×
04.09.2018
218.016.82b1

Результат интеллектуальной деятельности: ФУТЕРОВКА КОРПУСА РЕАКТОРА УСТАНОВОК ДЛЯ МЕТАЛЛИРОВАНИЯ ЗАГОТОВОК

Вид РИД

Изобретение

№ охранного документа
0002665646
Дата охранного документа
03.09.2018
Аннотация: Изобретение относится к высокотемпературному реактору установки для объемного металлирования заготовок из пористых материалов. Реактор содержит корпус с футеровкой в виде засыпки углеродного порошка и/или укладки волокнистого углеродного наполнителя низкой теплопроводности в контейнеры из плотного термостойкого материала, вертикально расположенные по отношению к днищу реактора предварительно герметизированные П-образные оболочки из углерод-углеродного или углерод-карбидокремниевого композиционного материала, имеющие герметичные втулки для замера через них температуры в реакторе, при этом П-образные оболочки своими торцами установлены через уплотнения и/или герметик в углубления, выполненные в днище реактора, с образованием герметичных тороидальных камер, внутри которых располагаются контейнеры, заполненные теплоизоляционным материалом и закрытые крышками, причем герметичные камеры снабжены штуцерами для непосредственного соединения с вакуумной системой. При этом перед тороидальными камерами размещены тепловые экраны цилиндрической формы из предварительно герметизированного углерод-углеродного или углерод-карбидокремниевого композиционного материала, часть которых может быть выполнена в виде спирали Архимеда, а герметичные втулки выполнены заодно с оболочками П-образной формы. Обеспечивается повышение качества объемного металлирования заготовок. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области конструктивного исполнения высокотемпературных реакторов установок, предназначенных для объемного металлирования заготовок из пористых материалов.

Известна футеровка корпуса реактора установок для металлирования, выполненная в виде отдельных блоков из низкоплотного углерод-углеродного композиционного материала, расположенных так, что образуют замкнутый контур [Мармер Э.М. Углеграфитовые материалы. Справочник М. Мет-я, 1973].

Недостатком футеровки такой конструкции является то, что в ее низкоплотном материале частично конденсируются пары металла, что приводит к снижению его теплоизоляционных свойств. Кроме того, это может привести к невозможности проведения в реакторе с такой футеровкой некоторых процессов металлирования из-за загрязнения объема реактора более летучим металлом, чем используемый в данном процессе.

Наиболее близкой к заявляемой по технической сущности и достигаемому эффекту является футеровка корпуса реактора установок для металлирования, выполненная в виде засыпки углеродного порошка и/или укладки волокнистого углеродного наполнителя низкой теплопроводности (теплоизоляционного материала) в контейнеры из плотного термостойкого материала [Мармер Э.М. Углеграфитовые материалы. Справочник М. Мет-я, 1973].

Такое конструктивное исполнение футеровки позволяет сохранить теплофизические свойства теплоизоляционного материала, а также исключить его загрязнение за счет предотвращения конденсации в его порах паров металлов.

Недостатком футеровки является выделение из нее в реакторное пространство СО, Н2 и СО2, происходящее по мере ее прогрева в процессе металлирования заготовок. Из-за этого не всегда получаются требуемые результаты по степени металлирования заготовок жидкофазным, паро-жидкофазным и комбинированным методами.

При парожидкофазном методе металлирования существует реальная угроза запирания паров металла в тиглях, если массоперенос металла к металлируемой заготовке требуется осуществить в сравнительно низкотемпературном интервале (когда давление паров металла мало). Запирание паров Si и Ti в тиглях в интервале соответственно 1300-1550°С и 1500-1750°С установлено нами экспериментально.

О чувствительности испарения из жидкой фазы к загрязнению зеркала металла, в частности меди, указывается в [Металлургия сталей и сплавов в вакууме, Киев, Техника, 1974, с. 87], где сказано, что загрязнение зеркала расплава меди приводит к уменьшению скорости испарения в несколько раз и даже на несколько порядков.

При классическом и альтернативном жидкофазном и комбинированном методе металлирования крупногабаритных заготовок происходит науглероживание и/или частичная карбидизация частиц карбидообразующих металлов или частиц прекурсора жидкого металла, например, частиц нитрида кремния, являющегося прекурсором жидкого кремния, следствием чего является поверхностный (а не объемный) характер металлирования. Обусловлено это наличием в реакционном пространстве СО и СО2.

Задачей изобретения является повышение вероятности получения стабильно высоких результатов по степени и равномерности металлирования (в частности, силицирования) заготовок различными методами.

Поставленная задача решается за счет того, что футеровка корпуса реактора установок для металлирования заготовок, выполненная в виде засыпки углеродного порошка и/или укладки волокнистого углеродного наполнителя низкой теплопроводности (теплоизоляционного материала) в контейнеры из плотного термостойкого материала, в соответствии с заявляемым техническим решением она дополнительно содержит несколько вертикально расположенных по отношению к днищу реактора предварительно герметизированных П-образной формы оболочек из углерод-углеродного или углерод-карбидокремниевого композиционного материала, снабженных герметичными втулками для замера через них температуры в реакторе; оболочки своими торцами установлены через уплотнения и/или герметик в углубления, выполненные в днище реактора, или - при введении в конструкцию футеровки преддонной неохлаждаемой водой металлической обечайки, установленной внутри реактора, расположенной с зазором по отношению к его днищу (точнее: участку днища реактора, оформляющему его боковую футеровку) и образующей вместе с ним преддонную герметичную камеру; - П-образной формы оболочки соединены через уплотнительный материал с соответствующими участками преддонной металлической обечайки, (для чего первые снабжены соединительными фланцами) и образуют совместно с ними (или днищем реактора) герметичные камеры тороидальной формы, внутри которых располагаются контейнеры, заполненные теплоизоляционным материалом и закрытые крышками; герметичные камеры снабжены штуцерами для непосредственного соединения с вакуумной системой или снабжены отверстиями для опосредованного (через преддонную герметичную камеру) соединения с ней (вакуумной системой).

Решению поставленной задачи способствует также то, что:

а) перед камерами тороидальной формы расположены тепловые экраны цилиндрической формы из предварительно герметизированного углерод-углеродного или углерод-карбидокремниевого композиционного материала.

б) часть тепловых экранов выполнена в виде спирали Архимеда.

в) герметичные втулки выполнены заодно с оболочками П-образной формы

Дополнительное введение в конструкцию футеровки корпуса нескольких вертикально расположенных по отношению к его днищу предварительно герметизированных П-образной формы оболочек из углерод-углеродного или углерод-карбидокремниевого композиционного материала обеспечивает удлинение их цилиндрических участков на сравнительно близкую величину благодаря сравнительно небольшой разнице температур между ними и уменьшающемуся со снижением температуры КЛТР УУКМ или УККМ. При этом во втулках, которыми снабжены отдельные оболочки, не возникают напряжения такой величины, которые бы привели к их разрушению. Таким образом, создаются предпосылки для образования герметичных камер и сохранения их герметичности в ходе проведения процессов металлирования и в промежутках между ними.

Установка П-образных оболочек своими торцами через уплотнения и/или герметик в углубления, выполненные в днище реактора, с образованием вместе с ним (с днищем) герметичных камер тороидальной формы, внутри которых располагаются контейнеры, заполненные теплоизоляционным материалом и закрытые крышками, позволяет предотвратить доступ кислорода воздуха (попадающего в реактор установки) к теплоизоляционному материалу и выход углеродсодержащйх газов из герметичных камер в объем реактора в ходе проведения процесса металлирования. Кроме того, создаются предпосылки для исключения доступа кислорода воздуха (и содержащихся в нем паров воды) к теплоизоляционному материалу в период между процессами металлирования. То же самое можно сказать и в том случае, когда П - образной формы оболочки соединены через уплотнительный материал с соответствующими участками преддонной металлической обечайки (при введении ее в конструкцию футеровки), т.к. они совместно образуют герметичные камеры. Следует отметить, что дополнительное снабжение футеровки корпуса реактора установленной внутри него вблизи его днища с зазором по отношению к нему преддонной неохлаждаемой водой и повторяющей его профиль металлической обечайки, образующей совместно с днищем реактора герметичную преддонную камеру, создает предпосылки для упрощения монтажа футеровки.

Снабжение герметичных камер штуцерами для непосредственного соединения с вакуумной системой или отверстиями для опосредованного (через преддонную герметичную камеру) соединения с ней обеспечивает возможность их вакуумирования (или создания в них защитной среды с давлением, равным давлению в реакторе) в ходе проведения процессов металлирования, следствием чего является существенное снижение вероятности выхода СО из автономно вакуумируемых герметичных камер в объем реактора. Кроме того, это обеспечивает возможность консервации теплоизоляционного материала в период между проведением процессов металлирования за счет создания в герметичных камерах давления инертного газа, немного превышающего атмосферное давление.

Размещение перед герметичными камерами тороидальной формы (в предпочтительном варианте выполнения футеровки) тепловых экранов цилиндрической формы из предварительно герметизированного углерод-углеродного или углерод-карбидокремниевого композиционного материала позволяет, с одной стороны, уменьшить содержание в реакторе СО (за счет уменьшения их окисления), с другой стороны, снизить температуру на герметичных камерах, уменьшив разницу в удлинении цилиндрических участков оболочек П-образной формы и тем самым дополнительно уменьшить величину термических напряжений, возникающих в герметичных втулках, предназначенных для замера через них температуры.

Выполнение тепловых экранов (в предпочтительном варианте выполнение конструкции футеровки) в виде спирали Архимеда позволяет упростить их изготовление, а за счет изготовления их очень тонкими (толщиной 1-2 мм), а значит в большем количестве, - дополнительно снизить температуру на герметичных камерах.

Снабжение П-образных герметичных оболочек герметичными втулками для замера через них температуры обеспечивает функциональную работу реактора.

Выполнение герметичных втулок (в предпочтительном варианте выполнения конструкции футеровки) заодно целое с оболочками П-образной формы, позволяет снизить газопроницаемость герметичных камер по сравнению с установкой их в отверстия оболочек П-образной формы через соответствующие уплотнения.

В новой совокупности существенных признаков у объекта изобретения появляется новое свойство: способность существенно уменьшить содержание СО в объеме реактора.

Благодаря новому свойству решается поставленная задача, а именно: существенно повышается вероятность получения стабильно высоких результатов по степени и равномерности металлирования (в частности, силицирования) заготовок различными методами.

Заявляемая конструкция футеровки корпуса реактора установок для металлирования поясняется чертежами.

На фиг. 1 приведен общий вид футеровки корпуса реактора с размещением торцев П-образных оболочек в углублениях днища реактора, а на фиг. 2 с соединением П-образных оболочек с преддонной металлической оболочкой.

Футеровка корпуса 1 реактора содержит несколько вертикально расположенных по отношению к днищу реактора предварительно герметизированных П-образной формы оболочек 2 из углерод - углеродного или углерод - карбидокремниевого композиционного материала. Оболочки 2 снабжены герметичными втулками 3 для замера через них температуры в реакторе. Для этого в водоохлаждаемом корпусе 1 реактора смонтированы смотровые окна 4. Оболочки 2 своими торцами установлены через уплотнения и/или герметик в углубления, выполненные в днище 5 реактора.

При введении в конструкцию футеровки преддонной неохлаждаемой водой металлической обечайки 6, установленной внутри реактора с зазором по отношению к его днищу 5 (точнее: к участку днища реактора, оформляющего его боковую футеровку) и образующей вместе с ним преддонную герметичную камеру 7, П-образной формы оболочки 2 соединены через уплотнительный материал с соответствующими участками преддонной металлической обечайки 6. (смотри фиг. 2) П-образной формы оболочки 2 совместно с соответствующими участками днища 5 реактора или преддонной обечайки 6 образуют герметичные камеры 8 тороидальной формы. Внутри камер 8 располагаются контейнеры 9 (на чертеже не показаны), заполненные теплоизоляционным материалом 10 и закрытые крышками 11.

Герметичные камеры 8 снабжены штуцерами 12 для непосредственного соединения с вакуумной системой (смотри рисунок 1) или снабжены отверстиями 13 в преддонной обечайке 6 для опосредственного (через преддонную герметичную камеру 7 и штуцер 12) соединения с вакуумной системой.

В предпочтительном варианте конструктивного исполнения футеровке перед камерами 8 тороидальной формы расположены тепловые экраны 14 цилиндрической формы из предварительно герметизированного углерод-углеродного или углерод - карбидокремниевого композиционного материала.

В другом предпочтительном варианте конструктивного исполнения футеровки часть тепловых экранов 14 выполнена в виде спирали Архимеда Еще в одном предпочтительном варианте конструктивного исполнения футеровки герметичные втулки 3 выполнены заодно целое с оболочками 2 П-образной формы.

Футеровка корпуса реактора установки для объемного металлирования заготовок работает следующим образом.

Перед проведением процесса металлирования производится вакуумирование герметичных камер 8 футеровки водоохлаждаемого корпуса 1 реактора.

Осуществляется это синхронно с вакуумированием предфутеровочной зоны корпуса 1 реактора.

В результате часть адсорбированных теплоизоляционным материалом 10 газов удаляется в вакуумную систему, минуя рабочий объем реактора.

В процессе нагрева металлируемой заготовки и тиглей с металлом, проводимого в вакууме, происходит прогрев по толщине футеровки. Благодаря тому, что футеровка состоит из нескольких по ее толщине оболочек П-образной формы, разница в удлинении внутренней и наружной части каждой из оболочек при нагреве не столь значительна как это имеет место при одной оболочке.

В результате втулки 3, соединяющие одну часть П-образной оболочки с другой частью, остаются целыми. Образующиеся при нагреве внутри герметичных камер 8 СО и Н2 (за счет разложения хемосорбированных теплоизоляционным материалом 10 атмосферных газов) удаляются из них, опять - таки минуя рабочий объем реактора. При этом в рабочий объем реактора попадает лишь часть СО и Н2, выделяющихся из теплоизоляционного материала, находящегося вне герметичных камер 8. Тем самым существенно уменьшается содержание СО в рабочем объеме реактора. После завершения процесса металлирования заготовку охлаждают путем снижения подаваемой на нагреватели установки мощности или полного их отключения. Вместе с металлируемой заготовкой охлаждается и футеровка реактора.

После завершения охлаждения производится напуск воздуха в рабочий объем реактора одновременно с отключением вакуумных насосов, а в герметичные камеры 8 синхронно (с увеличением давления в объеме реактора) подается аргон до достижения атмосферного давления. После выгрузки из реактора металлируемой заготовки в герметичных камерах 8 создается небольшое избыточное давление. Тем самым между процессами металлирования теплоизоляционный материал 10 футеровки реактора находится в консервированном состоянии, а именно: он не адсорбирует атмосферные газы. Благодаря этому при очередном процессе металлирования из теплоизоляционного материала 10 не выделяются СО и Н2, что приводит к еще большей степени чистоты рабочего объема реактора.


ФУТЕРОВКА КОРПУСА РЕАКТОРА УСТАНОВОК ДЛЯ МЕТАЛЛИРОВАНИЯ ЗАГОТОВОК
ФУТЕРОВКА КОРПУСА РЕАКТОРА УСТАНОВОК ДЛЯ МЕТАЛЛИРОВАНИЯ ЗАГОТОВОК
Источник поступления информации: Роспатент

Показаны записи 61-67 из 67.
09.06.2018
№218.016.5d8a

Реактор установки для металлирования заготовок

Изобретение относится к области конструктивного исполнения высокотемпературных реакторов установок, предназначенных для объемного металлирования пористых материалов. Реактор установки для металлирования заготовок содержит корпус реактора и футеровку. Футеровка содержит установленную внутри...
Тип: Изобретение
Номер охранного документа: 0002656320
Дата охранного документа: 04.06.2018
05.09.2018
№218.016.8331

Способ металлирования крупногабаритных заготовок в реакторе установки для объемного металлирования, конструкция реактора и способ его изготовления

Изобретение относится к способу и реактору для металлирования крупногабаритных заготовок в высокотемпературном реакторе установки для объемного металлирования паро-жидкофазным, альтернативным жидкофазным и комбинированным методами. Способ включает вакуумирование реактора в холодном состоянии...
Тип: Изобретение
Номер охранного документа: 0002665860
Дата охранного документа: 04.09.2018
10.04.2019
№219.017.0a01

Способ изготовления изделий из углерод-карбидокремниевого материала

Изобретение предназначено для химической, нефтехимической, химико-металлургической промышленности, а также авиатехники, и может быть использовано для получения конструкционных материалов, работающих в условиях высокого теплового нагружения, окислительных и агрессивных сред. Изготавливают...
Тип: Изобретение
Номер охранного документа: 0002468991
Дата охранного документа: 10.12.2012
12.10.2019
№219.017.d510

Соединительный элемент полого герметичного изделия интегральной конструкции и способ его изготовления

Изобретение может быть использовано при изготовлении конструкций из композиционных материалов. Соединительный элемент полого герметичного изделия интегральной конструкции выполнен из УУКМ на основе низкомодульных углеродных волокон и содержит присоединительный концевой участок 1 и металлическую...
Тип: Изобретение
Номер охранного документа: 0002702564
Дата охранного документа: 08.10.2019
07.11.2019
№219.017.dec9

Способ силицирования крупногабаритных изделий и реторта устройства для его осуществления со стыками низкой проницаемости

Изобретение предназначено для изготовления изделий из углеродкарбидокремниевых композиционных материалов. Способ силицирования крупногабаритных изделий из углерод-углеродного композиционного материала включает размещение изделия со сформированным на нем шликерным покрытием на основе кремния или...
Тип: Изобретение
Номер охранного документа: 0002705185
Дата охранного документа: 05.11.2019
17.01.2020
№220.017.f63d

Полое замкнутой формы герметичное изделие интегральной конструкции, соединительный элемент для интегральной конструкции, способы их изготовления и футеровка реактора вакуумной высокотемпературной установки, содержащая указанное герметичное изделие

Изобретение относится к химической промышленности и может быть использовано при изготовлении химических реакторов, работающих в условиях вакуума и высоких температур. Футеровка реактора вакуумной высокотемпературной установки состоит из футеровок 14 днища, 15 крышки и боковой футеровки 16...
Тип: Изобретение
Номер охранного документа: 0002711199
Дата охранного документа: 15.01.2020
13.03.2020
№220.018.0b70

Способ защиты углеродсодержащих композиционных материалов крупногабаритных изделий от окисления

Изобретение относится к способам защиты углеродсодержащих материалов от окисления и касается защиты от окисления крупногабаритных изделий. Согласно способу заготовку из пористого углеродсодержащего композиционного материала подвергают предварительному силицированию жидкофазным методом при...
Тип: Изобретение
Номер охранного документа: 0002716323
Дата охранного документа: 11.03.2020
Показаны записи 71-80 из 98.
25.04.2019
№219.017.3b45

Способ изготовления изделий из мелкозернистого силицированного графита

Изобретение относится к конструкционным материалам для машиностроения, химической и металлургической промышленности и может быть использовано при изготовлении опорных и упорных подшипников, подшипников скольжения, торцовых уплотнений насосов, предназначенных для перекачивания жидкостей с...
Тип: Изобретение
Номер охранного документа: 0002685654
Дата охранного документа: 22.04.2019
25.04.2019
№219.017.3b59

Способ изготовления изделий из ультрамелкозернистого силицированного графита

Изобретение относится к конструкционным материалам для машиностроения, химической и металлургической промышленности и может быть использовано при изготовлении опорных и упорных подшипников, подшипников скольжения, торцовых уплотнений насосов, предназначенных для перекачивания жидкостей с...
Тип: Изобретение
Номер охранного документа: 0002685675
Дата охранного документа: 22.04.2019
17.05.2019
№219.017.5309

Способ изготовления изделий из керамоматричного композиционного материала

Изобретение относится к области получения композиционных материалов на основе углерода и карбида кремния и изделий из них теплозащитного, конструкционного назначений для использования в области космической техники и металлургии. Способ изготовления изделий из керамоматричного композиционного...
Тип: Изобретение
Номер охранного документа: 0002687672
Дата охранного документа: 15.05.2019
08.06.2019
№219.017.75f1

Способ изготовления изделий из углерод-карбидокремниевого материала

Изобретение относится к области конструкционных материалов, работающих в условиях высокого теплового нагружения и окислительной среды, и может быть использовано в химической, нефтехимической и химико-металлургической отраслях промышленности, а также в авиатехнике. Изготавливают заготовку из...
Тип: Изобретение
Номер охранного документа: 0002469950
Дата охранного документа: 20.12.2012
29.06.2019
№219.017.a274

Электрод ионного двигателя и способ его изготовления

Изобретение относится к космической технике и касается высокочастотных ионных двигателей. Электрод ионного двигателя, содержит равномерно распределенные по поверхности круглой или прямоугольной формы отверстия размером 1,2-4,6 мм и перемычки между ними шириной 0,4-2,4 мм и выполнен из (УУКМ)...
Тип: Изобретение
Номер охранного документа: 0002692757
Дата охранного документа: 27.06.2019
08.09.2019
№219.017.c902

Способ изготовления изделий из ультрамелкозернистого силицированного графита

Изобретение предназначено для химической и металлургической промышленности и может быть использовано при изготовлении подшипников, уплотнений и облицовочных плит. Сначала готовят пресс-массу на основе графитового порошка фракции 5-20 мкм в смеси с техническим углеродом, в том числе...
Тип: Изобретение
Номер охранного документа: 0002699641
Дата охранного документа: 06.09.2019
12.10.2019
№219.017.d510

Соединительный элемент полого герметичного изделия интегральной конструкции и способ его изготовления

Изобретение может быть использовано при изготовлении конструкций из композиционных материалов. Соединительный элемент полого герметичного изделия интегральной конструкции выполнен из УУКМ на основе низкомодульных углеродных волокон и содержит присоединительный концевой участок 1 и металлическую...
Тип: Изобретение
Номер охранного документа: 0002702564
Дата охранного документа: 08.10.2019
07.11.2019
№219.017.dec9

Способ силицирования крупногабаритных изделий и реторта устройства для его осуществления со стыками низкой проницаемости

Изобретение предназначено для изготовления изделий из углеродкарбидокремниевых композиционных материалов. Способ силицирования крупногабаритных изделий из углерод-углеродного композиционного материала включает размещение изделия со сформированным на нем шликерным покрытием на основе кремния или...
Тип: Изобретение
Номер охранного документа: 0002705185
Дата охранного документа: 05.11.2019
24.11.2019
№219.017.e58e

Полое изделие в виде тканого полотна, способ его формирования и способ формирования на его основе толстостенного изделия, в том числе крупногабаритного

Изобретение относится к области текстильной промышленности и касается формирования крупногабаритных тонкостенных и толстостенных каркасов объемной структуры полой формы, предназначенных, в частности, для изготовления на их основе различного типа крупногабаритных изделий из композиционных...
Тип: Изобретение
Номер охранного документа: 0002707100
Дата охранного документа: 22.11.2019
19.12.2019
№219.017.eedc

Способ определения скорости заполнения пор пористого материала конденсатом паров металла

Изобретение относится к процессам металлирования паро-жидкофазным методом и предназначено для выбора наиболее оптимальных технологических параметров при разработке новых процессов металлирования и их совершенствовании. Способ определения скорости заполнения пор пористого материала конденсатора...
Тип: Изобретение
Номер охранного документа: 0002709387
Дата охранного документа: 17.12.2019
+ добавить свой РИД