×
29.08.2018
218.016.8138

Результат интеллектуальной деятельности: СПОСОБ КОНТРОЛЯ СИСТЕМЫ ЭНЕРГОПИТАНИЯ СНАБЖЕННОГО СОЛНЕЧНЫМИ БАТАРЕЯМИ КОСМИЧЕСКОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к космической технике. Способ контроля системы энергопитания снабженного солнечными батареями (СБ) космического аппарата (КА) включает измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по результатам сравнения измеренных и расчетных значений тока СБ. На интервале измерения тока СБ определяют расстояние от Земли до Солнца, производят поворот СБ. Производят съемку освещенных Солнцем элементов конструкции КА в видимом спектральном диапазоне. По измерениям яркости элементов конструкции КА, параметрам относительного положения съемочной аппаратуры, снимаемых элементов конструкции КА, Солнца, СБ и КА, определенному расстоянию от Земли до Солнца и измерениям тока СБ уточняют значения параметров эффективности СБ. Прогнозируют ток СБ под воздействием излучения, поступающего от Солнца и освещенных Солнцем элементов конструкции КА. При выявлении рассогласования измеренных и расчетных значений тока СБ их сравнение выполняют с учетом измеренных параметров углового положения СБ относительно Солнца и элементов конструкции КА. Техническим результатом изобретения является повышение точности прогнозирования выходного тока СБ. 1 ил.

Изобретение относится к области космической техники, а именно к энергообеспечению космических аппаратов (КА), и может быть использовано при эксплуатации солнечных батарей (СБ) КА.

Одной из составляющей контроля системы энергопитания снабженного СБ КА является контроль основных электрических характеристик СБ - выходного тока, напряжения и мощности СБ. На стадии проектирования и изготовления СБ осуществляется теоретический расчет выходных параметров СБ, который может быть основан на методе перемещений вольтамперной характеристики, учитывающем различные влияния окружающей среды и параметров нагрузки на характеристики СБ (Система электроснабжения КА. Техническое описание. 300ГК.20Ю.0000-АТО. РКК «Энергия», 1998; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва. Энергоатомиздат. 1983. Стр. 49, 54).

Для контроля электрических характеристик СБ в полете используются измерения электрических характеристик СБ под воздействием солнечного излучения, поступающего перпендикулярно рабочей поверхности СБ (Елисеев А.С. Техника космических полетов. Москва, «Машиностроение», 1983. стр. 190-194; Раушенбах Г. Справочник по проектированию солнечных батарей. Москва, Энергоатомиздат, 1983, стр. 57; патент РФ №2353555 по заявке №2006131395/11, приоритет от 31.08.2006), для чего разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, в этом положении СБ определяют их текущие выходные параметры и контроль характеристик СБ осуществляют по результатам сравнения полученных текущих данных с их задаваемыми номинальными значениями (проектными или некоторыми исходными значениями, например, полученными на предыдущих этапах полета).

Данный способ обеспечивает контроль текущих выходных параметров СБ в полете. Например, меньшие значения фактического выходного тока СБ по отношению к заданным номинальным значениям означают «деградацию» СБ в ходе полета КА.

Недостаток данного способа связан с тем, что он не предусматривает учета внешних полетных условий, при которых был выполнен замер тока СБ, что вносит неопределенность в дальнейшее использование (интерпретацию) результатов выполненных замеров.

Известен способ определения максимальной выходной мощности СБ КА (патент РФ №2354592 по заявке №2007119224, приоритет от 23.05.2007 - прототип), согласно которому разворачивают панели СБ в рабочее положение, соответствующее совмещению нормали к их освещенной рабочей поверхности с направлением на Солнце, измеряют высоту орбиты КА, определяют по ней угол возвышения верхней границы атмосферы над видимым с КА горизонтом Земли (ε), определяют значение углового полураствора видимого с КА диска Солнца (Qs), измеряют угол между направлением на Солнце и плоскостью орбиты КА (β), на витках, на которых значение измеряемого угла β менее или равно расчетному значению, определяемому по предложенному соотношению, измеряют угол возвышения направления на Солнце над видимым с КА горизонтом Земли (g) и максимальную выходную мощность СБ при их минимальной температуре определяют как произведение значений напряжения и тока СБ, измеренных в момент касания видимым с КА диском Солнца верхней границы атмосферы Земли на восходе Солнца, определяемый из условия равенства значения измеряемого угла g сумме значений углов ε и Qs при возрастании значения угла g, а максимальную выходную мощность СБ при максимальной установившейся рабочей температуре определяют как произведение значений напряжения и тока СБ, измеренных в момент касания видимым с КА диском Солнца верхней границы атмосферы Земли на заходе Солнца, определяемый из условия равенства значения измеряемого угла g сумме значений углов ε и Qs при убывании значения угла g.

Данный способ обеспечивает контроль текущих выходных параметров СБ в указанные моменты времени на восходе и заходе Солнца, что обеспечивает контроль выходных параметров СБ при двух температурных режимах - при минимальной и максимальной установившейся рабочей температуре СБ.

Недостаток способа-прототипа связан с тем, что он обеспечивает контроль текущих выходных параметров СБ в выборочные моменты времени и не предусматривает непрерывного контроля системы электропитания в холе полета КА.

Задачей, на решение которой направлено настоящее изобретение, является повышение эффективности контроля системы электропитания снабженного СБ КА в полете.

Технический результат, достигаемый при осуществлении настоящего изобретения, заключается в повышении точности прогнозирования выходного тока СБ на этапах планирования и реализации полета и послеполетном анализе за счет учета освещения СБ как прямым солнечным излучением, так и излучением, поступающим от освещенных Солнцем элементов конструкции КА.

Технический результат достигается тем, что в способе контроля системы энергопитания снабженного СБ КА, включающем измерение тока СБ и параметров углового положения СБ, определение параметров эффективности СБ и контроль системы энергопитания по результатам сравнения измеренных и расчетных значений тока СБ. Дополнительно на интервале измерения тока СБ определяют расстояние от Земли до Солнца, производят поворот СБ до положения, при котором нормаль к рабочей поверхности СБ составляет с направлением от рабочей поверхности СБ на освещенные Солнцем элементы конструкции КА угол менее значения угла полураствора зоны чувствительности рабочей поверхности СБ, и производят съемку освещенных Солнцем элементов конструкции КА в видимом спектральном диапазоне, по полученным измерениям яркости элементов конструкции КА, параметрам относительного положения съемочной аппаратуры, снимаемых элементов конструкции КА, Солнца, СБ и КА, определенному расстоянию от Земли до Солнца и измерениям тока СБ уточняют значения параметров эффективности СБ с учетом определяемых параметров модели яркости излучения, поступающего на СБ от освещенных Солнцем элементов конструкции КА, для планируемого интервала полета прогнозируют расстояние от Земли до Солнца и параметры углового положения СБ относительно Солнца и КА, по которым прогнозируют ток СБ под воздействием излучения, поступающего от Солнца и освещенных Солнцем элементов конструкции КА, при этом при выявлении рассогласования измеренных и расчетных значений тока СБ их сравнение выполняют с учетом измеренных параметров углового положения СБ относительно Солнца и элементов конструкции КА.

Суть предлагаемого изобретения поясняется на чертеже, на котором представлена схема, отображающая направление от рабочей поверхности СБ на освещенные Солнцем элементы конструкции КА.

На чертеже введены обозначения:

K - СБ КА;

Ki - i-я цепочка фотоэлементов рабочей поверхности СБ;

Nsb - вектор нормали к рабочей поверхности СБ;

fsb - угол полураствора зоны чувствительности рабочей поверхности СБ;

S - вектор направления на Солнце;

Pj - j-й освещенный Солнцем участок поверхности КА;

N - вектор нормали к участку поверхности КА;

M - вектор идеального (зеркального) отражения солнечного излучения от освещенного Солнцем участка поверхности КА;

L - направление от цепочки фотоэлементов рабочей поверхности СБ на освещенный Солнцем участок поверхности КА;

V - направление от освещенного Солнцем участка поверхности КА на цепочку фотоэлементов рабочей поверхности СБ.

Поясним предложенные в способе действия.

Выбор силы тока в качестве контролируемой выходной характеристики СБ вызван тем, что сила тока является переменной величиной, напрямую зависящей от состояния СБ в целом, а напряжение на СБ является достаточно стабильной величиной и определяется в основном физическими свойствами используемых для изготовления СБ фотоэлектрических преобразователей (ФЭП), при этом режим работы ФЭП еще на стадии проектирования СБ задается таким образом, чтобы генерируемая мощность (как произведение силы тока и напряжения) была максимально возможной.

В предложенном техническом решении для решения поставленной задачи на интервале измерения тока СБ определяют текущее значение расстояния от Земли до Солнца, производят поворот СБ до положения, при котором нормаль к рабочей поверхности СБ составляет с направлением от рабочей поверхности СБ на освещенные Солнцем участки поверхности (элементы конструкции) КА угол менее значения угла полураствора зоны чувствительности рабочей поверхности СБ.

Поворот СБ в описанные положения обеспечивает поступление на рабочую поверхность СБ излучения от освещенных Солнцем элементов конструкции КА, при этом данное излучение поступает на СБ КА при таких углах с нормалью к рабочей поверхности СБ, при которых воздействие данного излучения на СБ приводит к генерации тока СБ.

Производят съемку освещенных Солнцем участков поверхности элементов конструкции К А в видимом спектральном диапазоне.

По полученным измерениям яркости участков поверхности элементов конструкции КА, параметрам относительного положения съемочной аппаратуры, снимаемых элементов конструкции КА, Солнца, СБ и КА (включая параметры углового положения СБ относительно Солнца и КА), определенному расстоянию от Земли до Солнца и измерениям тока СБ уточняют значения параметров эффективности СБ с учетом определяемых параметров модели яркости излучения, поступающего на СБ от освещенных Солнцем элементов конструкции КА.

Съемка освещенных Солнцем участков поверхности элементов конструкции КА в видимом спектральном диапазоне осуществляется посредством соответствующей спектральной аппаратуры. Например, на таком КА как международная космическая станция (МКС) съемка может быть осуществлена с помощью имеющейся на российском сегменте МКС научной аппаратуры: «Система оптических телескопов» (включает установленные на двухосной платформе наведения камеры высокого и среднего разрешения), «Фотоспектральная система», «Видеоспектральная система» (ручная аппаратура, размещенная внутри PC МКС) и др.

При моделировании излучения, поступающего на СБ от освещенных Солнцем элементов конструкции КА, может быть использована модель рассеянного/отраженного излучения, составленная из двух компонент - диффузной и зеркальной. Для расчета диффузной компоненты может быть применено Ламбертово приближение, для расчета зеркальной компоненты - закон Фонга [Д. Роджерс. Алгоритмические основы машинной графики = Procedural Elements for Computer Graphics. - M.: Мир, 1989. - С. 394. - 512 c.- ISBN 0-07-053534-5; Bui Tuong Phong, Illumination of Computer-Generated Images, Department of Computer Science, University of Utah, UTEC-CSs-73-129, July 1973; Bui Tuong Phong, "Illumination for Computer Generated Pictures," Comm. ACM, Vol. 18 (6): 311-317, June/, 1975]. Параметрами указанной модели являются коэффициенты диффузного и зеркального отражения и коэффициент блеска и интенсивность поля рассеянного/отраженного излучения определяется выражением:

,

где - направление на Солнце,

- нормаль к поверхности КА в точке отражения,

- направление идеального отражения,

- направление от точки отражения на СБ,

Kd, Km - коэффициенты диффузного и зеркального отражения в точке отражения,

α - коэффициент резкости бликов зеркальной компоненты,

B - внеатмосферная интенсивность солнечной радиации.

На основании полученных измерений яркости элементов конструкции КА может быть осуществлен расчет параметров эффективности СБ и параметров модели рассеяния/отражения элементов конструкции КА, при которых минимизируется рассогласование модельных значений тока СБ относительно фактических значений тока СБ.

Задача минимизации данной целевой функции решается, например, методом наименьших квадратов, при этом расчет указанных параметров по указанным измерениям сводится к минимизации функционала

,

где Tk - измерения тока СБ;

- модель генерации тока СБ под воздействием прямого солнечного излучения и рассеянного/отраженного излучения от освещенных Солнцем элементов конструкции КА;

- вектор параметров, включающий полученные измерения яркости элементов конструкции КА и параметры взаимного положения СБ, съемочной аппаратуры, Земли, Солнца, КА на моменты tk измерений тока СБ;

- вектор определяемых параметров, включающий, в том числе коэффициенты диффузного и зеркального отражения Kd, Km и коэффициент резкости бликов зеркальной компоненты α для заданных типов элементов конструкции КА и коэффициент эффективности фото-преобразователей СБ

При расчете освещения СБ учитывают отклонения текущего значения внеатмосферной интенсивности солнечной радиации от номинального (среднего) значения (данное отклонение возникает вследствие эллиптичности орбиты Земли при ее движении вокруг Солнца). Например, можно считать, что текущее значение внеатмосферной интенсивности солнечной радиации с достаточной степенью точности обратно пропорционально значению расстояния от Земли до Солнца (Макарова Е.А., Харитонов А.В., Распределение энергии в спектре Солнца и солнечная постоянная, М., 1972; Поток энергии Солнца и его изменения, под ред. О. Уайта, пер. с англ., М., 1980; Кмито А.А., Скляров Ю.А., Пиргелиометрия, Л.)

,

где Bср, Bтек - фиксированное номинальное (среднее) и текущее значения внеатмосферной интенсивности солнечной радиации соответственно;

Dср, Dтек - фиксированное номинальное (среднее) и текущее значения расстояния от Земли до Солнца.

Далее на этапе планирования для планируемого интервала полета прогнозируют расстояние от Земли до Солнца, прогнозируют параметры углового положения СБ относительно Солнца и элементов конструкции КА.

По указанным параметрам с использованием модели яркости излучения, поступающего на СБ от освещенных Солнцем элементов конструкции КА, прогнозируют ток СБ под воздействием излучения, поступающего на СБ от Солнца и освещенных Солнцем элементов конструкции КА.

Далее в ходе реализации запланированного интервала полета осуществляют измерение тока СБ и параметров углового положения СБ относительно Солнца и элементов конструкции КА, сравнивают измеренные и прогнозируемые (расчетные) значения тока СБ и по результатам данного сравнения осуществляют контроль системы электропитания КА.

В процессе контроля выявляют рассогласования между измеренными значениями тока СБ и их расчетными значениями. При выявлении рассогласования между упомянутыми измеренными и прогнозируемыми значениями тока СБ для выявления и анализа его причин осуществляется сравнение измеренных значений тока СБ с их расчетными модельными значениями, определенными с учетом измеренных фактических значений параметров углового положения СБ относительно Солнца и элементов конструкции КА.

Например, наличие или отсутствие нарушений работы СЭС может диагностироваться в случае, если сравнение измеренных значений тока СБ с последними упомянутыми расчетными модельными значениями тока СБ, определенными с учетом фактических значений указанных параметров, соответственно выявляет или не выявляет рассогласования между сравниваемыми значениями тока.

Опишем технический эффект предлагаемого изобретения.

Предлагаемое техническое решение позволяет повысить точность прогнозирования выходного тока СБ на этапах планирования и реализации полета и послеполетном анализе за счет учета освещения СБ как прямым солнечным излучением, так и излучением, поступающим от освещенных Солнцем элементов конструкции КА.

Контроль системы электропитания включает прогнозирование генерации тока СБ на этапе планирования полета (на этом этапе осуществляется составление такой циклограммы выполнения полетных операций и работы бортовой аппаратуры, при которой обеспечивается необходимая генерация тока СБ непрерывно в течение планируемых витков полета), проверку необходимой генерации тока СБ в непрерывно процессе реализации полета и выявление и анализ выявленных рассогласований между измеренными значениями тока СБ и их расчетными (модельными) значениями, осуществляемые на послеполетном этапе.

Рассогласования между измеренными значениями тока СБ и их прогнозируемыми значениями могут появляться вследствие как нарушения штатной работы непосредственно СБ и/или других элементов системы электроснабжения КА (данные нарушения могут быть вызваны, например, воздействием на СБ факторов открытого космического пространства, что приводит к их постепенной «деградации»), так и отклонениями, нарушениями, изменениями циклограмм работы других систем КА (например, системы ориентации КА) относительно запланированных.

В случае выявления рассогласований между измеренными значениями тока СБ и их прогнозируемыми значениями для анализа причин такого рассогласования осуществляется сравнение измеренных значений тока СБ с их расчетными модельными значениями, определенными с учетом измеренных фактических значений параметров углового положения СБ относительно Солнца, Земли и КА, а также фактических параметров покрытия облаками видимой с К А земной поверхности.

По результатам данного сравнения измеренных значений тока СБ с их расчетными модельными значениями, определенными с учетом измеренных фактических значений параметров углового положения СБ и фактических параметров покрытия облаками видимой с КА земной поверхности, наличие нарушений работы системы электропитания КА может диагностироваться в случае, если по результатам данного (повторного) сравнения измеренных значений тока СБ с их расчетными (модельными) значениями рассогласование между сравниваемыми значениями тока СБ продолжает выявляться, а отсутствие нарушений работы системы электропитания КА может диагностироваться в случае, если по результатам данного (повторного) сравнения измеренных значений тока СБ с их расчетными (модельными) значениями рассогласование между сравниваемыми значениями тока СБ не выявляется.

Учет освещения СБ как прямым солнечным излучением, так излучением, поступающим от освещенных Солнцем элементов конструкции КА, позволяет увеличить как точность прогнозирования генерации тока СБ на стадии планирования полета, так и точность модельного расчета тока СБ на стадии послеполетного анализа. Это позволяет, с одной стороны, максимально уменьшить возможное рассогласование между измеренными значениями тока СБ и их прогнозируемыми значениями в случае, если реализация полета идет в соответствии с запланированной циклограммой, и, с другой стороны, максимально точно выявлять рассогласования между измеренными значениями тока СБ и их прогнозируемыми значениями и максимально информативно выполнять анализ выявленных рассогласований в случае, если реализация полета отклоняется от запланированной циклограммы.

Таким образом, получаемый технический эффект повышает эффективность контроля системы электропитания КА.

В настоящее время технически все готово для реализации предложенного способа. Промышленное исполнение существенных признаков, характеризующих изобретение, не является сложным и может быть выполнено с использованием существующих технических средств.

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата, включающий измерение тока солнечной батареи и параметров углового положения солнечной батареи, определение параметров эффективности солнечной батареи и контроль системы энергопитания по результатам сравнения измеренных и расчетных значений тока солнечной батареи, отличающийся тем, что дополнительно на интервале измерения тока солнечной батареи определяют расстояние от Земли до Солнца, производят поворот солнечной батареи до положения, при котором нормаль к рабочей поверхности солнечной батареи составляет с направлением от рабочей поверхности солнечной батареи на освещенные Солнцем участки поверхности космического аппарата угол менее значения угла полураствора зоны чувствительности рабочей поверхности солнечной батареи и производят съемку освещенных Солнцем элементов конструкции космического аппарата в видимом спектральном диапазоне, по полученным измерениям яркости элементов конструкции космического аппарата, параметрам относительного положения съемочной аппаратуры, снимаемых участков элементов конструкции космического аппарата, Солнца, солнечной батареи и космического аппарата, определенному расстоянию от Земли до Солнца и измерениям тока солнечной батареи уточняют значения параметров эффективности солнечной батареи с учетом определяемых параметров модели яркости излучения, поступающего на солнечную батарею от освещенных Солнцем элементов конструкции космического аппарата, для планируемого интервала полета прогнозируют расстояние от Земли до Солнца и параметры углового положения солнечной батареи относительно Солнца и космического аппарата, по которым прогнозируют ток солнечной батареи под воздействием излучения, поступающего от Солнца и освещенных Солнцем элементов конструкции космического аппарата, при этом при выявлении рассогласования измеренных и расчетных значений тока солнечной батареи их сравнение выполняют с учетом измеренных параметров углового положения солнечной батареи относительно Солнца и элементов конструкции космического аппарата.
СПОСОБ КОНТРОЛЯ СИСТЕМЫ ЭНЕРГОПИТАНИЯ СНАБЖЕННОГО СОЛНЕЧНЫМИ БАТАРЕЯМИ КОСМИЧЕСКОГО АППАРАТА
СПОСОБ КОНТРОЛЯ СИСТЕМЫ ЭНЕРГОПИТАНИЯ СНАБЖЕННОГО СОЛНЕЧНЫМИ БАТАРЕЯМИ КОСМИЧЕСКОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 31-40 из 111.
16.06.2018
№218.016.6298

Система коммутации исполнительных органов и способ неразрушающего контроля работоспособности и разобщённости элементов коммутации и исполнительных органов

Группа изобретений относится к контролю систем управления. Система коммутации исполнительных органов содержит блок электропитания, исполнительные органы, положительную и единую отрицательную цепи электропитания, силовые ключи с управляющими входами, соединенные последовательно с исполнительными...
Тип: Изобретение
Номер охранного документа: 0002657724
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.62a9

Способ управления движением космического объекта при сближении с другим космическим объектом

Изобретение относится к стыковке двух космических объектов на околокруговой орбите, например пилотируемого выводимого космического корабля (ВКК) и международной космической станции (МКС) в качестве цели. ВКК выводят на опорную орбиту, имеющую отклонение от орбиты цели по долготе восходящего...
Тип: Изобретение
Номер охранного документа: 0002657704
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.6395

Периферийный стыковочный механизм

Изобретение относится к космической технике. Периферийный стыковочный механизм (СтМ) содержит стыковочное кольцо с направляющими выступами и корпусами механизмов защелок для сцепки; штанги со штоками, установленными с возможностью поступательного перемещения вдоль продольных осей корпусов...
Тип: Изобретение
Номер охранного документа: 0002657623
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.6399

Способ воздушного термостатирования отсеков космического аппарата при наземных испытаниях и устройство для его осуществления

Группа изобретений относится к оборудованию для наземных испытаний объектов ракетно-космической техники. Способ воздушного термостатирования отсеков космического аппарата (КА) включает нагнетание воздуха из окружающей среды, его охлаждение, осушку, нагревание и подачу в термостатируемый отсек...
Тип: Изобретение
Номер охранного документа: 0002657603
Дата охранного документа: 14.06.2018
10.07.2018
№218.016.6f2d

Электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Электрохимический компрессор водорода включает прочный корпус с входным и выходным штуцерами. Пакет электроизолированных мембранно-электродных блоков состоит...
Тип: Изобретение
Номер охранного документа: 0002660695
Дата охранного документа: 09.07.2018
19.07.2018
№218.016.7262

Способ определения работоспособности пиротехнических изделий при тепловом воздействии

Изобретение относится к методам испытаний и предназначено для определения работоспособности различных пиротехнических изделий (ПИ) - пироболтов, пирозамков, пироэнергодатчиков и др., при тепловом воздействии. Изобретение может быть использовано в ракетно-космической и авиационной технике при...
Тип: Изобретение
Номер охранного документа: 0002661503
Дата охранного документа: 17.07.2018
26.07.2018
№218.016.7517

Способ преобразования энергии при энергоснабжении космического аппарата

Изобретение относится к системам энергоснабжения космических аппаратов (КА). Способ преобразования энергии при энергоснабжении КА включает подачу на электроды металл-водородного аккумулятора постоянного электрического тока при его заряде в кислородно-водородном цикле газовой смесью из компонент...
Тип: Изобретение
Номер охранного документа: 0002662320
Дата охранного документа: 25.07.2018
26.07.2018
№218.016.7570

Способ определения плотности атмосферы на высоте полета космического аппарата

Изобретение относится к методам и средствам наблюдения свободно движущегося по орбите космического аппарата (КА), ориентацию которого поддерживают с помощью гиродинов. При этом измеряют параметры движения центра масс и параметры вращательного движения КА. По параметрам ориентации КА и положению...
Тип: Изобретение
Номер охранного документа: 0002662371
Дата охранного документа: 25.07.2018
26.07.2018
№218.016.75be

Способ контроля системы энергопитания снабженного солнечными батареями космического аппарата

Изобретение относится к системе энергопитания космического аппарата (КА) с солнечными батареями (СБ). Способ включает измерение тока и параметров углового положения СБ. При измерении тока СБ определяют расстояние от Земли до Солнца и поворачивают нормаль к рабочей поверхности СБ до угла Q+ƒ с...
Тип: Изобретение
Номер охранного документа: 0002662372
Дата охранного документа: 25.07.2018
28.07.2018
№218.016.7610

Устройство контроля ориентации космических аппаратов при сближении

Изобретение относится к оптико-электронным приборам, используемым в системах управления движением космического аппарата (КА), гл. обр., к мишени стыковки пассивного КА. Мишень с высоким коэфф. поглощения её поверхности находится снаружи вблизи порта стыковки. Ось OA мишени (смотрит на нас)...
Тип: Изобретение
Номер охранного документа: 0002662620
Дата охранного документа: 26.07.2018
Показаны записи 31-40 из 116.
20.06.2016
№216.015.48ae

Способ управления спуском космического аппарата при проведении наблюдений

Изобретение относится к управлению подготовкой и осуществлением спуска космического аппарата (КА). Способ включает построение требуемой для проведения наблюдений ориентации КА, определение остатка топлива на борту КА, а также орбиты спуска, проходящей максимальное число раз над заданными...
Тип: Изобретение
Номер охранного документа: 0002587763
Дата охранного документа: 20.06.2016
10.08.2016
№216.015.5234

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594056
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.526e

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594054
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.52e2

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению движением космического аппарата (КА) вокруг его центра масс. Способ включает закрутку КА вокруг оси его минимального момента инерции (продольной). Перед закруткой совмещают продольную ось КА с плоскостью, образованной нормалью к плоскости орбиты и...
Тип: Изобретение
Номер охранного документа: 0002594057
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.7cf4

Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления

Группа изобретений относится к космической технике. В способе определения положения объекта преимущественно относительно КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002600039
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.870e

Способ контроля нештатных ситуаций на пилотируемом космическом аппарате и система для его осуществления

Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют...
Тип: Изобретение
Номер охранного документа: 0002603814
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8cc1

Способ контроля передвижения космонавта относительно космического аппарата и система для его осуществления

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и...
Тип: Изобретение
Номер охранного документа: 0002604892
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f41

Способ определения момента времени схода наблюдаемого с космического аппарата ледника

Способ определения момента времени схода наблюдаемого с космического аппарата ледника основан на определении перемещения ледника за заданный промежуток времени, определении неподвижных характерных точек на склонах ледника. Осуществляют первую съемку ледника и неподвижных характерных точек с...
Тип: Изобретение
Номер охранного документа: 0002605528
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.9005

Способ определения деформации корпуса космического аппарата в полете

Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и...
Тип: Изобретение
Номер охранного документа: 0002605232
Дата охранного документа: 20.12.2016
+ добавить свой РИД