
Дата охранного документа: 21.06.2018
01.07.2018
№218.016.69a6

Способ получения нефтяного высокотемпературного связующего пека

Изобретение относится к области нефтепереработки, в частности к способу получения нефтяных высокотемпературных связующих пеков, и может быть использовано в нефтехимической и нефтеперерабатывающей промышленности. Способ включает термополиконденсацию очищенной от низкокипящих компонентов тяжелой...
Тип: Изобретение
Номер охранного документа: 0002659262
Дата охранного документа: 29.06.2018
14.07.2018
№218.016.7130

Биоразлагаемый полимерный композиционный материал на основе смеси полиэтилена низкого давления и вторичного полипропилена

Изобретение относится к области создания биоразлагаемых полимерных композиционных материалов, используемых при разделении и очистке газовых и паровых смесей различной природы, для очистки поверхности воды от нефти и нефтепродуктов, для очистки сточных вод от белковых токсикантов, а также для...
Тип: Изобретение
Номер охранного документа: 0002661230
Дата охранного документа: 13.07.2018
09.08.2018
№218.016.784c

Способ очистки возвратного растворителя

Изобретение относится к производству синтетических каучуков, получаемых растворной полимеризацией, в частности к регенерации возвратного растворителя со стадии выделения каучуков. Способ очистки возвратного растворителя со стадии выделения каучуков включает ректификацию возвратного...
Тип: Изобретение
Номер охранного документа: 0002663295
Дата охранного документа: 03.08.2018
Показаны записи 1-10 из 18.
20.03.2013
№216.012.3011

Способ определения комплекса физико-химических свойств н-алканов

Изобретение относится к области определения физико-химических свойств. Способ определения комплекса физико-химических свойств н-алканов методом спектроскопии заключается в том, что проводят прямое измерение энергии ионизации (ПИ) методом фотоэлектронной спектроскопии, а затем рассчитывают...
Тип: Изобретение
Номер охранного документа: 0002477840
Дата охранного документа: 20.03.2013
20.07.2015
№216.013.62f1

Терморезистивный материал на основе асфальта пропановой деасфальтизации

Изобретение относится к области электронной техники и может быть использовано в технологии получения терморезистивных материалов для приборов, предназначенных для термостатирования объектов при фиксированных значениях температуры, например терморезисторов, нагревательных элементов и регуляторов...
Тип: Изобретение
Номер охранного документа: 0002556876
Дата охранного документа: 20.07.2015
20.08.2015
№216.013.71d3

Способ определения физико-химических свойств многокомпонентных углеводородных систем

Изобретение относится к определению физико-химических свойств веществ и материалов: относительной плотности, средней числовой молекулярной массы, коксуемости по Конрадсону, энергии активации вязкого течения многокомпонентных углеводородных систем. Сущность способа заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002560709
Дата охранного документа: 20.08.2015
10.09.2015
№216.013.7908

Способ диагностики опухолей головного мозга

Изобретение относится к медицине и может быть использовано для диагностики опухолей головного мозга (ОГМ). Для этого путем электронной феноменологической спектроскопии измеряют оптическую плотность плазмы крови человека в видимой и ультрафиолетовой области спектра. При этом предварительно...
Тип: Изобретение
Номер охранного документа: 0002562573
Дата охранного документа: 10.09.2015
13.01.2017
№217.015.8adf

Способ определения относительной плотности нефтяных масляных фракций

Изобретение относится к способам определения относительной плотности нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ определения относительной плотности нефтяных масляных фракций путем определения ее цветовых характеристик,...
Тип: Изобретение
Номер охранного документа: 0002604167
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.a1b0

Способ определения цвета по шкале цнт нефтяных масляных фракций

Изобретение относится к определению цвета по шкале ЦНТ нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ характеризуется тем, что первоначально определяется величина С по процентному содержанию зеленого цвета А в цвете нефтяной...
Тип: Изобретение
Номер охранного документа: 0002606837
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b997

Способ определения температуры вспышки в закрытом тигле нефтяных масляных фракций

Изобретение относится к области контроля свойств углеводородов и касается способа определения температуры вспышки в закрытом тигле нефтяных масляных фракций. Способ включает в себя определения цветовой характеристики координаты красного цвета, линейно коррелирующей с температурой вспышки в...
Тип: Изобретение
Номер охранного документа: 0002615034
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.c08b

Способ определения физико-химических свойств многокомпонентных углеводородных систем

Изобретение относится к определению физико-химических свойств многокомпонентных углеводородных систем. При осуществлении способа определяют цветовые характеристики в колориметрической системе XYZ путем регистрации спектров поглощения образцов в видимой области электромагнитного спектра, затем...
Тип: Изобретение
Номер охранного документа: 0002616519
Дата охранного документа: 17.04.2017
25.08.2017
№217.015.d22d

Способ определения потенциала ионизации молекул полициклических ароматических углеводородов

Изобретение относится к области оптических измерений и касается способа определения потенциалов ионизации молекул полициклических ароматических углеводородов. Способ включает в себя регистрацию спектров поглощения в химически чистых растворах образцов в ультрафиолетовой и видимой области....
Тип: Изобретение
Номер охранного документа: 0002621470
Дата охранного документа: 06.06.2017
25.08.2017
№217.015.d370

Способ определения эффективного потенциала ионизации и эффективного сродства к электрону многокомпонентных ароматических конденсированных сред

Изобретение относится к измерительной технике и может найти применение в процессах определения эффективного потенциала ионизации и эффективного сродства к электрону многокомпонентных ароматических конденсированных сред (органические полупроводники на основе ароматических углеводородов и...
Тип: Изобретение
Номер охранного документа: 0002621481
Дата охранного документа: 06.06.2017
+ добавить свой РИД