×
05.09.2018
218.016.82ea

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ПЛИТ ИЗ ДВУХФАЗНЫХ ТИТАНОВЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов, и предназначено для изготовления плоского проката, применяемого в авиационной промышленности, а также машиностроении. Способ изготовления плит из двухфазных (α+β)-титановых сплавов, включающий горячее деформирование слитка в сляб, горячую прокатку сляба, правку полученной плиты на правильной машине и ее последующую термическую обработку. Горячую прокатку сляба проводят в четыре стадии, при этом на первой стадии прокатку осуществляют в (α+β)-области, на второй - в β-области, на третьей - в (α+β)-области, а на четвертой - при температуре на 30-180°С ниже температуры полиморфного превращения (Тпп) сплава, с последующим охлаждением полученной плиты в режиме покачивания на рольганге до температуры 150-200°С и дальнейшим охлаждением на воздухе до комнатной температуры. Правку полученной плиты осуществляют в роликовой правильной машине в процессе охлаждения от температуры (Тпп-50)°С до 500°С, а термическую обработку проводят путем отжига в печи в интервале температур (Тпп-200)°С…(Тпп-250)°С и выдержки не менее 2 часов, после чего плиту охлаждают в режиме покачивания на рольганге до температуры 150-200°С и далее на воздухе до комнатной температуры. Данный способ позволяет с высокой производительностью получать плиты с минимальным уровнем внутренних остаточных напряжений и неплоскостности, используя стандартное оборудование прокатного цеха. 4 з.п. ф-лы.

Изобретение относится к обработке металлов давлением, в частности к термомеханической обработке двухфазных титановых сплавов, и предназначено для изготовления плоского проката, применяемого в авиационной промышленности, а также машиностроении.

Титан и сплавы на его основе являются одними из наиболее востребованных материалов в различных областях машиностроения, особенно в авиастроении, где требуется обеспечить высокие удельные характеристики и высокую надежность. Для использования детали в конструкции одним из важных показателей качества металла является наличие в нем внутренних остаточных напряжений, возникающих в результате воздействия температурного и деформационного полей, а также из-за неоднородного распределения механических свойств по объему изделия. Внутренние остаточные напряжения свыше расчетных значений приводят к искажению формы и размеров изделия при его изготовлении либо эксплуатации. При этом остаточные напряжения материала детали могут представлять определенную угрозу, так как складываются с действующими на деталь рабочими напряжениями, что может вызвать уменьшение срока службы детали и преждевременное разрушение конструкции. Кроме того, машиностроители регулярно ужесточают требования к точности размеров и формы плоского проката, используемого в качестве заготовки. Это продиктовано тем, что все большая часть продукции производится на автоматических поточных линиях, нормальное функционирование которых зависит не только от точности толщины, но и неплоскостности поставляемого металла. Наличие острой конкуренции в сбыте аналогичных по назначению заготовок деталей требует от предприятий - изготовителей проката повышать не только его качество, но и быть экономичными в изготовлении, снижая себестоимость, что в настоящее время является весьма актуальной задачей.

Известен способ изготовления титанового листового проката с использованием крип-отжига, включающий установку садки, состоящую из одного или нескольких листовых изделий, на стальную подогреваемую плиту установки вакуумной правки, создание разряжения в рабочем пространстве установки при одновременном равномерном нагружении внешней наружной поверхности садки, нагрев до температуры отжига, выдержку и охлаждение, с промежуточной ступенью при температуре 220±20°C с выдержкой от 1 до 5 часов (Патент РФ №2532674, МПК C22F 1/18, B21D 1/00, публ. 10.11.2014).

Недостатком известного способа является необходимость использования специализированных печей для крип-отжига и их низкая производительность. Так, продолжительность отжига плит в зависимости от размера и марки титанового сплава может достигать 10 суток и более.

Известен способ изготовления плит из двухфазных титановых сплавов, включающий горячее деформирование слитка в сляб, горячую прокатку и последующую термическую обработку плит, при этом производят одноэтапное горячее деформирование слитка в сляб и сразу после достижения в процессе деформации конечной толщины сляба осуществляют быстрое охлаждение на глубину сляба от поверхности от 20 мм до 30 мм со скоростью не менее 50°С/мин, а последующую горячую продольную прокатку ведут на первой стадии в α+β-области частными обжатиями со степенью деформации от 3% до 5%, до суммарной степени деформации 25…30%, с паузами между проходами продолжительностью от 8 до 12 с, на второй стадии - в β-области от температуры нагрева, определяемой по определенной формуле, а на последующих стадиях прокатку ведут в α+β-области с прерываниями и нагревами в продольных или поперечных направлениях с суммарной степенью деформации после каждого прерывания до 60% (Патент РФ 2492275, МПК C22F 1/18, В21В 3/00, опубл. 10.09.2013 - прототип).

Прототип не обеспечивает получение высоких показателей плоскостности, кроме того, плиты, изготовленные по данному способу, характеризуются высоким уровнем остаточных напряжений по причине отсутствия регламентированного охлаждения плит после прокатки и термической обработки.

Задача, на решение которой направлено изобретение, является разработка эффективного способа изготовления плит из двухфазных титановых сплавов, обеспечивающего стабильное получение на стандартном промышленном оборудовании высоких показателей качества в соответствии с требованиями международных стандартов.

Техническим результатом, достигаемым при осуществлении изобретения, является увеличение производительности изготовления плит, имеющих минимальный уровень внутренних остаточных напряжений и неплоскостности.

Указанный технический результат достигается тем, что в способе изготовления плит из двухфазных (α+β)-титановых сплавов, включающий горячее деформирование слитка в сляб, горячую прокатку сляба, правку полученной плиты на правильной машине и ее последующую термическую обработку, согласно изобретению горячую прокатку сляба проводят в четыре стадии, при этом на первой стадии прокатку осуществляют в (α+β)-области, на второй - в β-области, на третьей - в (α+β)-области, а на четвертой - при температуре на 30-180°С ниже температуры полиморфного превращения (Тпп) сплава, с последующим охлаждением полученной плиты в режиме покачивания на рольганге до температуры 150-200°С и дальнейшим охлаждением на воздухе до комнатной температуры, правку полученной плиты осуществляют в роликовой правильной машине в процессе охлаждения от температуры (Тпп-50)°С до 500°С, а термическую обработку проводят путем отжига в печи в интервале температур (Тпп-200)°С…(Тпп-250)°С и выдержки не менее 2 часов, после чего плиту охлаждают в режиме покачивания на рольганге до температуры 150-200°С и далее на воздухе до комнатной температуры. Продолжительность охлаждения плиты до температуры 150÷200°С после четвертой стадии прокатки определяют по формуле:

tохл=1,6×h,

где tохл - время охлаждения, минут;

h - толщина плиты, мм.

Правку на роликовой правильной машине проводят до достижения отклонения плиты от плоскости не более 3 мм на длину плиты. Плиту после правки помещают в печь в течение времени, не превышающего 20 секунд. Продолжительность охлаждения плиты до температуры 150÷200°С после термической обработки определяют по формуле:

tохл=1,5×h,

где tохл - время охлаждения, минут;

h - толщина плиты, мм.

Сущность предлагаемого изобретения заключается в следующем.

Для получения плит применяют 4 стадийную горячую прокатку сляба, изготовленного посредством ковки или штамповки в β-области. После ковочных операций сляб механически обрабатывают с целью удаления поверхностных ковочных дефектов и газонасыщенного слоя. Для получения металлом достаточной энергии, способствующей процессу рекристаллизационной обработки при последующем нагреве заготовки до температур β-области, первую стадию прокатки осуществляют в α+β-области. Вторая стадия прокатки заготовки при температурах β-области приводит к рекристаллизации β-фазы с измельчением зерна и формированию макроструктуры. Для обеспечения заданного уровня механических свойств последующие стадии прокатки производят в α+β-области. При этом окончательную стадию прокатки осуществляют при температуре металла в интервале от (Тпп-30)°С до (Тпп-180)°С, что обеспечивает получение высоких значений механических свойств и микроструктуры при удовлетворительном качестве поверхности. После прокатки плиту охлаждают в воздушной атмосфере на рольганге прокатного стана до температуры 150-200°С. С целью исключения подзакалки металла в местах контакта с роликами полученную плиту охлаждают в режиме покачивания. В режиме покачивания ролики поворачивают на угол 90÷480° в одну сторону, а затем после остановки в обратную сторону на ту же величину. Верхнее значение интервала температуры охлаждения 200°С обусловлено тем, что возникающие внутренние напряжения не достигают критических значений, что позволяет их минимизировать. Охлаждение в воздушной атмосфере на рольганге в режиме покачивания до температуры, меньшей чем 150°С, значительно снижает производительность процесса. Опытным путем установлена связь продолжительности охлаждения плиты от температуры конца прокатки до 150-200°С в зависимости от толщины, которая может определяться следующей формулой:

τохл=1,6×h,

где τохл - время охлаждения, минут;

h - толщина плиты, мм.

Далее плиту охлаждают на воздухе до комнатной температуры. После чего на роликовой правильной машине осуществляют правку в температурном интервале от (Тпп-50)°С до 500°С. Температура окончания правки менее 500°С вызывает резкое увеличение внутренних напряжений. Правку проводят до величины неплоскостности не более 3 мм на длину плиты, что позволяет сохранить это значение в готовой плите. В процессе передачи плиты за время не более 20 секунд в отжиговую печь с установочной температурой Т=Тпп-200…250°С и последующей термической обработки продолжительностью более 2 часов в плите происходит достаточная релаксация напряжений. Регламентируемое охлаждение после термической обработки до 150-200°С на рольганге в режиме покачивания позволяет зафиксировать величину внутренних напряжений на минимальном уровне. Экспериментально установлена продолжительность охлаждения плиты от температуры термической обработки до 150-200°С в зависимости от толщины, которая может определяться следующей формулой:

τохл=1,5×h,

где τохл - время охлаждения, минут;

h - толщина плиты, мм.

Промышленная применимость изобретения подтверждается конкретным примером его выполнения.

Для получения плит толщиной 45 мм из двухфазного титанового сплава Ti-6Al-4V был выплавлен слиток диаметром 740 мм и массой 2000 кг. Температура полиморфного превращения сплава (Тпп)=990°С. Слиток при температурах β-области деформировали в сляб, который механически обрабатывали на размеры 265×1080×1600 мм. Прокатку механически обработанного сляба осуществляли в 4 стадии: на 1 стадии - после нагрева в (α+β)-области, на 2 стадии - после нагрева в β-области, 3 стадия - после нагрева в (α+β)-области. Окончательную 4 стадию прокатки проводили при температуре нагрева металла (Тпп-40°С), при этом температура конца прокатки составила 830°С (Тпп-160°С). После окончательной прокатки плиту размерами 45×1080×3500 мм охлаждали на рольганге в режиме покачивания до температуры 180°С, а далее в стеллаже до комнатной температуры. Затем плиту нагревали до температуры 900°С (Тпп-90°С) и правили на 7-роликовой правильной машине с диаметром роликов 750 мм. Температура конца правки составила 500°С. По окончании правки плиту по рольгангу направили на отжиг в проходную роликовую печь. Температура отжига составляла 760°С (Тпп-230)°С, продолжительность отжига - 2 часа. Охлаждение плиты после отжига проводили на рольганге в режиме покачивания до температуры 200°С в течение 68 минут. Далее плиту охлаждали на стеллаже до комнатной температуры. Посредством гидроабразивной резки вырезали образец для определения внутренних напряжений. Измерение внутренних напряжений производили по стандарту ASTME-837-13a «Стандарт на метод испытания для определения остаточных напряжений методом сверления отверстий и установки тензодатчиков». Остаточные напряжения в плите составили: для верхней поверхности минимальное -24 МПа, максимальное -9 МПа, для нижней поверхности минимальное -28 МПа, максимальное -12 МПа, что не превышает величину установленного требования по внутренним напряжениям ±30 МПа. На обеих поверхностях плиты производили контроль неплоскостности, измеряя отклонение плиты от плоской поверхности по периметру плиты, а также определяли местную волнистость. Набором щупов определяли амплитуду волны, измеряя максимальный зазор между измерительной линейкой и плитой. Неплоскостность верхней поверхности плиты составила 3 мм, местная волнистость 0,23%, неплоскостность нижней поверхности плиты составила 2,5 мм, местная волнистость 0,34%. Данная неплоскостность и местная волнистость являлись приемлемыми для плит авиационного назначения с повышенной плоскостностью, Так в стандарте AMS 2242 допустимая максимальная неплоскостность составляет 3,175 мм, а местная волнистость не более 0,5%. Значения механических свойств и результаты контроля структуры в полной мере соответствовали всем установленным требованиям.

Таким образом, предлагаемый способ позволяет с высокой производительностью получать плиты с минимальным уровнем внутренних остаточных напряжений и неплоскостности, используя стандартное оборудование прокатного цеха.

Источник поступления информации: Роспатент

Показаны записи 31-37 из 37.
20.04.2020
№220.018.1644

Способ теплового регулирования процесса электролитического получения магния и устройство для его осуществления

Изобретение относится к области цветной металлургии, а именно: к способу теплового регулирования процесса электролитического получения магния и устройству для его осуществления. Способ включает отвод тепла от электролита путем отвода газов из сборной ячейки электролизера, поддержание...
Тип: Изобретение
Номер охранного документа: 0002719215
Дата охранного документа: 17.04.2020
27.06.2020
№220.018.2b94

Заготовка для высокопрочных крепежных изделий, выполненная из деформируемого титанового сплава, и способ ее изготовления

Настоящее изобретение в целом относится к области металлургии, в частности к материалам из титанового сплава с заданными механическими свойствами для изготовления крепежных изделий авиационной техники. Заготовка для высокопрочных крепежных изделий, выполненная из деформируемого титанового...
Тип: Изобретение
Номер охранного документа: 0002724751
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.4a35

Способ получения материала для высокопрочных крепежных изделий

Изобретение относится к металлургии, в частности к получению материалов на основе титанового сплава с заданными механическими свойствами для изготовления крепежных изделий, использующихся в различных областях промышленности, преимущественно в авиастроительной. Способ получения материала для...
Тип: Изобретение
Номер охранного документа: 0002793901
Дата охранного документа: 07.04.2023
12.04.2023
№223.018.4a5e

Способ вакуумного дугового окончательного переплава слитков из титанового сплава марки вт3-1

Изобретение относится к электрометаллургии, а именно к вакуумному дуговому переплаву высокореакционных металлов и сплавов, и может быть использовано при выплавке слитков из титановых сплавов. Способ вакуумного дугового переплава слитков из титанового сплава марки ВТ3-1 включает окончательный...
Тип: Изобретение
Номер охранного документа: 0002749010
Дата охранного документа: 02.06.2021
21.04.2023
№223.018.4fbd

Способ вакуумного дугового окончательного переплава слитков из титанового сплава марки ti-10v-2fe-3al

Изобретение относится к специальной электрометаллургии, а именно к вакуумному дуговому переплаву высокореакционных металлов и сплавов, и может быть использовано при выплавке слитков из титановых сплавов марки Ti-10V-2Fe-3Al. Способ включает подготовку литого расходуемого электрода к плавлению,...
Тип: Изобретение
Номер охранного документа: 0002792907
Дата охранного документа: 28.03.2023
26.05.2023
№223.018.7049

Устройство для рафинирования шламо-электролитной смеси

Изобретение относится к цветной металлургии, в частности к устройству для рафинирования шламо-электролитной смеси, извлекаемой из электролизера при электролитическом получении магния. Устройство содержит коллектор сантехнического отсоса, соединенный с миксером, выполненным в виде футерованной...
Тип: Изобретение
Номер охранного документа: 0002796130
Дата охранного документа: 17.05.2023
17.06.2023
№223.018.7e53

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к металлургии, в частности к созданию титановых сплавов на основе титана, обладающих сопротивлением высокотемпературному окислению, и может быть использовано для изготовления изделий, длительно работающих при высоких температурах, в частности компонентов выхлопных систем...
Тип: Изобретение
Номер охранного документа: 0002776521
Дата охранного документа: 21.07.2022
Показаны записи 31-40 из 41.
04.06.2019
№219.017.730a

Сплав на основе титана

Изобретение относится к области металлургии, а именно к титановым сплавам, предназначенным для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления силовых конструкций судостроительной, авиационной и космической техники, энергетических...
Тип: Изобретение
Номер охранного документа: 0002690257
Дата охранного документа: 31.05.2019
13.06.2019
№219.017.819e

Вибрационный магнитометр

Вибрационный магнитометр относится к технике измерения магнитных полей и может быть использован для определения магнитных свойств веществ и материалов в лабораторных и экспериментальных устройствах. Вибрационный магнитометр содержит электромеханический вибратор, соединенный с держателем...
Тип: Изобретение
Номер охранного документа: 0002279689
Дата охранного документа: 10.07.2006
14.06.2019
№219.017.82e4

Листовой материал на основе титанового сплава для низкотемпературной сверхпластической деформации

Изобретение относится к области металлургии, а именно к листовым материалам на основе титановых сплавов, которые пригодны для изготовления изделий методом низкотемпературной сверхпластической деформации (СПД) при температуре 775°С, и могут быть использованы как более дешевая альтернатива...
Тип: Изобретение
Номер охранного документа: 0002691434
Дата охранного документа: 13.06.2019
15.06.2019
№219.017.83ae

Способ изготовления листового проката из титанового сплава марки вт8

Изобретение относится к области металлургии титановых сплавов и может быть использовано для получения листового проката из высоколегированного (α+β)-титанового сплава марки ВТ8. Способ включает деформацию слитка в сляб, механическую обработку сляба, многопроходную горячую прокатку и упрочняющую...
Тип: Изобретение
Номер охранного документа: 0002691471
Дата охранного документа: 14.06.2019
19.06.2019
№219.017.8868

Способ изготовления плит из двухфазных титановых сплавов

Изобретение относится к цветной металлургии, в частности к термомеханической обработке двухфазных титановых сплавов с повышенной вязкостью разрушения, и может найти применение в авиационной промышленности, а также машиностроении. Сляб нагревают до температуры на 60-120°С выше температуры...
Тип: Изобретение
Номер охранного документа: 0002324762
Дата охранного документа: 20.05.2008
23.07.2019
№219.017.b6cb

Способ обрезки облоя штампованных поковок из титановых сплавов

Изобретение относится к способам резки материалов и может быть использовано для обрезки облоя штампованных поковок из титановых сплавов, полученных обработкой металлов давлением. Способ обрезки облоя штампованных поковок из титановых сплавов включает размещение поковки на опорах рабочего стола...
Тип: Изобретение
Номер охранного документа: 0002695092
Дата охранного документа: 19.07.2019
09.10.2019
№219.017.d39d

Высокопрочный титановый сплав для корпусных конструкций атомного реактора с водяным теплоносителем

Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем. Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным...
Тип: Изобретение
Номер охранного документа: 0002702251
Дата охранного документа: 07.10.2019
27.06.2020
№220.018.2b94

Заготовка для высокопрочных крепежных изделий, выполненная из деформируемого титанового сплава, и способ ее изготовления

Настоящее изобретение в целом относится к области металлургии, в частности к материалам из титанового сплава с заданными механическими свойствами для изготовления крепежных изделий авиационной техники. Заготовка для высокопрочных крепежных изделий, выполненная из деформируемого титанового...
Тип: Изобретение
Номер охранного документа: 0002724751
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.4a35

Способ получения материала для высокопрочных крепежных изделий

Изобретение относится к металлургии, в частности к получению материалов на основе титанового сплава с заданными механическими свойствами для изготовления крепежных изделий, использующихся в различных областях промышленности, преимущественно в авиастроительной. Способ получения материала для...
Тип: Изобретение
Номер охранного документа: 0002793901
Дата охранного документа: 07.04.2023
12.04.2023
№223.018.4a5e

Способ вакуумного дугового окончательного переплава слитков из титанового сплава марки вт3-1

Изобретение относится к электрометаллургии, а именно к вакуумному дуговому переплаву высокореакционных металлов и сплавов, и может быть использовано при выплавке слитков из титановых сплавов. Способ вакуумного дугового переплава слитков из титанового сплава марки ВТ3-1 включает окончательный...
Тип: Изобретение
Номер охранного документа: 0002749010
Дата охранного документа: 02.06.2021
+ добавить свой РИД