×
09.09.2018
218.016.8518

Результат интеллектуальной деятельности: СПОСОБ ВЫЯВЛЕНИЯ ГЕОДИНАМИЧЕСКИХ ЗОН, ПЕРЕСЕКАЮЩИХ МАГИСТРАЛЬНЫЕ ТРУБОПРОВОДЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к эксплуатации магистральных газопроводов (МГ), в частности к магистральным газопроводам, пересекающим геодинамические зоны (ГДЗ), к которым можно отнести: разломы разного характера, движения земных блоков, надвигов (горных ударов), карсты и т.п. Целью изобретения является прямой способ выявления ГДЗ, пересекающих магистральные газопроводы. Указанная цель достигается следующим образом. После окончания строительства или при плановой диагностике средствами ВТД, проводится контрольное обследование участка МГ пропуском снарядов ВТД, оснащенного устройством для прямого измерения радиусов упругого и упругопластического изгиба. Это позволяет определить фактические радиусы кривизны и построить их в плоскости изгиба, зафиксировав направление изгиба. По данным повторных пропусков снарядов ВТД выявляют участки, где заметна устойчивая тенденция уменьшения радиуса изгиба. При этом радиусы изгиба определяют для каждого из сопрягаемых участков с противоположными направлениями изгиба трубопровода, по обе стороны предполагаемой границы геодинамической зоны. Точка сопряжения двух участков с противоположными направлениями изгиба является предполагаемой границей геодинамической зоны. Изобретение позволяет, без проведения сложного комплекса аэрокосмических, геолого-геофизических исследований, средствами ВТД, по динамике изменения радиусов изгиба трубопровода выявлять ГДЗ, пересекающие МГ. 5 ил.

Изобретение относится к эксплуатации магистральных газопроводов (МГ), в частности выявлению геодинамических зон (ГДЗ), к которым можно отнести: разломы разного характера, движения земных блоков, надвигов (горных ударов), карсты и т.п.

Если допустить, что положение МГ изменяется под влиянием перемещений блоков в ГДЗ, то напряжения стенки трубы должны изменяться пропорционально смещению трубопровода.

Пояснения по ГДЗ. По направлению движения земных блоков, изменение рельефа ГДЗ можно разделить на 4 группы:

- левый и правый блоки идут вверх в одном направлении с разными скоростями;

- левый и правый блоки идут вниз в одном направлении с разными скоростями;

- блоки движутся с одинаковыми скоростями: оба поднимаются, оба опускаются;

- блоки движутся в противоположных направлениях ([1] Давлетов М.И. Исходные параметры для расшифровки геологических факторов аварий трубопроводов на территории Башкортостана. V Российский энергетический форум. Энергоэффективность. Проблемы и решения: 2005. - С. 232-237).

Аналогом изобретения является способ, предложенный в ([2] Фигаров Э.Н. Оценка напряженного состояния подземного трубопровода, пересекающего зоны активных тектонических разломов // Трубопроводный транспорт: теория и практика. - 2012. - №6 (34). - С. 39-42). В качестве расчетной схемы для оценки напряженно-деформированного состояния трубопровода в зонах активных тектонических разломов (АТР) (ГДЗ - более общее определение) приняты смещающиеся друг относительно друга в вертикальной плоскости на величину δ, две тектонические плиты (полубесконечные пространства), которые вовлекают в движение находящийся в зоне АТР трубопровод.

На фиг. 1 показана модель трубопровода в исходном, прямолинейном состоянии, например, на период окончания его строительства. На фиг. 2 показана модель трубопровода находящегося в эксплуатации длительное время после смещения, в результате воздействия АТР. На фиг. 1, 2 показаны позиции 1 - поверхность земли, 2 - ось трубопровода, 3 - ось разлома.

Приведенная на фиг. 2 схема соответствует приведенному в [1] случаю, когда блоки движутся в противоположных направлениях. Принимается, что на достаточно большом удалении от оси разлома концы рассматриваемого участка трубопровода смещаются вместе на ту же величину.

Недостатком аналога является то, что он отражает механизм силового воздействия ГДЗ (АТР) на МГ, но не показывает как и какими средствами выявлять ГДЗ, пересекающие МГ.

Наиболее близким техническим решением является ([3] Аскаров P.M., Мазитов Д.Г., Чучкалов М.В., Кукушкин А.Н. Выявление и оценка напряженно-деформированного состояния магистральных газопроводов, пересекающих геодинамические зоны // Газовая промышленность. - 2015. -№11. - С. 47-49), где на примере ГДЗ, выявленного традиционными методами приводится технология выявления потенциально опасных участков (ПОУ) средствами внутритрубной дефектоскопии (ВТД), которая подтвердила наличие ГДЗ.

Пояснение «по традиционной технологии», под которой подразумевается поэтапное выявление ГДЗ ([4] Аскаров P.M., Мазитов Д.Г., Рафиков С.К. Прогноз напряженно-деформированного состояния участков газопроводов, пересекающих геодинамические зоны //Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. - 2015, №1 - С. 66-73.). ГДЗ выявлялось и обследовалось в два основных этапа:

- по результатам изучения опубликованной и архивной литературы, полевых рекогносцировочных работ, анализа космо- и аэрофотоснимков разных масштабов на район исследований, с учетом данных микросейсмической карты, выбраны участки разломов, тектонически активных или геодинамических зон;

- в качестве метода научного исследования выбранных участков использовано геолого-геофизическое обследование коридора газопроводов сейсморазведкой, методом сейсмических преломленных волн и электроразведкой методом вертикального электрического зондирования.

Пояснение по технологии выявления ПОУ средствами ВТД, под которой подразумевается выявление потенциально опасных участков по ([5] Пат. №2602327 РФ. Способ определения потенциально опасных участков трубопровода с непроектным уровнем напряженно-деформированного состояния. / P.P. Усманов, М.В. Чучкалов, P.M. Аскаров, Р.В. Закирьянов (РФ). Заявлено 08.04.2015; Опубл. 20.11.2016, Бюл. №32), который позволяет определить фактические радиусы изгиба по всей трассе.

На фиг. 3 приведена схема ГДЗ, пересекающего МГ, полученная традиционным методом. По обе стороны границы ГДЗ земные блоки поднимаются вверх, в середине - земной блок опускается вниз. Пояснения к схеме (фиг. 3): ось магистрального трубопровода - 2, где 4 и 6 - места шурфовок, пересекает ручей (овраг) - 5. Длина ГДЗ составляет 250 м. Границы ГДЗ: южная - 7 и северная - 8. Скорость смещения северного и южного блоков V1 вверх составляет около + 1,0 мм/год. Скорость опускания ГДЗ в центре Von ГДЗ вниз около - 0,9 мм/год. Прослеживается связь схемы фиг. 3 со схемой фиг. 2: северный - I и южный III блоки поднимаются вверх, центр II опускается вниз.

На фиг. 4 приводится график радиусов кривизны МГ, пересекающего ГДЗ (фиг. 3), полученный средствами ВТД. Способ позволяет определить фактический радиус изгиба МГ и его направление, например, выявлен непроектный радиус изгиба на трубе №8103, выпуклый вниз - 9 [3] ([6] Отчет по внутритрубной дефектоскопии газопровода Уренгой-Петровск (КС Алмазная - КС Поляна), НПО «Спецнефтегаз», 2015. - 974 с.).

При наложении графика радиусов кривизны (фиг. 4), на схему ГДЗ, (фиг. 3), показано, что на границах ГДЗ (линейные координаты 89490 м и 89740 м) радиусы изгиба максимальны, а по обеим сторонам - сопрягаемые радиусы изгиба имеют противоположные направления. Таким образом, подтверждается наличие ГДЗ и ее границ, выявленной по традиционной технологии ([3] Аскаров P.M., Мазитов Д.Г., Чучкалов М.В., Кукушкин А.Н. Выявление и оценка напряженно-деформированного состояния магистральных газопроводов, пересекающих геодинамические зоны // Газовая промышленность. - 2015. - №11. - С. 47-49).

Кроме того, следует отметить вероятностный характер полученных результатов, пояснения ([4] Аскаров P.M., Мазитов Д.Г., Рафиков С.К. Прогноз напряженно-деформированного состояния участков газопроводов, пересекающих геодинамические зоны // Проблемы сбора, подготовки и транспорта нефти и нефтепродуктов. - 2015, №1 - С. 66-73.) проводился с использованием ряда допущений, заключающихся в том что:

- с достаточной точностью определены направление и скорость смещения земных блоков;

- трубопровод смещается в полном соответствии с смещением земных блоков;

- измерение НДС проводилось в точке максимальных напряжений;

- удовлетворительная точность измерения НДС и т.п.

К недостаткам прототипа можно отнести сложность, многоэтапность выявления собственно ГДЗ и определения его границ, а также вероятностный характер результатов.

Целью изобретения является прямой способ выявления ГДЗ, пересекающих магистральные газопроводы. Способ распространяется на магистральные газопроводы, приспособленные для пропуска снарядов ВТД.

Указанная цель достигается тем, что в способе выявления геодинамических зон, пересекающих магистральные газопроводы, когда смещающиеся относительно друг друга блоки геодинамических зон, вовлекают в движение магистральный газопровод, который смещается в направлении движения блоков, заключающемся в измерении средствами внутритрубной дефектоскопии образовавшихся радиусов изгиба магистрального газопровода, согласно изобретению, осуществляют повторные запуски снарядов ВТД, измеряют образовавшиеся радиусы изгиба магистрального газопровода, по данным повторных пропусков снарядов внутритрубной диагностики выявляют участки с устойчивой тенденцией уменьшения радиуса изгиба, что свидетельствует о силовом воздействии на магистральные газопроводы, характерном для геодинамических зон.

При этом уменьшающиеся с каждым пропуском снаряда, радиусы изгиба определяют для каждого из сопрягаемых участков с противоположными направлениями изгиба трубопровода. Точка сопряжения двух сопрягаемых участков с противоположными направлениями изгиба является предполагаемой границей геодинамической зоны.

Способ осуществляется следующим образом.

После окончания строительства или при плановой диагностике средствами ВТД, проводят контрольное обследование участка МГ пропуском снаряда ВТД, оснащенного устройством для прямого измерения радиусов упругого и упруго-пластического изгиба ([5] Пат. №2602327 РФ. Способ определения потенциально опасных участков трубопровода с непроектным уровнем напряженно-деформированного состояния. / P.P. Усманов, М.В. Чучкалов, P.M. Аскаров, Р.В. Закирьянов. Заявлено 08.04.2015; Опубл. 20.11.2016, Бюл. №32). Это позволяет определить фактические радиусы изгиба каждого обследуемого участка (трубы), как это нашло отражение на фиг. 4. Таким образом, фиксируют исходное состояние магистрального газопровода, прямолинейное или радиусом ρ и направление его изгиба.

При последующих пропусках снарядов ВТД (один раз в 2-3 года) для каждого участка МГ определяют радиусы изгиба участков МГ и фиксируют тенденцию изменения радиуса. Если выявлена устойчивая тенденция: для прямолинейных участков - появление радиуса; для участков с имеющимся радиусом - уменьшение радиуса, то это служит прямым подтверждением смещения трубопровода, увлекаемого блоками в плоскости изгиба. При этом радиусы изгиба определяются для каждого из сопрягаемых участков с противоположными направлениями изгиба трубопровода, по обе стороны предполагаемой границы геодинамической зоны. Точка сопряжения двух соседних участков с противоположными направлениями изгиба является предполагаемой границей геодинамической зоны.

Для наглядности, на фиг. 5 приводится схема уменьшения радиусов изгиба с ρ - IV на ρn - V под воздействием смещающихся относительно друг друга блоков ГДЗ. На фиг. 5 показаны позиции: 2 - ось трубопровода, 10 - граница ГДЗ.

Изобретение позволяет, без проведения сложного комплекса аэрокосмических, геолого-геофизических исследований (технологий), средствами ВТД, по динамике изменения радиусов изгиба трубопровода выявлять ГДЗ, пересекающие МГ.

Способ выявления геодинамических зон, пересекающих магистральные газопроводы, заключающийся в измерении средствами внутритрубной дефектоскопии образовавшихся радиусов изгиба магистрального газопровода, отличающийся тем, что при каждом повторном пропуске снаряда внутритрубной диагностики измеряют радиусы изгиба магистрального газопровода, выявляют участки с устойчивым и закономерным изменением радиуса изгиба, определяют точку сопряжения двух соседних участков с противоположными направлениями изгиба и эту точку принимают за точку пересечения границы геодинамических зон с осью газопровода.
СПОСОБ ВЫЯВЛЕНИЯ ГЕОДИНАМИЧЕСКИХ ЗОН, ПЕРЕСЕКАЮЩИХ МАГИСТРАЛЬНЫЕ ТРУБОПРОВОДЫ
СПОСОБ ВЫЯВЛЕНИЯ ГЕОДИНАМИЧЕСКИХ ЗОН, ПЕРЕСЕКАЮЩИХ МАГИСТРАЛЬНЫЕ ТРУБОПРОВОДЫ
СПОСОБ ВЫЯВЛЕНИЯ ГЕОДИНАМИЧЕСКИХ ЗОН, ПЕРЕСЕКАЮЩИХ МАГИСТРАЛЬНЫЕ ТРУБОПРОВОДЫ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 167.
18.07.2020
№220.018.346d

Устройство для откачки газа из затрубного пространства

Изобретение относится к области нефтегазодобывающей промышленности и предназначено для привода скважинных штанговых насосов. Технический результат - повышение надежности работы устройства за счет снижения нагрузок на узлы привода штангового насоса, уменьшения количества подвижных сочленений,...
Тип: Изобретение
Номер охранного документа: 0002726720
Дата охранного документа: 15.07.2020
18.07.2020
№220.018.3494

Способ разработки многопластовой нефтяной залежи с применением гидравлического разрыва пласта

Изобретение относится к нефтедобывающей промышленности и может быть применено при разработке многопластовой нефтяной залежи с применением гидравлического разрыва пласта (ГРП). Способ включает закачку вытесняющего агента через нагнетательные скважины, отбор пластовых флюидов через добывающие...
Тип: Изобретение
Номер охранного документа: 0002726694
Дата охранного документа: 15.07.2020
24.07.2020
№220.018.380d

Способ внутритрубной послестроительной диагностики трубопровода и устройство для его осуществления

Изобретение относится к области трубопроводного транспорта и может быть использовано после завершения строительно-монтажных работ при строительстве трубопровода до ввода его в эксплуатацию. Способ внутритрубной послестроительной диагностики трубопровода, включающий применение внутритрубного...
Тип: Изобретение
Номер охранного документа: 0002727732
Дата охранного документа: 23.07.2020
31.07.2020
№220.018.3a8b

Скважинная насосная установка

Изобретение относится к технике добычи нефти и, в частности, к установкам скважинных штанговых насосов. Скважинная штанговая насосная установка содержит устьевую арматуру, колонну насосных труб и штанг, глубинный штанговый насос. Устьевой сферический пневмокомпенсатор размещен на выкидной линии...
Тип: Изобретение
Номер охранного документа: 0002728114
Дата охранного документа: 28.07.2020
31.07.2020
№220.018.3adb

Способ количественной диагностики отложений в трубопроводе

Изобретение относится к области транспортировки парафинистой нефти по трубопроводной системе нефтедобывающего предприятия. Способ количественной диагностики отложений в трубопроводе заключается в организации перемещения в трубопроводе разделителя жидкостей и фиксации давления в начале и в конце...
Тип: Изобретение
Номер охранного документа: 0002728011
Дата охранного документа: 28.07.2020
06.08.2020
№220.018.3cfb

Способ оценки технического состояния кабельной линии

Использование: для оценки технического состояния кабельных линий. Сущность изобретения заключается в том, что способ оценки технического состояния кабельных линий включает подачу испытательного электрического сигнала от задающего генератора и регистрацию переходной характеристики,...
Тип: Изобретение
Номер охранного документа: 0002729173
Дата охранного документа: 04.08.2020
12.04.2023
№223.018.423a

Способ получения цис-2,3-гидроксиметил-гем-дихлорциклопропана

Изобретение относится к способу получения цис-2,3-гидроксиметил-гем-дихлорциклопропана взаимодействием серной кислоты и 8,8-дихлоро-4-изопропил-3,5-диоксабициклооктана при температуре 100°С в течение 5 часов. Технический результат - уменьшение времени реакции и увеличение выхода целевого...
Тип: Изобретение
Номер охранного документа: 0002770053
Дата охранного документа: 14.04.2022
12.04.2023
№223.018.4276

Способ складирования твердых бытовых и твердых коммунальных отходов

Изобретение относится к способам обработки и размещения на полигонах твердых бытовых и коммунальных отходов. Способ складирования твердых бытовых отходов и твердых коммунальных отходов включает послойное размещение твердых отходов и биодобавок. При этом в основание полигона на стадии...
Тип: Изобретение
Номер охранного документа: 0002762720
Дата охранного документа: 22.12.2021
12.04.2023
№223.018.4538

Способ измерения уровня жидкости и массы в топливных баках и танках при качке и наклонах и устройство для его осуществления

Изобретение относится к измерительной технике, а именно к способам и средствам для измерения уровня, объема и массы жидкостей в резервуарах с нефтью, нефтепродуктами, сжиженными газами и др., и может найти применение в устройствах для измерения запаса топлива в баках судов и транспортных...
Тип: Изобретение
Номер охранного документа: 0002759208
Дата охранного документа: 10.11.2021
12.04.2023
№223.018.46c2

Пластифицирующая композиция полифункционального действия для хлорсодержащих полимеров и способ её получения

Изобретение относится к пластифицирующей композиции полифункционального действия для хлорсодержащих полимеров на основе эфиров алифатических дикарбоновых кислот и к способу ее получения. Способ получения пластифицирующей композиции полифункционального действия для хлорсодержащих полимеров...
Тип: Изобретение
Номер охранного документа: 0002762325
Дата охранного документа: 17.12.2021
Показаны записи 31-36 из 36.
02.11.2019
№219.017.ddc2

Автоматизированная система управления процессом компаундирования сернистых и высокосернистых нефтей

Изобретение относится к средствам автоматизации и может быть использовано в трубопроводном транспорте для компаундирования потока высокосернистых нефтей путем подкачки сернистых нефтей при перекачке нефти из нескольких трубопроводов в общую магистраль, по которой смесь нефтей транспортируют к...
Тип: Изобретение
Номер охранного документа: 0002704843
Дата охранного документа: 31.10.2019
25.12.2019
№219.017.f1fc

Способ выработки природного газа из прилегающих к компрессорной станции участков магистрального газопровода перед выводом их в ремонт

Изобретение относится к объектам магистрального газопровода и может быть использовано для выработки природного газа из прилегающих к компрессорной станции участков магистрального газопровода перед выводом их в капитальный ремонт. Технический результат - получение большего объема сэкономленного...
Тип: Изобретение
Номер охранного документа: 0002710106
Дата охранного документа: 24.12.2019
27.02.2020
№220.018.068c

Способ определения очагов развивающейся подпленочной коррозии газопроводов

Изобретение относится к области диагностического обслуживания газопроводов. Способ определения очагов развивающейся подпленочной коррозии газопроводов включает точное определение местоположения его оси трассопоисковым комплексом, при этом расположение участка, подверженного подпленочной...
Тип: Изобретение
Номер охранного документа: 0002715078
Дата охранного документа: 25.02.2020
03.06.2020
№220.018.239c

Способ ремонта потенциально опасного участка газопровода

Изобретение относится к эксплуатации магистральных газопроводов (МГ), в частности к эксплуатации потенциально опасных участков (ПОУ) с повышенным, ненормативным уровнем напряженно-деформированного состояния (НДС). Задачей изобретения является разработка способа ремонта ПОУ участков МГ,...
Тип: Изобретение
Номер охранного документа: 0002722579
Дата охранного документа: 01.06.2020
16.05.2023
№223.018.61af

Автоматизированная система управления процессом компаундирования разносортных нефтей с регулированием подкачки и сброса сернистой нефти

Изобретение относится к средствам автоматизации и может быть использовано в трубопроводном транспорте при перекачке нефти из нескольких трубопроводов в общую магистраль, по которой смесь нефтей транспортируется к потребителю. Автоматизированная система управления компаундированием разносортных...
Тип: Изобретение
Номер охранного документа: 0002746679
Дата охранного документа: 19.04.2021
16.05.2023
№223.018.62f7

Байпасная и импульсная обвязки линейных кранов в составе крановых узлов многониточных магистральных газопроводов, проложенных в одном технологическом коридоре

Изобретение относится к области эксплуатации магистральных газопроводов и может быть использовано для безопасного выполнения предремонтных (опорожнение) и предпусковых (заполнение участков магистральных газопроводов природным газом) операций, а также для создания резервного питания импульсным...
Тип: Изобретение
Номер охранного документа: 0002777810
Дата охранного документа: 10.08.2022
+ добавить свой РИД