×
29.08.2018
218.016.80e0

Результат интеллектуальной деятельности: Биоактивный полимерный пористый каркас

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицины, в частности к созданию биосовместимых каркасов для замещения дефектов костной ткани. Биосовместимый каркас в форме биорезорбируемой пористой конструкции медицинского назначения с повышенной остеокондуктивностью на основе термопластичного полимера с добавлением биоактивного керамического компонента может быть заселен мультипотентными мезенхимальными стромальными клетками млекопитающих и состоит из полимерной матрицы полилактида и биоактивного наполнителя гидроксиапатита со средним размером частиц от 100 до 1000 нм с увеличенной адгезией к полимерной матрице. Указаный каркас формируется с помощью 3D-печати методом наплавления нитей с толщиной слоя 50-250 мкм и характеризуется наличием открытой пористости от 30 до 60 об.% и порами в виде каналов со средним диаметром 400-800 мкм. Биоактивный полимерный каркас характеризуется тем, что его эксплуатация возможна до температуры 55°C без изменения функциональных характеристик, каркаса, может быть заселен мультипотентными мезенхимальными стромальными клетками млекопитающих для использования в качестве имплантата для замещения дефектов костной ткани. 2 з.п. ф-лы, 9 ил., 2 пр.

Изобретение относится к композиционному каркасу (скаффолд, Scaffold), выполненному в форме биорезорбируемой пористой конструкции медицинского назначения с повышенной остеокондуктивностью на основе термопластичного полимера с добавлением биоактивного керамического компонента, сформированному с помощью 3D-печати методом наплавления нитей (Fused Filament Fabrication, FFF), который может быть заселенен мультипотентными мезенхимальными стромальными клетками млекопитающих для использования в качестве имплантата для замещения дефектов костной ткани.

Известно изобретение (WO 2014144488 А1 «3d biomimetic, bi-phasic key featured scaffold for osteochondral repair»), представляющее собой метод создания биосовместимых каркасов на основе полилактида с высокими механическими свойствами, в котором 3D-печать может быть использована для создания структур, которые способствуют восстановлению и/или производству тканей организма.

Недостатком упомянутого изобретения является то, что биосовместимые каркасы, получаемые по предлагаемому его авторами методу, не содержат биоактивного компонента - кальций-фосфатной керамики, который мог бы обладать способностью поставлять минеральные частицы для костных клеток.

Прототипом является изобретение (US 8071007 B1 «Three-dimensional bioresorbable scaffolds for tissue engineering applications»), представляющее собой трехмерные (3D) биологически рассасывающиеся каркасы из резорбируемых полимеров, таких как поликапролактон (PCL), или из композитов резорбируемых полимеров и керамики, таких как поликапролактон / гидроксиапатит (PCL / НА). Включение саморассасывающийся керамики для получения гибридного / композитного материала обеспечивает желательную кинетику резорбции.

Недостатком упомянутого изобретения является то, что основой трехмерных каркасов, предлагаемых его авторами, является поликапролактон, который характеризуется низкой температурой плавления - около 60°С, что ограничивает диапазон температур эксплуатации до потери эксплуатационных характеристик и ограничивает применимость методов стерилизации, таких как стерилизация в автоклаве.

Технический результат заявляемого изобретения заключается в создании биоактивного полимерного каркаса, который можно заселять мультипотентными мезенхимальными стромальными клетками млекопитающих для использования в качестве имплантата для замещения дефектов костной ткани, обладающего следующими свойствами:

- составом и структурным сходством с костной тканью, для увеличенной адгезии наполнителя к полимерной матрице,

- повышенной биоактивностью относительно каркаса из чистого полилактида,

- повышенной адгезией клеток к поверхности относительно каркаса из чистого полилактида,

- наличием открытой пористости со средним диаметром пор 400-800 мкм для обеспечения пролиферации клеток,

- способностью обеспечивать миграцию клеток, формирование сосудов и диффузию питательных веществ и кислорода, обеспечивая остеокондуктивность,

- способностью к осуществлению регенерационного подхода при имплантировании каркаса,

- способностью поставлять минеральные частицы для костных клеток,

- высокими механическими свойствами на сжатие: предел прочности пористого каркаса более 40 МПа,

- модулем Юнга, близким к модулю упругости трабекулярной (или губчатой) кости: более 4 ГПа.

Технический результат достигается следующим образом: формируется биоактивный полимерный пористый каркас на основе биорезорбируемого полилактида и гидроксиапатита путем 3D-печати методом послойного наплавления нити с толщиной слоя 50-250 мкм, диаметром пор 400-800 мкм, открытой пористостью (% об.) от 30 до 60, с сетью каналов. При этом поры по оси X смещены относительно пор по оси Y в декартовой системе координат, образуя пересечение каналов пор и связанную систему пор. При этом размер частиц гидроксиапатита от 100 до 1000 нм. Используется следующее соотношение компонентов (% масс): полилактид - от 85 до 65, гидроксиапатит - от 15 до 35. Также внешняя поверхность порового пространства пересекающихся каналов заселенена мультипотентными мезенхимальными стромальными клетками млекопитающих. Также каркас выполнен в виде конструкции, обеспечивающей его применение в качестве имплантата для замещения дефектов костной ткани.

В предлагаемом в данной заявке изобретении композиционный каркас имеет в качестве полимерной матрицы биорезорбируемый полилактид (ПЛА, PLA), а в качестве биоактивного наполнителя - дисперсный гидроксиапатит со средним размером частиц от 100 до 1000 нм с увеличенной адгезией к полимерной матрице. Степень наполнения гидроксиапатитом - от 15 до 35 масс. %. Биоактивный полимерный пористый каркас формируется с помощью 3D-печати методом наплавления нитей с толщиной слоя 50-250 мкм и характеризуется наличием открытой пористости более 30% об. и порами в виде каналов со средним диаметром 400-800 мкм. Поры по оси X смещены относительно пор по оси Y в декартовой системе координат, что ведет к пересечению каналов пор и образованию связанной системы пор. Модуль Юнга на сжатие полученного таким способом биоактивного полимерного каркаса составляет более 4 ГПа. Микроразмерные поры обеспечивают миграцию клеток, формирование сосудов и диффузию питательных веществ и кислорода, обеспечивая остеокондуктивность. Каркас имеет большое количество ребер жесткости, что придает большую прочность. Эксплуатация каркаса возможна до температуры 55°С без изменения функциональных характеристик. Биоактивный полимерный каркас может быть заселенен мультипотентными мезенхимальными стромальными клетками млекопитающих для использования в качестве имплантата для замещения дефектов костной ткани.

В предлагаемом композиционном каркасе повышение указанных характеристик достигается за счет введения в полимерную матрицу ультрадисперсного порошка гидроксиапатита, обеспечивающего остеоинтегративные характеристики, и применения послойной 3D-печати, позволяющей формировать сложную сеть пор-каналов с дополнительной шероховатостью за счет послойной печати для увеличения остеокондуктивных свойств.

Возможность промышленной применимости предлагаемого каркаса и его использования в медицине подтверждается следующим примером реализации.

Изобретение поясняется чертежом, где на фиг. 1 показана 3D-модель (А), срез (В) и внешний вид напечатанного биоактивного полимерного каркаса с открытой пористостью 35% об. (С). На фиг. 2 показаны варианты расположения пересекающихся каналов. На фиг. 3 показаны примеры микрофотографий биоактивного полимерного каркаса, полученного путем 3D-печати методом послойного наплавления нити с толщиной слоя 50 (А), 150 (В), 250 мкм (С). По микрофотографии можно судить о пористой структуре каркасов. На фиг. 4 показаны примеры микрофотографий вид напечатанного биоактивного полимерного каркаса со средним диаметром 400 (А) и 800 мкм (В). На фиг. 5 показан пример диаграммы деформации биоактивного полимерного каркаса при сжатии с содержанием гидроксиапатита 15 (А) и 30 (В) % масс. Предел прочности пористого каркаса более 40 МПа. На фиг. 6 показан пример кривых ДСК для биоактивного полимерного каркаса с содержанием гидроксиапатита 15% масс. (1 нагрев, охлаждение, 2 нагрев). Первое фазовое превращение происходит при температуре стеклования материала - 61.4°С, т.е эксплуатация каркаса без изменения функциональных характеристик гарантировано возможна до 55°С. На фиг. 7 показан пример заселения внешней поверхности порового пространства мультипотентными мезенхимальными стромальными клетками мышей: оптическая микроскопия (А), флюоресцентная микроскопия (Б) с окраской антителами к CD 105, коньюгированными с FITC, (В) и (Г) оптическая микроскопия с окраской гематоксилин-эозином. На фиг. 8 показан пример топографии и текстуры поверхности полимерного каркаса с толщиной слоя 250 мкм, заселенный ММСК. На фиг. 9 показан пример замещения дефекта соединительной ткани мыши полимерным каркасом ПЛА/ГАП.

Пример 1.

В качестве исходных материалов использовался полилактид (ПЛА) марки Ingeo 4032D (производства Natureworks LLC, USA), порошок гидроксиапатита ГАП 85-Д (производства НПО «Полистом») со средним размером частиц 1000 нм. Сформирован биоактивный полимерный каркас в количестве 10 штук с содержанием гидроксиапатита 35% масс со средним диаметром пор 400 мкм и толщиной слоя 50 мкм. Объемная пористость - 30% об. Температура стеклования - 62°С, предел прочности на сжатие - 52 МПа, модуль Юнга при сжатии - 4.5 ГПа. Полимерные каркасы ПЛА/ГАП были выполнены в виде прямоугольных пластин размером 4×4 мм.

Для оценки биоактивных свойств полимерных каркасов ПЛА/ГАП 5 образцов в асептических условиях инкубировали с ММСК в течение 7 суток in vitro при 37°С и 5% СО2. Использовали монокультуру клеток 2-го пассажа, генерированной их CD34-CD45- клеток костного мозга мышей линии СВА. В ходе эксперимента стерильный образец каркаса промывали средой RPMI-1640, помещали на дно лунки планшета Nung и перфузировали клеточной взвесью (5×105 клеток/мл) в объеме 100 мкл. Через 5 минут экспозиции в лунку добавляли 2 мл среды RPMI-1640, содержащей 10% сыворотки эмбриона коровы (HyClon, USA), 25 mM HEPES, 24 mM бикарбонат натрия, L-гутамин, 100 mg/стрептомицина и 100 U/mL пенициллина. По окончании инкубации образцы были фиксированы, окрашены гематоксилин-эозином и проанализированы с использованием световой микроскопии. Вся поверхность образцов полимерных каркасов ПЛА/ГАП была колонизирована полигональными крупными (50-150 мкм) плотно адгезированными клетками с четко очерченным овальным ядром, длинными отростками, экспрессирующими на мембране CD 105 маркеры, что позволило их идентифицировать как ММСК (Фиг. 7). Плотность колонизации соответствовала 40-70 клеток в поле зрения при увеличении ×200. Выбор ММСК в качестве биологического субъекта обоснован их способностью к пролиферации в условиях in vitro и плюрипотеностью, что определяет их способность к направленной дифференцировке в волокна соединительной ткани, клетки сосудов, жировой, хрящевой и костной тканей. Поскольку ММСК являются предшественниками остеобластов, их можно рассматривать в качестве адекватной биологической модели оценки остеокондуктивности заявляемых полимерных каркасов.

Поскольку костная ткань является разновидностью соединительной ткани, то для моделирования возможности возмещения дефектов тканей мезенхимального происхождения образцы полимерных каркасов ПЛА/ГАП (n=5) были имплантированы мышам линии СВА (по 1 образцу на мышь) в искусственно сформированный подкожный дефект соединительной ткани дорсальной поверхности тела площадью 25±4 мм2 с соблюдением требований асептики и антисептики. В течение всего периода наблюдения (1 месяц) в области имплантации не наблюдали признаков формирования язв, абсцесса и некроза. По результатам патолого-анатомического исследования было установлено, что имплантированные полимерные каркасы ПЛА/ГАП подверглись частичной биорезорбции, были плотно фиксированы в окружающих тканях без признаков формирования демаркационной линии, вала воспаления, скопления гноя или отека окружающих тканей с полным закрытием площади дефекта. В прилегающих к каркасам тканях наблюдали скопление гистиоцитарных соединительно-тканных клеток, а также активный неоваскулогенез, что свидетельствует о биоактивных свойствах полимерных каркасов.

Модуль Юнга полимерного каркаса при сжатии (4.5 ГПа) адекватен модулю Юнга костной ткани (трабекулярная бедренная кость) без экранирования напряжений при замещении дефекта костной ткани.

Пример 2.

В качестве исходных материалов использовался полилактид марки Ingeo 4032D (производства Natureworks LLC, USA), порошок гидроксиапатита ГАП 85-УД (производства НПО «Полистом») со средним размером частиц 100 нм. Сформирован биоактивный полимерный каркас в количестве 10 штук с содержанием гидроксиапатита 15% масс со средним диаметром пор 800 мкм и толщиной слоя 250 мкм. Объемная пористость - 60% об. Температура стеклования - 61°С, предел прочности на сжатие - 55 МПа, модуль Юнга при сжатии - 4.1 ГПа.

Испытания биологических свойств образцов in vitro и in vivo проводили как описано в Примере 1. В опытах in vitro было установлено, что по окончании эксперимента поверхность образцов полимерных каркасов ПЛА/ГАП (n=5) была колонизирована полигональными крупными (50-150 мкм) плотно адгезированными CD 105+ клетками с четко очерченным овальным ядром, длинными отростками, идентифицированными как ММСК. Плотность колонизации соответствовала 50-100 клеток в поле зрения при увеличении ×200 (Фиг. 8). В опытах in vivo не отмечали признаков формирования язв, абсцесса и некроза в области имплантации образцов полимерных каркасов ПЛА/ГАП (n=5). Было установлено, что имплантированные полимерные каркасы ПЛА/ГАП подверглись частичной биорезорбции, были плотно фиксированы в окружающих тканях без признаков формирования демаркационной линии, вала воспаления, скопления гноя или отека окружающих тканей с полным закрытием площади дефекта. В прилегающих к каркасам тканях наблюдали скопление гистиоцитарных соединительно-тканных клеток, а также активный неоваскулогенез (Фиг. 9), что свидетельствует о биоактивных свойствах полимерных каркасов.

Модуль Юнга полимерного каркаса при сжатии (4.1 ГПа) адекватен модулю Юнга костной ткани (трабекулярная берцовая кость) без экранирования напряжений при замещении дефекта костной ткани.


Биоактивный полимерный пористый каркас
Биоактивный полимерный пористый каркас
Биоактивный полимерный пористый каркас
Биоактивный полимерный пористый каркас
Биоактивный полимерный пористый каркас
Биоактивный полимерный пористый каркас
Биоактивный полимерный пористый каркас
Биоактивный полимерный пористый каркас
Биоактивный полимерный пористый каркас
Источник поступления информации: Роспатент

Показаны записи 11-20 из 322.
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cdc

Биполярная ячейка координатного фотоприемника - детектора излучений

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника -...
Тип: Изобретение
Номер охранного документа: 0002583857
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fca

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии конструкционных сталей и предназначено для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь содержит, в мас.%: С - 0,05-0,07, Cr - 18,0-20,0, Ni - 5,0-7,0, Μn - 9,0-11,0, Mo - 1,4-1,8,...
Тип: Изобретение
Номер охранного документа: 0002584315
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ed

Литейная форма для центробежной заливки крупногабаритных фасонных отливок сложной формы из жаропрочных и химически активных сплавов

Изобретение может быть использовано при получении крупногабаритных литых деталей летательных аппаратов и атомной техники, работающих под действием высоких нагрузок. Литейная форма содержит металлический поддон с центрирующим устройством, графитовые закладные элементы и формообразующие...
Тип: Изобретение
Номер охранного документа: 0002585604
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.45a4

Электропривод

Изобретение относится к электротехнике, в частности к электроприводу переменного тока с режимом динамического торможения асинхронного двигателя. При отказе механического тормоза при аварийной остановке применяется электрический тормоз - электропривод переходит в режим регулируемого...
Тип: Изобретение
Номер охранного документа: 0002586630
Дата охранного документа: 10.06.2016
Показаны записи 11-20 из 64.
10.11.2014
№216.013.056e

Способ получения объемно-пористых структур сплавов-накопителей водорода, способных выдерживать многократные циклы гидрирования-дегидрирования без разрушения

Изобретение относится к порошковой металлургии, в частности к получению объемно-пористых структур сплавов-накопителей водорода (СНВ), способных выдерживать многократные циклы гидрирования/дегидрирования без разрушения. Методом механической активации получают нанокристаллический порошок...
Тип: Изобретение
Номер охранного документа: 0002532788
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.096e

Способ получения протективной белоксодержащей фракции бактерий

Изобретение относится к биотехнологии и может быть использовано для получения протективных антигенов на основе секретируемых белоксодержащих соединений Staphylococcus aureus. Способ предусматривает культивирование на жидкой питательной среде вирулентного штамма бактерий Staphylococcus aureus №6...
Тип: Изобретение
Номер охранного документа: 0002533815
Дата охранного документа: 20.11.2014
20.02.2015
№216.013.2a2f

Способ защиты порошков гидридообразующих сплавов для хранения водорода, предотвращающий пассивацию компонентами воздуха и других газообразных сред

Изобретение относится к области технологии создания композиционных полимерных материалов и может быть использовано для предотвращения нежелательной пассивации воздухом или компонентами, содержащимися в технических водородсодержащих газах и других газообразных средах, гидридообразующих сплавов,...
Тип: Изобретение
Номер охранного документа: 0002542256
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a30

Способ получения ультрадисперсного порошка монтмориллонита

Изобретение относится к области технологии создания композиционных полимерных материалов, технологии повышения эксплуатационных свойств полимеров с использованием дисперсных наполнителей. Способ изготовления порошка монтмориллонита заключается в том, что производят обработку монтмориллонита в...
Тип: Изобретение
Номер охранного документа: 0002542257
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.307c

Защитное уплотнительное порошковое покрытие на основе полисульфона для резьбовых соединений ответственных изделий

Изобретение относится к защитным порошковым уплотнительным покрытиям на основе полимеров, для защиты от коррозии и износа, например, нефтегазового оборудования. Состав порошковой композиции для покрытия включает порошковый полисульфон с температурой стеклования не менее 210°C и дополнительно...
Тип: Изобретение
Номер охранного документа: 0002543880
Дата охранного документа: 10.03.2015
20.03.2015
№216.013.3371

Защитное композиционное полимерматричное порошковое покрытие на основе полифениленсульфида

Изобретение относится к композиционным порошковым покрытиям на основе полимеров, предназначенных для защиты изделий из металлических сплавов от воздействия агрессивной среды. Порошковая композиция для покрытия включает полифениленсульфид и дополнительно содержит ультрадисперсный порошок...
Тип: Изобретение
Номер охранного документа: 0002544644
Дата охранного документа: 20.03.2015
10.09.2015
№216.013.76c0

Радиационно-защитный материал на полимерной основе с повышенными рентгенозащитными и нейтронозащитными свойствами

Изобретение относится к ядерной технике, а именно к материалам для защиты от ионизирующего излучения, и предназначено для использования при изготовлении элементов радиационно-защитных экранов. Радиационно-защитный материал на полимерной основе содержит сверхвысокомолекулярный полиэтилен с...
Тип: Изобретение
Номер охранного документа: 0002561989
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d35

Способ получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена с повышенными радиационно-защитными свойствами

Изобретение относится к способу получения радиационно-защитного материала на основе сверхвысокомолекулярного полиэтилена для изготовления конструкционных изделий радиационной защиты. Способ включает предварительную сушку при температуре 100-130°C порошков сверхвысокомолекулярного полиэтилена,...
Тип: Изобретение
Номер охранного документа: 0002563650
Дата охранного документа: 20.09.2015
13.01.2017
№217.015.7c30

Способ нанесения биоактивного покрытия на основе хитозана на полимерные пористые конструкции

Изобретение относится к способу нанесения покрытия на полимерные пористые конструкции и может быть использовано для формирования композиционных полимерных пористых конструкций на основе полилактида медицинского назначения с размером пор от 300 мкм, отличающихся повышенной биоактивностью и...
Тип: Изобретение
Номер охранного документа: 0002600652
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.862c

Способ стерилизации сверхвысокомолекулярного полиэтилена, предназначенного для применения в медицине (варианты)

Областью применения заявляемого изобретения являются медицина и ветеринария, в частности реконструктивная хирургия, ортопедия и травматология, а также экспериментальная биология. Сутью заявляемого изобретения является способ стерилизации СВМПЭ, предназначенного для применения в медицине, путем...
Тип: Изобретение
Номер охранного документа: 0002603477
Дата охранного документа: 27.11.2016
+ добавить свой РИД