Вид РИД
Изобретение
Изобретение относится к области железнодорожной автоматики, обеспечивающей интервальное регулирование движения поездов, и предназначено для диагностики технического состояния и уровня помехоустойчивости локомотивной аппаратуры системы автоматической локомотивной сигнализации (АЛС) и других систем локомотивной сигнализации, использующих индуктивную передачу кодовых сигналов в локомотивную аппаратуру.
Известен способ проведения тестовых измерений и настройки локомотивной аппаратуры АЛС, использующий проложенный стационарно вдоль рельсов проводной шлейф, а также электрическое и измерительное оборудование для контроля параметров и подачи в шлейф кодовых сигналов интервального регулирования, например «З» (зеленый огонь светофора), «Ж» (желтый огонь светофора), «КЖ» (желтый с красным огонь светофора) - "Леонов А.А. Техническое обслуживание автоматической локомотивной сигнализации. М.: Транспорт, 1982, с. 217, 220."
Данный способ используется в следующих устройствах
- "Устройство УПС-АЛС, предназначенное для проверки работоспособности устройств АЛСН и АЛС-ЕН. Каталог ООО «СамараПрибор», http://www.samarapribor.ru/main/1284999.html".
- "Устройство для проверки работоспособности устройств автоматической локомотивной сигнализации». Патент РФ №2333859".
- «Устройство для проверки автоматической локомотивной сигнализации». RU 2070122 С1".
Известен также способ проверки локомотивной аппаратуры АЛС, при котором используется в качестве индуктивного шлейфа не стационарно проложенные вдоль рельсов провода, а переносная рамка с определенным количеством витков - "Устройство бесшлейфовой проверки УБП. Информация и описание на сайте завода-изготовителя в сети Интернет - https://www.irz.ru/products/20/348.htm".
Недостатком данных способов диагностики и проверки работоспособности является необходимость использования специального индуктивного шлейфа, который или стационарно прокладывается вблизи ходовых рельсов на испытательном участке, или является переносным и устанавливается непосредственно под приемными катушками АЛС. При этом диагностика локомотивной аппаратуры АЛС может производиться только в стационарных условиях, мониторинг ее технического состояния при нахождении локомотива в сцепке с другим локомотивом или вагоном, а также при передвижениях и маневрах в условиях цеха, депо, пути следования, принципиально невозможен.
Существует способ диагностики локомотивной аппаратуры АЛС, при котором для наведения электродвижущей силы в основной обмотке приемной локомотивной катушки АЛС применяется дополнительная гальванически изолированная диагностическая обмотка, намотанная на магнитопроводе приемной локомотивной катушки АЛС. Диагностика локомотивной аппаратуры АЛС осуществляется путем подачи в диагностическую обмотку тестовых электрических сигналов. Этот способ описан в следующем изобретении - "Система диагностики локомотивной аппаратуры автоматической локомотивной сигнализации (АЛС) и приемная локомотивная катушка. RU 2383460".
Недостатком этого способа является невозможность диагностировать существующий парк локомотивной аппаратуры АЛС, так как используемые в настоящее время приемные катушки АЛС не имеют в своем составе дополнительной диагностической обмотки, их модернизация для всего парка локомотивов потребует очень больших затрат времени и материалов, и не предусмотрена существующей конструкторской документацией.
Наиболее близким техническим решением является изобретение - "Способ диагностики локомотивной аппаратуры автоматической локомотивной сигнализации и устройство для его осуществления». RU 2588286. МПК B61L 3/24".
Данное техническое решение не использует стационарный или переносный шлейф АЛС, а для наведения электродвижущей силы в основной обмотке приемной локомотивной катушки АЛС применяется дополнительная гальванически изолированная диагностическая обмотка, намотанная на отдельном сердечнике с разомкнутой магнитной системой (индукторе), который на время проведения диагностики механически фиксируют на одной из приемных локомотивных катушек АЛС совместно с приемно-исполнительным устройством таким образом, чтобы магнитный поток, создаваемый индуктором, замыкался через магнитопровод приемной локомотивной катушки АЛС. Диагностика локомотивной аппаратуры АЛС осуществляется путем подачи в индуктор тестовых электрических сигналов, отличающихся от стандартных наличием временных, частотных, амплитудных, и иных искажений, а также различного рода помех. Дистанционное управление режимом работы осуществляется оператором из кабины локомотива с помощью пульта управления по радиоканалу.
Недостатком данного изобретения является использование одностороннего канала связи, что в условиях наличия радиопомех часто приводит к ситуации, когда новая команда с пульта управления (например, код определенного огня, но с другим уровнем искажений) может быть искажена или блокирована помехой. В этом случае новая команда не будет воспринята приемно-исполнительным устройством и продолжится выполнение предыдущей команды. В результате оператор, тестирующий аппаратуру, может сделать ошибочной вывод об уровне работоспособности локомотивной аппаратуры АЛС.
Целью предлагаемого способа является повышение надежности процесса диагностики, достоверности выводов о техническом состоянии и помехоустойчивости локомотивной аппаратуры АЛС. Это достигается применением двустороннего радиоканала, в качестве которого могут быть использованы технологии беспроводной связи WI-FI, Bluetouth, или аналогичные, предусматривающие постоянный контроль за выполняемой командой.
Подобное решение позволяет использовать в качестве пульта дистанционного управления такие устройства, как смартфон, планшет, ноутбук, и подобные, имеющие встроенные модули беспроводной связи и программное обеспечение.
В реализованном на этом принципе устройстве в качестве пульта дистанционного управления использован смартфон, имеющий модуль WI-FI и содержащий в своем узле памяти базу тестовых сигналов. Прием и преобразование цифрового радиосигнала в аналоговый осуществляется в приемно-исполнительном устройстве с помощью стандартного WI-FI адаптера (модуль беспроводной связи).
Приемно-исполнительное устройство имеет следующую структурную схему – см. прилагаемый рис. 1.
Приемно-исполнительное устройство состоит из модуля беспроводной связи (1), выход которого соединен с входом усилителя мощности (2), выход которого соединен с входом индуктора 1 (3), находящегося непосредственно в корпусе приемно-исполнительного устройства, механически фиксируемого на магнитопроводе одной из приемных локомотивных катушек, и с входом индуктора 2 (4), фиксируемого на магнитопроводе другой приемной локомотивной катушки.
Управление режимами работы производится с помощью пульта управления, в качестве которого в данном варианте используется смартфон, по беспроводному двустороннему каналу связи с использованием технологии WI-FI.
Технический результат предлагаемого способа, по сравнению с рассмотренным ближайшим аналогом, обусловлен более высокой надежностью работы ввиду использования двустороннего радиоканала, более широкими возможностями диагностики, а также существенным упрощением и удешевлением системы диагностики.
