×
14.09.2018
218.016.87b1

Результат интеллектуальной деятельности: Способ диагностики уплотнительных поверхностей запорной арматуры

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу диагностики уплотнительных поверхностей запорной арматуры. Способ диагностики уплотнительных поверхностей запорной арматуры, включающий подключение электропривода к запорной арматуре и последующее измерение и фиксацию электрических сигналов, отличающийся тем, что фиксируют электрический сигнал с фазового провода, идущий на электропривод за интервал времени открытия и закрытия запорной арматуры, при этом измерение электрического сигнала осуществляется за счет измерения силы тока с помощью внешнего измерительного преобразователя - токовых клещей, фиксирование сигнала осуществляется осциллографом, выполненным с возможностью построения графиков, отражающих зависимость средних квадратичных значений силы тока. Изобретение обеспечивает повышение точности диагностики уплотнительных поверхностей запорной арматуры. 5 ил.

Изобретение относится устройствам для приведения в движение запорных элементов с иной целью, чем открывание или закрывание клапана, крана или задвижки, например, для притирки, для предотвращения заедания в частности к способу диагностики уплотнительных поверхностей запорной арматуры.

Известно устройство (патент РФ №110160, опубл. 10.11.2011, F16K 31/04) управления запорно-регулирующим органам трубопроводной арматуры, состоящее из электропривода, содержащего электродвигатель, блок датчиков, включающий датчик положения, блок аналогового выхода, блок дискретных выходов, модуля управления в корпусе, содержащего блок силового коммутатора, блоки дискретных входов и выходов, блок обработки данных и диагностики, выполненный с возможностью подключения к внешнему управляющему устройству посредством дискретных сигналов, переносной пульт настройки, кроме этого в электропривод введены: датчик температуры, установленный в обмотке электродвигателя, датчик момента, связанный с дискретными входами модуля управления, в модуль управления - блок тепловой защиты, вход которого предназначен для подключения датчика температуры, а выход соединен с блоком обработки данных, блок сетевого интерфейса для реализации возможности подключения к внешнему управляющему устройству посредством цифровой связи, блок микропереключателей, при этом датчик положения электропривода выполнен бесконтактным, по крайней мере, токовым.

Недостатком способа диагностики реализуемого в данном устройстве является сложность и малая точность диагностики, именно уплотнительных поверхностей запорной арматуры.

Известен способ (патент РФ №2382991, опубл. 27.02.2010, G01H 1/00), включающий внешнее воздействие на устройство, подлежащее диагностике, запись осциллограммы вибраций устройства, подлежащего диагностике, с использованием, по меньшей мере, одного датчика вибрации, частотный анализ полученных результатов измерений, выделение частот, характеризующихся наибольшей выраженностью среди прочих, формирование средневзвешенного спектра частот, измерение спектра собственных колебаний устройства, выделение частот, характеризующихся наибольшей выраженностью среди прочих, формирование разностного спектра частот, характеризующихся наибольшей выраженностью, с его последующей оценкой, отличающийся тем, что в подлежащей анализу запорной арматуре - агрегате, подлежащем диагностике, выделяются составные элементы, образующие переменно-упругие механические связи, предварительно определяется частота собственных колебаний агрегата h, связанная с размерами, и частота собственных колебаний агрегата Fm, связанная с массой тела, производится активное внешнее воздействие на агрегат, подлежащий диагностике, с диапазоном амплитуд, превышающим величину промышленных помех, а также полосу частот, превышающую полосу частот собственных колебаний объекта Fd, связанную с размерами, и полосу частот Fm, связанную с массой тела, с последующим возбуждением во всем агрегате, подлежащем диагностике, а также в каждом из составных элементов агрегата, собственных колебаний, при этом частотный анализ полученных результатов измерений выполняется с использованием преобразования Фурье с последующим формированием спектров возбужденных колебаний для агрегата, подлежащего диагностике, а также составных элементов агрегата, формирование средневзвешенного спектра частот производится без учета частот, характеризующихся наибольшей выраженностью, измерение спектра собственных колебаний производится как для всего агрегата, подлежащего диагностике, так и для составных элементов агрегата, причем среди частот, характеризующихся наибольшей выраженностью, среди прочих выделяются частоты, являющиеся наиболее низкими гармониками в ряду, при формировании разностного спектра частот, характеризующихся наибольшей выраженностью, выполняется оценка средневзвешенного спектра частот резонансного сигнала, а оценка разностного спектра и выделение частот, характеризующихся наибольшей выраженностью, производится для всех составных элементов агрегата, подлежащего диагностике, с последующим выводом о перемещении составных элементов агрегата относительно друг друга с последующим формированием массива значений, качественно характеризующих степень механической взаимосвязи каждого из составных элементов агрегата, подлежащего диагностике.

Недостаткам данного решения является сложность и низкая точность диагностики уплотнительных поверхностей запорной арматуры.

Известен способ (патент РФ №2045007, опубл. 27.09.1995, G01M 3/16), заключающийся в том, что создают в изделии испытательное давление воздуха, отключают изделие от источника давления и регистрируют наличие утечки воздуха из изделия, при этом фиксируют изменение электрического потенциала изделия и по этому изменению регистрируют наличие утечки.

Недостаткам данного решения является невозможность диагностики уплотнительных поверхностей запорной арматуры.

На данный момент предложенный способ диагностики уплотнительных поверхностей запорной арматуры в документах не раскрывается, то есть существует необходимость создания такого способа и применение его в производстве.

Технической задачей заявляемого решения является упрощение конструкции и повышение точности диагностики уплотнительных поверхностей запорной арматуры.

Указанный технический результат достигается тем, что способ диагностики уплотнительных поверхностей запорной арматуры включает подключение электропривода к запорной арматуре и последующее измерение и фиксацию электрических сигналов. Фиксируют электрический сигнал с, по крайней мере, одного из фазовых проводов, идущих на электропривод за интервал времени соответствующий: процессам открытия и закрытия запорной арматуры, при этом измерение электрического сигнала осуществляется за счет измерения силы тока с помощью внешнего измерительного преобразователя - токовых клещей, фиксирование сигнала осуществляется осциллографом.

Осциллограф выполнен с возможностью построения графиков, отражающих зависимость средних квадратичных значений силы тока.

Снимаемый с токовых клещей сигнал поступает на контроллер, где полученные мгновенные значения силы толка преобразуются в среднеквадратичные значения силы тока по формуле:

где i1, i2, …, in - мгновенные значения силы тока, А;

n - количество точек усреднения.

Величина крутящего момента зависит от величины давления в трубопроводе, конструктивных особенностей самой запорной арматуры, а также от технического состояния уплотнительных поверхностей запорного органа. Так как, крутящий момент создается приводом, работающим от электрической сети, то существует зависимость между электрической мощностью в обмотках электродвигателя привода и его крутящим моментом, которая определяется формулой:

где:

М - крутящий момент, Н⋅м;

Р - мощность, Вт;

ω - угловая частота, рад/с;

U - напряжение, В;

I - сила тока, А;

ϕ - сдвиг фаз между U и I, радиан.

То есть о техническом состоянии запорного органа арматуры можно судить по значениям электрической мощности, а при стабильном сетевом напряжении - по значениям силы тока электропривода. Для исключения влияния на работу привода измерения силы тока выполняются с помощью внешнего измерительного преобразователя - токовых клещей, охватывающих силовые фазные провода, по которым подается питание на привод. На фиг. 1 представлена схема измерений, используемых в данном способе.

Измерительная схема содержит: осциллограф - 1, выполняющий контроль, токовые клещи 2, которые измеряют сигнал, один из фазовых силовых проводов 3 идущих на электропривод 4, связанный с запорной арматурой 5. Полученный с токовых клещей сигнал поступает на осциллограф, полученный с токовых клещей сигнал регистрируется осциллографом, при этом полученные мгновенные значения силы толка преобразуются в средне-квадратичные значения силы (СКЗ) тока. Дальнейшая математическая обработка полученных мгновенных значений силы толка производится и заключается в вычислении средних квадратичных значений (СКЗ) силы тока по формуле:

где ii, i2, …, in - мгновенные значения силы тока, А;

n - количество точек усреднения.

Техническое состояние запорного узла определяется во время открытия и закрытия запорной арматуры. На фигуре 2 представлен график зависимости СКЗ силы тока от времени при открытии задвижки с односторонним давлением на затворе. На фигуре 3 представлен фрагмент, изображенный на фигуре 2 «срыв запорного органа». На фигуре 4 представлен график зависимости СКЗ силы тока при закрытии запорной арматуры. На фигуре 5 представлены графики зависимости СКЗ силы тока от времени на всем интервале открытия и закрытия задвижки, с односторонним давлением на затворе - при трех различных состояниях уплотнительной поверхности запорной арматуры. Информативной является как величина тока при «срыве» и открытии/закрытии запорного органа, так и наличие (отсутствие) скачкообразных его изменений, свидетельствующих о появлении дефектов на уплотнительных поверхностях. На фигуре 5 кривая 6 соответствует исправной задвижке, кривая 7 иллюстрирует появление задиров и рисков на уплотнительных поверхностях запорного органа, кривая 8 показывает характер изменения СКЗ силы тока в случае, когда запорная арматура не обеспечивает герметичность запорного органа.

Способ диагностики уплотнительных поверхностей запорной арматуры включает подключение электропривода к запорной арматуре и последующее измерение и фиксацию электрических сигналов, при этом фиксируют электрический сигнал с фазового провода, идущего на электропривод за интервал времени, соответствующий: процессам открытия и закрытия запорной арматуры, так что данный интервал времени включает начало переходного процесса включения электропривода, процесс выборки зазоров запорной арматуры, процесс срыва запорного органа с односторонним давлением на затворе арматуры, процесс хода на открытие с односторонним давлением на затворе арматуры, начало переходного процесса на закрытие на электроприводе с односторонним давлением на затворе арматуры, процесс уменьшения зазоров при ходе на закрытие и процесс установления запорного органа с односторонним давлением на затворе арматуры, а измерение электрического сигнала осуществляется за счет измерения силы тока с помощью внешнего измерительного преобразователя - токовых клещей, фиксирование измеренного с помощью внешнего измерительного преобразователя - токовых клещей электрического сигнала осуществляется с помощью запоминающего осциллографа, при этом состояние уплотнительных поверхностей запорной арматуры определяется по графикам зависимости средних квадратичных значений силы тока (см. фиг. 2-5).

Таким образом, достигается техническая задача - упрощение конструкции и повышение точности диагностики уплотнительных поверхностей запорной арматуры.


Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Источник поступления информации: Роспатент

Показаны записи 141-150 из 151.
15.05.2023
№223.018.5a0b

Носитель датчиков для контроля трубопроводов с использованием дифракционно-временного метода tofd

Использование: для проведения внутритрубного контроля трубопровода. Сущность изобретения заключается в том, что носитель датчиков выполнен с возможностью установки на внутритрубном инспекционном приборе и имеет множество датчиков, распределенных по его окружности. Указанное множество датчиков...
Тип: Изобретение
Номер охранного документа: 0002761415
Дата охранного документа: 08.12.2021
16.05.2023
№223.018.6285

Система неразрушающего контроля методом tofd (варианты)

Использование: для проведения ультразвукового неразрушающего контроля методом ToFD. Сущность изобретения заключается в том, что система неразрушающего контроля методом ToFD согласно вариантам изобретения состоит из комбинаций излучателя и приемника, основанных на четырех вариантах конструкции...
Тип: Изобретение
Номер охранного документа: 0002785788
Дата охранного документа: 13.12.2022
16.05.2023
№223.018.63df

Способ изготовления конструкции узла сопряжения днища резервуара с его стенкой

Изобретение относится к области строительства резервуаров, в частности к сварке угловых соединений стенки резервуара с днищем из листового проката из низкоуглеродистых и низколегированных сталей с временным сопротивлением разрыву до 588 МПа и эквивалентом углерода (С) от 0,28 до 0,46 с...
Тип: Изобретение
Номер охранного документа: 0002772702
Дата охранного документа: 24.05.2022
16.05.2023
№223.018.63e0

Устройство для улавливания нефти, нефтепродуктов и взвешенных веществ в производственно-дождевых сточных водах

Изобретение относится к устройствам очистки поверхностных и производственных сточных вод от нефти (нефтепродуктов) и взвешенных веществ, поступающих из резервуаров-накопителей перед подачей их на очистные сооружения или поверхностных дождевых сточных вод с территорий объектов магистральных...
Тип: Изобретение
Номер охранного документа: 0002772482
Дата охранного документа: 20.05.2022
16.05.2023
№223.018.63e8

Внутритрубный многоканальный профилемер с использованием вихретоковых датчиков

Изобретение относится к устройствам для неразрушающего контроля магистральных трубопроводов на основе вихретоковой дефектоскопии. Технический результат заключается в повышении точности дефектоскопии. Сущность изобретения заключается в том, что внутритрубный многоканальный профилемер содержит по...
Тип: Изобретение
Номер охранного документа: 0002772075
Дата охранного документа: 16.05.2022
17.05.2023
№223.018.646f

Способ контроля трубопровода с использованием электромагнитно-акустической технологии

Изобретение относится к области неразрушающего контроля технического состояния нефтегазопроводов и нефтепродуктопроводов ультразвуковым методом с использованием электромагнитно-акустических преобразователей. Сущность изобретения заключается в том, что при перемещении вдоль намагниченной стенки...
Тип: Изобретение
Номер охранного документа: 0002794338
Дата охранного документа: 17.04.2023
22.05.2023
№223.018.6b77

Способ определения прогнозного объема нестандартного дизельного топлива при проведении внутритрубной очистки и диагностирования

Изобретение относится к области трубопроводного транспорта. Изобретение позволяет обеспечить сохранение качества дизельного топлива (ДТ) при проведении внутритрубной очистки и диагностирования. Предложенный способ включает отбор ходовых проб ДТ, фиксацию объема образовавшейся смеси ДТ и...
Тип: Изобретение
Номер охранного документа: 0002795718
Дата охранного документа: 11.05.2023
01.06.2023
№223.018.749c

Оснастка для стендовых испытаний магистральных насосов

Изобретение относится к машиностроению, а именно к устройству крепления стендовых трубопроводов к патрубкам испытываемого насоса, и может быть использовано при соединении испытываемого насоса с трубопроводами стенда для проведения испытания магистральных центробежных насосов с целью определения...
Тип: Изобретение
Номер охранного документа: 0002733795
Дата охранного документа: 06.10.2020
16.06.2023
№223.018.7a6f

Способ очистки дизельного топлива

Изобретение относится к способу очистки дизельного топлива от дисперсных механических загрязнений. Способ включает в себя введение глицерина в количестве 5-10 мас. % в дизельное топливо при его перемешивании в течение 80-170 мин с последующим отстаиванием смеси в течение 12 ч. Технический...
Тип: Изобретение
Номер охранного документа: 0002730318
Дата охранного документа: 21.08.2020
16.06.2023
№223.018.7a75

Буровой раствор для строительства подводных переходов трубопроводов методом наклонно-направленного бурения

Изобретение относится к буровым растворам и может быть использовано в области трубопроводного транспорта, в частности, при строительстве подводных переходов трубопроводов. Технический результат - обеспечение возможности укрепления несцементированных грунтов и повышение способности выноса...
Тип: Изобретение
Номер охранного документа: 0002730145
Дата охранного документа: 19.08.2020
+ добавить свой РИД