×
09.09.2018
218.016.8518

Результат интеллектуальной деятельности: СПОСОБ ВЫЯВЛЕНИЯ ГЕОДИНАМИЧЕСКИХ ЗОН, ПЕРЕСЕКАЮЩИХ МАГИСТРАЛЬНЫЕ ТРУБОПРОВОДЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к эксплуатации магистральных газопроводов (МГ), в частности к магистральным газопроводам, пересекающим геодинамические зоны (ГДЗ), к которым можно отнести: разломы разного характера, движения земных блоков, надвигов (горных ударов), карсты и т.п. Целью изобретения является прямой способ выявления ГДЗ, пересекающих магистральные газопроводы. Указанная цель достигается следующим образом. После окончания строительства или при плановой диагностике средствами ВТД, проводится контрольное обследование участка МГ пропуском снарядов ВТД, оснащенного устройством для прямого измерения радиусов упругого и упругопластического изгиба. Это позволяет определить фактические радиусы кривизны и построить их в плоскости изгиба, зафиксировав направление изгиба. По данным повторных пропусков снарядов ВТД выявляют участки, где заметна устойчивая тенденция уменьшения радиуса изгиба. При этом радиусы изгиба определяют для каждого из сопрягаемых участков с противоположными направлениями изгиба трубопровода, по обе стороны предполагаемой границы геодинамической зоны. Точка сопряжения двух участков с противоположными направлениями изгиба является предполагаемой границей геодинамической зоны. Изобретение позволяет, без проведения сложного комплекса аэрокосмических, геолого-геофизических исследований, средствами ВТД, по динамике изменения радиусов изгиба трубопровода выявлять ГДЗ, пересекающие МГ. 5 ил.

Изобретение относится к эксплуатации магистральных газопроводов (МГ), в частности выявлению геодинамических зон (ГДЗ), к которым можно отнести: разломы разного характера, движения земных блоков, надвигов (горных ударов), карсты и т.п.

Если допустить, что положение МГ изменяется под влиянием перемещений блоков в ГДЗ, то напряжения стенки трубы должны изменяться пропорционально смещению трубопровода.

Пояснения по ГДЗ. По направлению движения земных блоков, изменение рельефа ГДЗ можно разделить на 4 группы:

- левый и правый блоки идут вверх в одном направлении с разными скоростями;

- левый и правый блоки идут вниз в одном направлении с разными скоростями;

- блоки движутся с одинаковыми скоростями: оба поднимаются, оба опускаются;

- блоки движутся в противоположных направлениях ([1] Давлетов М.И. Исходные параметры для расшифровки геологических факторов аварий трубопроводов на территории Башкортостана. V Российский энергетический форум. Энергоэффективность. Проблемы и решения: 2005. - С. 232-237).

Аналогом изобретения является способ, предложенный в ([2] Фигаров Э.Н. Оценка напряженного состояния подземного трубопровода, пересекающего зоны активных тектонических разломов // Трубопроводный транспорт: теория и практика. - 2012. - №6 (34). - С. 39-42). В качестве расчетной схемы для оценки напряженно-деформированного состояния трубопровода в зонах активных тектонических разломов (АТР) (ГДЗ - более общее определение) приняты смещающиеся друг относительно друга в вертикальной плоскости на величину δ, две тектонические плиты (полубесконечные пространства), которые вовлекают в движение находящийся в зоне АТР трубопровод.

На фиг. 1 показана модель трубопровода в исходном, прямолинейном состоянии, например, на период окончания его строительства. На фиг. 2 показана модель трубопровода находящегося в эксплуатации длительное время после смещения, в результате воздействия АТР. На фиг. 1, 2 показаны позиции 1 - поверхность земли, 2 - ось трубопровода, 3 - ось разлома.

Приведенная на фиг. 2 схема соответствует приведенному в [1] случаю, когда блоки движутся в противоположных направлениях. Принимается, что на достаточно большом удалении от оси разлома концы рассматриваемого участка трубопровода смещаются вместе на ту же величину.

Недостатком аналога является то, что он отражает механизм силового воздействия ГДЗ (АТР) на МГ, но не показывает как и какими средствами выявлять ГДЗ, пересекающие МГ.

Наиболее близким техническим решением является ([3] Аскаров P.M., Мазитов Д.Г., Чучкалов М.В., Кукушкин А.Н. Выявление и оценка напряженно-деформированного состояния магистральных газопроводов, пересекающих геодинамические зоны // Газовая промышленность. - 2015. -№11. - С. 47-49), где на примере ГДЗ, выявленного традиционными методами приводится технология выявления потенциально опасных участков (ПОУ) средствами внутритрубной дефектоскопии (ВТД), которая подтвердила наличие ГДЗ.

Пояснение «по традиционной технологии», под которой подразумевается поэтапное выявление ГДЗ ([4] Аскаров P.M., Мазитов Д.Г., Рафиков С.К. Прогноз напряженно-деформированного состояния участков газопроводов, пересекающих геодинамические зоны //Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. - 2015, №1 - С. 66-73.). ГДЗ выявлялось и обследовалось в два основных этапа:

- по результатам изучения опубликованной и архивной литературы, полевых рекогносцировочных работ, анализа космо- и аэрофотоснимков разных масштабов на район исследований, с учетом данных микросейсмической карты, выбраны участки разломов, тектонически активных или геодинамических зон;

- в качестве метода научного исследования выбранных участков использовано геолого-геофизическое обследование коридора газопроводов сейсморазведкой, методом сейсмических преломленных волн и электроразведкой методом вертикального электрического зондирования.

Пояснение по технологии выявления ПОУ средствами ВТД, под которой подразумевается выявление потенциально опасных участков по ([5] Пат. №2602327 РФ. Способ определения потенциально опасных участков трубопровода с непроектным уровнем напряженно-деформированного состояния. / P.P. Усманов, М.В. Чучкалов, P.M. Аскаров, Р.В. Закирьянов (РФ). Заявлено 08.04.2015; Опубл. 20.11.2016, Бюл. №32), который позволяет определить фактические радиусы изгиба по всей трассе.

На фиг. 3 приведена схема ГДЗ, пересекающего МГ, полученная традиционным методом. По обе стороны границы ГДЗ земные блоки поднимаются вверх, в середине - земной блок опускается вниз. Пояснения к схеме (фиг. 3): ось магистрального трубопровода - 2, где 4 и 6 - места шурфовок, пересекает ручей (овраг) - 5. Длина ГДЗ составляет 250 м. Границы ГДЗ: южная - 7 и северная - 8. Скорость смещения северного и южного блоков V1 вверх составляет около + 1,0 мм/год. Скорость опускания ГДЗ в центре Von ГДЗ вниз около - 0,9 мм/год. Прослеживается связь схемы фиг. 3 со схемой фиг. 2: северный - I и южный III блоки поднимаются вверх, центр II опускается вниз.

На фиг. 4 приводится график радиусов кривизны МГ, пересекающего ГДЗ (фиг. 3), полученный средствами ВТД. Способ позволяет определить фактический радиус изгиба МГ и его направление, например, выявлен непроектный радиус изгиба на трубе №8103, выпуклый вниз - 9 [3] ([6] Отчет по внутритрубной дефектоскопии газопровода Уренгой-Петровск (КС Алмазная - КС Поляна), НПО «Спецнефтегаз», 2015. - 974 с.).

При наложении графика радиусов кривизны (фиг. 4), на схему ГДЗ, (фиг. 3), показано, что на границах ГДЗ (линейные координаты 89490 м и 89740 м) радиусы изгиба максимальны, а по обеим сторонам - сопрягаемые радиусы изгиба имеют противоположные направления. Таким образом, подтверждается наличие ГДЗ и ее границ, выявленной по традиционной технологии ([3] Аскаров P.M., Мазитов Д.Г., Чучкалов М.В., Кукушкин А.Н. Выявление и оценка напряженно-деформированного состояния магистральных газопроводов, пересекающих геодинамические зоны // Газовая промышленность. - 2015. - №11. - С. 47-49).

Кроме того, следует отметить вероятностный характер полученных результатов, пояснения ([4] Аскаров P.M., Мазитов Д.Г., Рафиков С.К. Прогноз напряженно-деформированного состояния участков газопроводов, пересекающих геодинамические зоны // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. - 2015, №1 - С. 66-73.) проводился с использованием ряда допущений, заключающихся в том что:

- с достаточной точностью определены направление и скорость смещения земных блоков;

- трубопровод смещается в полном соответствии с смещением земных блоков;

- измерение НДС проводилось в точке максимальных напряжений;

- удовлетворительная точность измерения НДС и т.п.

К недостаткам прототипа можно отнести сложность, многоэтапность выявления собственно ГДЗ и определения его границ, а также вероятностный характер результатов.

Целью изобретения является прямой способ выявления ГДЗ, пересекающих магистральные газопроводы. Способ распространяется на магистральные газопроводы, приспособленные для пропуска снарядов ВТД.

Указанная цель достигается тем, что в способе выявления геодинамических зон, пересекающих магистральные газопроводы, когда смещающиеся относительно друг друга блоки геодинамических зон, вовлекают в движение магистральный газопровод, который смещается в направлении движения блоков, заключающемся в измерении средствами внутритрубной дефектоскопии образовавшихся радиусов изгиба магистрального газопровода, согласно изобретению, осуществляют повторные запуски снарядов ВТД, измеряют образовавшиеся радиусы изгиба магистрального газопровода, по данным повторных пропусков снарядов внутритрубной диагностики выявляют участки с устойчивой тенденцией уменьшения радиуса изгиба, что свидетельствует о силовом воздействии на магистральные газопроводы, характерном для геодинамических зон.

При этом уменьшающиеся с каждым пропуском снаряда, радиусы изгиба определяют для каждого из сопрягаемых участков с противоположными направлениями изгиба трубопровода. Точка сопряжения двух сопрягаемых участков с противоположными направлениями изгиба является предполагаемой границей геодинамической зоны.

Способ осуществляется следующим образом.

После окончания строительства или при плановой диагностике средствами ВТД, проводят контрольное обследование участка МГ пропуском снаряда ВТД, оснащенного устройством для прямого измерения радиусов упругого и упруго-пластического изгиба ([5] Пат. №2602327 РФ. Способ определения потенциально опасных участков трубопровода с непроектным уровнем напряженно-деформированного состояния. / P.P. Усманов, М.В. Чучкалов, P.M. Аскаров, Р.В. Закирьянов. Заявлено 08.04.2015; Опубл. 20.11.2016, Бюл. №32). Это позволяет определить фактические радиусы изгиба каждого обследуемого участка (трубы), как это нашло отражение на фиг. 4. Таким образом, фиксируют исходное состояние магистрального газопровода, прямолинейное или радиусом ρ и направление его изгиба.

При последующих пропусках снарядов ВТД (один раз в 2-3 года) для каждого участка МГ определяют радиусы изгиба участков МГ и фиксируют тенденцию изменения радиуса. Если выявлена устойчивая тенденция: для прямолинейных участков - появление радиуса; для участков с имеющимся радиусом - уменьшение радиуса, то это служит прямым подтверждением смещения трубопровода, увлекаемого блоками в плоскости изгиба. При этом радиусы изгиба определяются для каждого из сопрягаемых участков с противоположными направлениями изгиба трубопровода, по обе стороны предполагаемой границы геодинамической зоны. Точка сопряжения двух соседних участков с противоположными направлениями изгиба является предполагаемой границей геодинамической зоны.

Для наглядности, на фиг. 5 приводится схема уменьшения радиусов изгиба с ρ - IV на ρn - V под воздействием смещающихся относительно друг друга блоков ГДЗ. На фиг. 5 показаны позиции: 2 - ось трубопровода, 10 - граница ГДЗ.

Изобретение позволяет, без проведения сложного комплекса аэрокосмических, геолого-геофизических исследований (технологий), средствами ВТД, по динамике изменения радиусов изгиба трубопровода выявлять ГДЗ, пересекающие МГ.

Способ выявления геодинамических зон, пересекающих магистральные газопроводы, заключающийся в измерении средствами внутритрубной дефектоскопии образовавшихся радиусов изгиба магистрального газопровода, отличающийся тем, что при каждом повторном пропуске снаряда внутритрубной диагностики измеряют радиусы изгиба магистрального газопровода, выявляют участки с устойчивым и закономерным изменением радиуса изгиба, определяют точку сопряжения двух соседних участков с противоположными направлениями изгиба и эту точку принимают за точку пересечения границы геодинамических зон с осью газопровода.
СПОСОБ ВЫЯВЛЕНИЯ ГЕОДИНАМИЧЕСКИХ ЗОН, ПЕРЕСЕКАЮЩИХ МАГИСТРАЛЬНЫЕ ТРУБОПРОВОДЫ
СПОСОБ ВЫЯВЛЕНИЯ ГЕОДИНАМИЧЕСКИХ ЗОН, ПЕРЕСЕКАЮЩИХ МАГИСТРАЛЬНЫЕ ТРУБОПРОВОДЫ
СПОСОБ ВЫЯВЛЕНИЯ ГЕОДИНАМИЧЕСКИХ ЗОН, ПЕРЕСЕКАЮЩИХ МАГИСТРАЛЬНЫЕ ТРУБОПРОВОДЫ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 167.
29.12.2017
№217.015.f213

Способ получения эфиров сорбитана и жирных кислот

Изобретение относится к способу получения сложных эфиров сорбитана, являющихся поверхностно-активными веществами, который может быть использован в химической промышленности. В предложенном способе получения сложных эфиров жирных кислот и сорбитана растительные масла взаимодействуют...
Тип: Изобретение
Номер охранного документа: 0002636743
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f24d

Способ производства сжиженного природного газа

Изобретение относится к газовой промышленности и криогенной технике, конкретно к технологиям сжижения природного газа на газораспределительных станциях. Способ производства сжиженного природного газа включает подачу потока сжатого природного газа из магистрального трубопровода высокого давления...
Тип: Изобретение
Номер охранного документа: 0002636966
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f353

Способ предупреждения гидратообразования в промысловых системах сбора газа

Изобретение относится к области добычи природного газа, в частности к области предупреждения гидратообразования в системах промыслового сбора газа преимущественно в условиях Крайнего Севера. Технический результат - оптимизация расхода ингибитора гидратообразования и повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002637541
Дата охранного документа: 05.12.2017
29.12.2017
№217.015.f4ec

Система автоматической подачи ингибитора гидратообразования в шлейфы газового промысла

Изобретение относится к области внутрипромыслового сбора газа, а именно к системам ввода ингибитора образования гидратов в газовые шлейфы. Система содержит емкость с ингибитором, трубопроводы подачи ингибитора к защищаемым точкам, исполнительный механизм, обеспечивающий прямую управляемую...
Тип: Изобретение
Номер охранного документа: 0002637245
Дата охранного документа: 01.12.2017
19.01.2018
№218.015.ffc6

Дорожно-строительный композиционный материал на основе бурового шлама

Изобретение относится к строительным материалам, используемым для укладки в качестве дорожного покрытия дороги IV категории, а также для сооружения насыпей земляного полотна и укрепления грунтовых оснований строительных и других площадок. Технический результат - увеличение прочности покрытий и...
Тип: Изобретение
Номер охранного документа: 0002629634
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00b4

Способ получения этил(2е, 4е)-5-хлорпента-2,4-диеноата

Изобретение относится к области органической химии, в частности к способу получения этил(2E,4E)-5-хлорпента-2,4-диеноата. Этил(2E,4E)-5-хлорпента-2,4-диеноат является перспективным исходным соединением в синтезе (2E,4E)-диеновых кислот и их производных. Результаты изобретения могут быть...
Тип: Изобретение
Номер охранного документа: 0002629665
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.0142

Установка для раздельного измерения дебита нефтяных скважин по нефти, газу и воде

Изобретение относится к измерительной технике и предназначено для измерения продукции нефтяных и газоконденсатных скважин раздельно по компонентам - нефти, газу и воде, в том числе и как эталонное средство для уточнения среднесуточных дебитов скважины по компонентам. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002629787
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.015d

Способ очистки непроточных водоёмов в условиях непрерывного поступления нефтепродуктов

Изобретение относится к способу очистки непроточных водоемов от нефтепродуктов и тяжелых металлов, загрязненных техногенными потоками водонефтяных эмульсий, поступающих от действующих многие годы предприятий нефтехимии и нефтепереработки. Способ осуществляется путем использования сорбента,...
Тип: Изобретение
Номер охранного документа: 0002629786
Дата охранного документа: 04.09.2017
19.01.2018
№218.016.03fd

Способ очистки непроточных водоёмов от тяжелых металлов и нефтепродуктов

Изобретение относится к очистке воды в непроточных водоемах от нефтепродуктов и тяжелых металлов. Способ очистки непроточных водоемов от тяжелых металлов и нефтепродуктов включает использование сорбента, коагулянта и грубодисперсного минерального вещества. Извлекают донный осадок и воду....
Тип: Изобретение
Номер охранного документа: 0002630552
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.040d

Устройство для измерения толщины граничных слоев смазочных материалов

Изобретение относится к устройствам для измерения толщины граничных слоев смазочных материалов и может найти применение в нефтегазовой отрасли. Сущность: устройство включает стол-основание (1), закрепленную на нем вертикально цилиндрическую трубку (3), крышку (4) и микрометр (8). Поверх крышки...
Тип: Изобретение
Номер охранного документа: 0002630545
Дата охранного документа: 11.09.2017
Показаны записи 21-30 из 36.
29.05.2018
№218.016.54a8

Состав для очистки теплообменного оборудования от отложений

Изобретение относится к теплоэнергетике и может быть использовано при обслуживании в процессе текущей эксплуатации и ремонте промышленного теплообменного оборудования, систем отопления жилых зданий и производственных помещений и другого теплоэнергетического оборудования, где в качестве...
Тип: Изобретение
Номер охранного документа: 0002654070
Дата охранного документа: 16.05.2018
09.06.2018
№218.016.5cd9

Способ оценки напряженно-деформированного состояния магистрального трубопровода с дефектными сварными стыками

Изобретение относится к эксплуатации магистральных трубопроводов и может быть использовано при оценке напряженно-деформированного состояния (НДС) и остаточного ресурса дефектных сварных стыков, выявленных при проведении внутритрубной диагностики. Способ оценки НДС изогнутых участков...
Тип: Изобретение
Номер охранного документа: 0002656163
Дата охранного документа: 31.05.2018
11.06.2018
№218.016.60d2

Способ определения косины кольцевого сварного стыка стальных труб

Изобретение относится к области эксплуатации магистральных трубопроводов и может быть использовано при диагностике сварных стыков. Способ включает размещение линейки по продольной образующей одной из труб, при этом между линейкой и второй трубой вставляют калиброванный щуп, поперечный размер...
Тип: Изобретение
Номер охранного документа: 0002657270
Дата охранного документа: 09.06.2018
07.02.2019
№219.016.b795

Система регулирования уплотнения центробежных компрессоров

Изобретение относится к области газовой промышленности, в частности к компрессорным станциям магистрального газопровода. В действующей схеме системы регулирования уплотнения центробежного компрессора, включающей торцевые уплотнения, газоподогреватель, аккумулятор масла, основной и резервный...
Тип: Изобретение
Номер охранного документа: 0002679043
Дата охранного документа: 05.02.2019
29.03.2019
№219.016.edeb

Узел сбора конденсата системы очистки технологического газа компрессорной станции

Изобретение относится к области газовой промышленности, в частности к объектам магистрального газопровода, и может быть использовано для сокращения потерь природного газа при эксплуатации узла сбора конденсата системы очистки технологического газа компрессорной станции. Задачей изобретения...
Тип: Изобретение
Номер охранного документа: 0002683200
Дата охранного документа: 26.03.2019
25.04.2019
№219.017.3b3c

Способ опорожнения участка газопровода

Изобретение относится к трубопроводному транспорту газа и предназначено для опорожнения участков газопроводных линий от содержащегося в них газа перед выполнением на них ремонтно-восстановительных работ и врезок. Техническое решение направлено на разработку эффективного способа опорожнения...
Тип: Изобретение
Номер охранного документа: 0002685784
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3c5e

Способ ремонта потенциально опасного участка газопровода

Изобретение относится к эксплуатации магистральных газопроводов, в частности к эксплуатации потенциально опасных участков (ПОУ) с повышенным, ненормативным уровнем напряженно-деформированного состояния (НДС). Целью изобретения является разработка способа ремонта ПОУ надземных участков...
Тип: Изобретение
Номер охранного документа: 0002686133
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d74

Система тепловодоснабжения компрессорной станции

Изобретение относится к вспомогательному оборудованию компрессорных станций магистрального газопровода. Система тепловодоснабжения компрессорной станции выполняется с возможностью отключения оборудования линии исходной воды с обеспечением подпитки исходной водой в аварийном режиме, снабжается...
Тип: Изобретение
Номер охранного документа: 0002686249
Дата охранного документа: 24.04.2019
06.06.2019
№219.017.73f4

Состав карбюризатора для цементации деталей из низкоуглеродистой стали

Изобретение относится к области цементации стальных изделий и может быть использовано для поверхностного упрочнения деталей машин и механизмов путем их термообработки в среде твердого карбюризатора. Состав карбюризатора для цементации изделий из низкоуглеродистой стали содержит, в мас.%:...
Тип: Изобретение
Номер охранного документа: 0002690630
Дата охранного документа: 04.06.2019
22.06.2019
№219.017.8e72

Способ оптимизации температурных напряжений при ремонте магистральных трубопроводов

Изобретение относится к эксплуатации подземных магистральных трубопроводов (МТ), в части производства ремонтных работ по устранению дефектных участков. Целью изобретения является разработка способа оптимизации температурных напряжений при ремонте участка МТ, возникающих от температурного...
Тип: Изобретение
Номер охранного документа: 0002692185
Дата охранного документа: 21.06.2019
+ добавить свой РИД