×
29.08.2018
218.016.809c

ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002665058
Дата охранного документа
28.08.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области нанесения покрытий путем осаждения из газовой фазы. Дискообразная пластина центруется в держателе как при комнатных температурах, так и при более высоких температурах, независимо от теплового расширения пластины и держателя, при этом пластина может свободно расширяться в держателе при более высоких температурах. Технический результат - повышение надежности работы пластины путем удержания ее по центру в держателе. 2 н. и 14 з.п. ф-лы, 8 ил.
Реферат Свернуть Развернуть

Настоящее изобретение относится к системе, которая имеет пластину с держателем, в которой пластина центруется в держателе как при комнатных температурах, так и при более высоких температурах, независимо от теплового расширения пластины и держателя, и в которой пластина может свободно расширяться в держателе при более высоких температурах.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

В настоящее время покрытия производятся, среди прочего, с использованием процессов распыления и дуговых процессов, которые являются частью так называемых процессов физического осаждения из газовой (паровой) фазы (PVD). В этой методике мишени распыляются или испаряются. В этих процессах мишени нагреваются, и должны охлаждаться.

В соответствии с предшествующим уровнем техники такое охлаждение выполняется, например, посредством так называемой пленочной охлаждающей пластины, которая охлаждает заднюю сторону мишени, как показано на Фиг. 2. Давление охлаждающей среды прижимает пленку к мишени, и таким образом достигается хорошая теплопроводность от охлаждающей среды к мишени.

В зависимости от подводимой мощности, рассеяния тепла посредством охлаждающей пластины и удельной теплопроводности материала мишени все мишени нагреваются по-разному и расширяются в соответствии с их коэффициентами продольного расширения. Мишень в этом случае должна быть в состоянии свободно расшириться, так, чтобы она не разрушилась.

По связанным с процессом причинам для мишени, расположенной на охлаждающей пластине, является важным расширяться концентрически относительно оси охлаждающей пластины так, чтобы во время всей операции мог быть обеспечен концентрический зазор между мишенью и окружающими компонентами или окружающим компонентом. В частности, для мишени очень важно расширяться отцентрованным образом относительно оси охлаждающей пластины для того, чтобы избежать короткого замыкания, которое может произойти, например, если мишень используется как катод, и мишень имеет анодное кольцо, размещенное вокруг нее, к которым прикладывается различный электрический потенциал, как показано, например, на Фиг. 2.

Если мишень неправильно отцентрована, то мишень расширяется недостаточно концентрически. В результате электрическое короткое замыкание может произойти между анодным кольцом и расширившейся мишенью.

В данном примере положение мишени относительно анодного кольца определяется ее положением на охлаждающей пластине. При малом зазоре между охлаждающей пластины и мишенью положение мишени является в достаточной степени определенным, и контакта между мишенью и анодом не происходит. Такой малый зазор, однако, сильно ограничивает возможное расширение мишени. Максимально допустимая температура мишени или рабочая температура таким образом является предопределенной, и максимальная мощность распыления таким образом является ограниченной. Чем меньше этот зазор, тем ниже допустимая мощность распыления.

При большем зазоре мишень, как правило, помещается на охлаждающей пластине эксцентрично. В дополнение к этому, эксцентричная поддержка вызывает неравномерные механические напряжения в мишени во время работы пленочных охлаждающих пластин. В зависимости от материала мишени это может привести к тому, что допустимые механические напряжения будут превышены.

ЗАДАЧА ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является создать систему плстина-удерживающее устройство, которая позволяла бы удерживать пластину по центру в устройстве держателя независимо от температуры системы, чтобы пластина была в состоянии свободно расширяться в устройстве держателя так, чтобы она не разрушалась во время процесса расширения.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Задача настоящего изобретения решается путем создания системы «пластина-держатель», описанной в пункте 1 формулы изобретения.

Система в соответствии с настоящим изобретением имеет пластину и держатель; пластина имеет поверхность с внешним краем пластины, и материал пластины имеет первый коэффициент теплового расширения, а держатель имеет отверстие, которое ограничивается внутренним краем держателя, и материал держателя имеет второй коэффициент теплового расширения, причем первый коэффициент теплового расширения больше, чем второй коэффициент теплового расширения,

причем

- при комнатной температуре окружность отверстия держателя больше, чем окружность поверхности пластины, в результате чего при центральном положении пластины имеется зазор с определенной шириной зазора S между краем пластины и внутренним краем держателя,

- край пластины имеет один или более выступов, которые простираются вдоль радиального направления относительно поверхности края пластины и входят в соответствующие углубления края держателя, и/или край пластины имеет один или более углублений, которые простираются вдоль радиального направления относительно поверхности края пластины, и в которые входят соответствующие выступы края держателя,

- в которой система пластина-держатель имеет по меньшей мере три таких пары углубление/выступ, которые входят в зацепление друг с другом, и каждое углубление и каждый выступ имеют соответствующую длину в радиальном направлении относительно поверхности края пластины и соответствующую ширину, и ширина углубления больше чем ширина соответствующего выступа, причем для каждой пары углубление/выступ при комнатной температуре самая малая разность ширины sp между углублением и выступом меньше, чем вышеупомянутая ширина зазора S, в радиальном направлении самая малая ширина зазора между углублением и выступом больше, чем вышеупомянутая самая малая разность ширины sp, предпочтительно по меньшей мере равна вышеупомянутой ширине зазора S, таким образом достигая того, что как при комнатной температуре, так и при более высоких температурах пластина всегда крепится так, чтобы она была отцентрована в держателе, поскольку пары углубление/выступ функционируют как направляющие рельсы.

В смысле данного описания термин "радиальное направление" понимается как определяемый следующим образом: Если пластина прикреплена к оси, которая проходит перпендикулярно поверхности пластины и через ее центр тяжести, то радиальное направление в некоторой локализации на внешнем краю пластины является соответствующим направлением, в котором эта локализация на внешнем краю пластины перемещается, когда происходит увеличение температуры. Для дискообразной пластины, которая имеет круглый край, это направление является направлением, перпендикулярным краю пластины, проходящим от точки центра окружности.

Фиг. 8 схематично изображает это для пластины с прямоугольной поверхностью. Пластина с выступами и держатель изображены с помощью перекрестной штриховки. Прямые линии проходят через центр тяжести пластины и по определению указывают радиальное направление на краю пластины. Из этого чертежа также ясно, что ширина зазора S не обязана быть одинаковой вокруг всего края пластины, но может вместо этого быть выбрана как функция геометрии.

В соответствии с настоящим изобретением все ширины зазора между краем пластины и внутренним краем держателя, включая ширины зазора между углублениями и выступами, принимая во внимание размеры и коэффициент теплового расширения пластины и держателя, выбираются так, чтобы пластина могла свободно расширяться в держателе при повышении температуры. Так как тепловое расширение в твердых телах значительно зависит прежде всего от структуры решетки и условий связи, линейные уравнения представляют собой лишь приближения.

Коэффициент расширения или коэффициент теплового расширения является величиной, которая описывает поведение материала относительно изменений в его размерах при изменении температуры, и поэтому также часто называется коэффициентом теплового расширения. Тепловое расширение является эффектом, который отвечает за это. Тепловое расширение зависит от используемого материала; поэтому этот коэффициент является зависящей от материала физической константой. Так как тепловое расширение во многих материалах не происходит равномерно во всех температурных интервалах, сам коэффициент теплового расширения является зависящим от температуры и поэтому указывается для конкретной референсной температуры или конкретного температурного интервала.

Существует различие между продольным коэффициентом теплового расширения α (также известным как линейный коэффициент теплового расширения) и пространственным коэффициентом теплового расширения ϒ (также известным как пространственный коэффициент расширения, коэффициент объемного расширения или кубический коэффициент расширения).

Продольный коэффициент расширения α является константой пропорциональности между изменением температуры dT, и относительным изменением длины dL/L твердого тела. Следовательно, он используется для того, чтобы описать относительное изменение длины, которое происходит с изменением температуры. Он является зависящей от материала величиной, единицей измерения которой является K-1 (обратный Кельвин), и определяется в соответствии со следующим уравнением: α=1/L⋅dl/dT; в упрощенной форме уравнение выглядит как Lfinal≈Linitial⋅(1+α⋅ΔT).

Соответственно можно, например, вычислить, какую длину пластина будет иметь в конкретном направлении поверхности пластины при максимальной рабочей температуре. Аналогичным образом размеры могут быть вычислены в соответствии с тепловым расширением держателя. Таким образом возможно вычислить ширины зазора между пластиной и держателем, которые необходимы для того, чтобы гарантировать свободное тепловое расширение пластины в держателе вплоть до максимальной рабочей температуры.

Можно предположить, например, что L1final≈α1⋅L1initial⋅ΔT1, где L1final является длиной пластины в конкретном направлении (то есть диаметром в случае дискообразной пластины) при температуре Tfinal (например, при максимальной рабочей температуре пластины), α1 является коэффициентом линейного теплового расширения пластины в диапазоне рабочих температур, L1initial является длиной пластины в том же самом направлении, но при температуре Tinitial (например, при комнатной температуре), и аналогичный подход может быть применен для вычисления размеров держателя при температуре Tfinal, за исключением того, что учитываются форма и размеры держателя и коэффициент линейного теплового расширения материала держателя.

Предпочтительно ширины зазора между пластиной и держателем выбираются так, чтобы пластина могла свободно расширяться в держателе вплоть до температуры по меньшей мере 450°C, предпочтительно по меньшей мере 500°C, еще более предпочтительно по меньшей мере 650°C.

В соответствии с настоящим изобретением коэффициент линейного теплового расширения материала пластины больше, чем коэффициент линейного теплового расширения материала держателя, то есть α1>α2.

Предпочтительно пластина является дискообразной.

Предпочтительно углубление и/или выступы в пластине распределяются равноудалено друг от друга.

Предпочтительно держатель является кольцевым или имеет кольцевую часть для размещения пластины.

В соответствии с другим предпочтительным вариантом осуществления настоящего изобретения пластина может быть дискообразной мишенью, которая имеет направляющие (выступы), расположенные звездообразно, чья общая ось располагается в центре мишени, и эти направляющие выступают в соответствующие канавки (угулубления) держателя, которые расположены звездообразно. Например, держатель является частью устройства охлаждающей пластины. Следовательно, мишень центруется на охлаждающей пластине независимо от температуры конструкцией охлаждающей пластины мишени в соответствии с настоящим изобретением. Следовательно, в случае использования анодного кольца вокруг мишени возможно, чтобы зазор между мишенью и анодным кольцом оставался концентрическим, для чего он поддерживается концентрическим в соответствии с настоящим изобретением.

Таким образом возможно избежать коротких замыканий, которые могут произойти благодаря непреднамеренному контакту между мишенью, работающей в качестве катода, и анодным кольцом.

Также в результате этого контактная поверхность между мишенью и держателем мишени в устройстве охлаждающей пластины (например, между мишенью и кольцом держателя мишени) остается концентрическим, и когда используются пленочные охлаждающие пластины, в мишени создаются однородные напряжения. Таким образом возможно минимизировать площадь контакта.

Вместо обеспечения углублений в охлаждающей пластине, в которые входят лапки (выступы) мишени, также возможно обеспечить углубления в мишени и выполнить принимающий корпус устройства охлаждающей пластины, например удерживающее мишень кольцо, с выступающими внутрь выступами, которые входят в углубления мишени, как показано на Фиг. 4.

Особенное преимущество достигается при использовании настоящего изобретения в существующих охлаждающих пластинах, в которых чрезмерно малый зазор между мишенью и охлаждающей пластиной может быть увеличен с помощью распорного кольца. Если мишень устанавливается в распорном кольце, и это кольцо затем крепится к охлаждающей пластине, тогда возможно увеличить полный зазор (зазор 1 и зазор 2) между мишенью и охлаждающей пластиной и таким образом также увеличить используемую мощность, как показано на Фиг. 5.

Настоящее изобретение будет теперь объяснено более подробно с использованием чертежей.

Фиг. 1 схематично изображает мишень и держатель.

Фиг. 2 показывает источник покрытия с мишенью, охлаждающей пластиной и анодным кольцом.

Фиг. 3 показывает поперечное сечение через одну деталь одного варианта осуществления пластины с держателем в соответствии с настоящим изобретением на виде сверху.

Фиг. 4 показывает вид сверху одного варианта осуществления пластины с держателем в соответствии с настоящим изобретением.

Фиг. 5 показывает подробное поперечное сечение одного варианта осуществления настоящего изобретения.

Фиг. 6 показывает пластину с держателем в соответствии с настоящим изобретением на виде сверху, а также относящиеся к этому подробности.

Фиг. 7 показывает пару углубление/выступ, в которой выступ имеет закругленные области.

Фиг. 8 показывает пластина с держателем в соответствии с настоящим изобретением на виде сверху, в котором пластина имеет прямоугольную поверхность.

Таким образом раскрыта дискообразная пластина с держателем, которые вместе составляют систему "пластина-держатель", в которой пластина имеет круглую поверхность, проходящую через широкие области ее окружности, и имеет внешний край пластины, и материал пластины имеет первый коэффициент теплового расширения α1, а держатель имеет круглое отверстие, проходящее через широкие области его окружности, которое ограничивается внутренним краем держателя, и материал держателя имеет второй коэффициент теплового расширения α2, и

- при комнатной температуре окружность отверстия держателя больше, чем окружность поверхности пластины, в результате чего при центральном положении пластины в отверстии держателя имеется зазор с определенной шириной зазора S между краем пластины и внутренним краем держателя, и

- α2<α1 и

- край пластины имеет один или более выступов, которые, если смотреть от центральной точки круглой поверхности, простираются на длины выступов от края пластины в радиальном направлении и входят в соответствующие углубления с длинами углублений края держателя, и/или край пластины имеет один или более углублений, которые, если смотреть от края пластины, простираются на длины углублений к центральной точке круглой поверхности, и в которые входят соответствующие выступы с длинами выступов на краю держателя,

- в которой система "пластина-держатель" имеет по меньшей мере три таких пары углубление/выступ, и

для пар углубление/выступ соответствующие радиальные длины соответствуют друг другу так, чтобы при комнатной температуре, за исключением радиального интервала, составляющего максимум d, каждое углубление входил в зацепление в радиальном направлении с выступом, где размер радиального интервала d соответствует размеру ширины зазора S, и

для пар углубление/выступ в тангенциальном направлении соответствующие профили ширины соответствуют друг другу так, чтобы углубление могло функционировать в качестве направляющего рельса для соответствующего выступа, зазор sp которого в тангенциальном направлении составляет меньше чем S,

и в результате как при комнатной температуре, так и при более высоких температурах, при которых пластина расширяется больше чем держатель, расширяющаяся пластина была закреплена так, чтобы она была всегда отцентрована в держателе, за исключением самое большее зазора sp.

Предпочтительно для вышеописанной пластины с держателем ширина зазора S, радиальный интервал d и зазор sp могут быть выбраны так, чтобы пластина могла свободно расширяться в держателе вплоть до температуры по меньшей мере 450°C, предпочтительно по меньшей мере 500°C, еще более предпочтительно по меньшей мере 650°C.

Предпочтительно для вышеописанной пластины с держателем углубления и/или выступы в пластине распределяются равноудаленно друг от друга.

Предпочтительно для вышеописанной пластины с держателем держатель является кольцевым или имеет кольцевую часть для размещения пластины.

Для вышеописанной пластины с держателем предпочтительно предусматриваются четыре пары углубление/выступ.

В вышеописанной системе пластина-держатель пластина может быть мишенью для использования в процессе физического осаждения из газовой фазы (PVD), а система пластина-держатель может быть частью соответствующего источника покрытия.

Вышеописанный источник покрытия может быть снабжен средством для присоединения к источнику напряжения, которое позволяет применить отрицательный потенциал к мишени относительно электрода, так, чтобы мишень могла использоваться в качестве катода, а электрод мог использоваться в качестве анода.

В вышеописанном источнике покрытия части держателя могут составлять по меньшей мере часть охлаждающегося устройства.

Вышеописанный держатель может быть воплощен как распорное кольцо.

Охлаждающее устройство предпочтительно может быть устройством типа пленочной охлаждающей пластины.

Вышеупомянутый анод предпочтительно может быть размещен вокруг мишени и воплощен как анодное кольцо.

В вышеописанной пластине с держателем зазор sp предпочтительно может составлять половину размера ширины зазора S и особенно предпочтительно может иметь величину на порядок меньше, чем ширина зазора S.

В вышеописанной пластине с держателем ширина профиля в направляющих областях по меньшей мере одного из выступов, предпочтительно нескольких из выступов, и в частности предпочтительно всех выступов в осевом направлении i) может не иметь никаких краев, что делает невозможным заедание в направляющем рельсе, который формируется соответствующим углублением, или ii) может иметь параллельные, прямые стенки по меньшей мере в той радиальной части, в которой проходит углубление.

В вышеописанной пластине с держателем ширина профиля по меньшей мере одного углубления, предпочтительно нескольких углублений, и особенно предпочтительно всех углублений, по меньшей мере в той радиальной части, в которой углубление выполняет направляющую функцию, i) может иметь параллельные, прямые стенки или ii) может не иметь никаких краев, что делает невозможным заедание соответствующим выступа в направляющем рельсе, который формируется углублением.

Предпочтительно в одной, нескольких, или во всех парах углубление/выступ либо одновременно выполняются вышеописанные альтернативы i), либо одновременно выполняются вышеописанные альтернативы ii).

Также раскрыта система физического осаждения из газовой фазы (PVD) по меньшей мере с одним источником покрытия, как описано выше.


ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ
ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ
ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ
ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ
ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ
ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ
ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ
ЦЕНТРИРОВАНИЕ ПЛАСТИНЫ В ДЕРЖАТЕЛЕ ПРИ КОМНАТНЫХ ТЕМПЕРАТУРАХ И ПРИ БОЛЕЕ ВЫСОКИХ ТЕМПЕРАТУРАХ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 31.
10.08.2016
№216.015.52fd

Искровое испарение углерода

Изобретение относится к области катодного искрового испарения. Способ импульсного прерывистого искрового разряда осуществляют посредством разряда от конденсатора и током разряда управляют посредством периодического подключения конденсатора. Между импульсами имеются временные интервалы...
Тип: Изобретение
Номер охранного документа: 0002594022
Дата охранного документа: 10.08.2016
13.01.2017
№217.015.7178

Способ обеспечения последовательных импульсов мощности

Изобретение относится к области нанесения покрытий, к способу обеспечения импульсов мощности с линейно изменяемым интервалом импульсов мощности для распылительных катодов PVD, которые разделены на частичные катоды, при этом действующие на частичных катодах интервалы импульсов мощности выбраны...
Тип: Изобретение
Номер охранного документа: 0002596818
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.88fa

Высокопроизводительный источник для процесса распыления

Изобретение относится к способу и установке для магнетронного распыления материала с поверхности мишени с обеспечением большей процентной доли распыленного материала в форме ионов. Создают плазменный разряд с плотностью тока разряда свыше 0,2 А/см. Используют по меньшей мере два магнетронных...
Тип: Изобретение
Номер охранного документа: 0002602571
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8974

Нанослойное покрытие для высококачественных инструментов

Изобретение относится к нанослойному покрытию режущего инструмента и способу его нанесения на режущий инструмент. Осуществляют нанесение на поверхность режущего инструмента покрытия, содержащего нанослойную структуру из чередующихся нанослоев А, состоящих из (Al,Ti,W)N, и нанослоев В, состоящих...
Тип: Изобретение
Номер охранного документа: 0002602577
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.8a5f

Антибактериальное медицинское изделие и способ его изготовления

Группа изобретений относится к медицине. Описано медицинское изделие с нанесенным на основу антибактериальным покрытием из твердого материала с биоцидом. Это покрытие из твердого материала включает в себя по меньшей мере один внутренний слой и один наружный слой, при этом концентрация биоцида в...
Тип: Изобретение
Номер охранного документа: 0002604123
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8b9c

Инструмент для горячей формовки или штамповки металлических листов с покрытием из cr-si-n

Изобретение относится к инструменту для горячего формования стального листа с AlSi покрытием, имеющему покрытие CrSiN, в котором x: 40-69 ат. %, y: 1-20 ат. % и z: 30-40 ат. %, а также к применению указанного инструмента в качестве инструмента для горячего формования стального листа с AlSi...
Тип: Изобретение
Номер охранного документа: 0002604158
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9ea2

Установка и способ для вакуумной обработки изделий

Изобретение относится к установке для вакуумной обработки изделий и способу вакуумной обработки с использованием упомянутой установки. Заявленная установка предназначена для обработки изделий, закрепленных на карусели (205), размещенной на карусельных салазках (201). Указанная карусель содержит...
Тип: Изобретение
Номер охранного документа: 0002606105
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.a1c0

Способ удаления слоев для твердых углеродных слоев

Изобретение относится к способам реакционного удаления с поверхности подложки покрытия из углеродных слоев. Осуществляют размещение освобождаемой от покрытия подложки на держателе подложки в вакуумной камере, подачу в вакуумную камеру по меньшей мере одного реакционного газа, обеспечивающего...
Тип: Изобретение
Номер охранного документа: 0002606899
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.b076

Декоративная деталь автомобиля

Изобретение относится к декоративной детали для автомобиля. Декоративная деталь для автомобиля содержащит подложку, гальваническое покрытие на упомянутой подложке и цветообразующий покровный слой, нанесенный физическим осаждением из газовой фазы. Между подложкой и цветообразующим покровным...
Тип: Изобретение
Номер охранного документа: 0002613496
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.c4f1

Сверло с покрытием

Группа изобретений относится к нанесению покрытий на подложки и может быть использовано для нанесения покрытий на поверхности инструментов и деталей. Сверло с покрытием, которое выполнено по меньшей мере на сверлильной головке сверла и имеет по меньшей мере один слой, нанесенный магнетронным...
Тип: Изобретение
Номер охранного документа: 0002618292
Дата охранного документа: 03.05.2017
Показаны записи 1-1 из 1.
29.08.2018
№218.016.807d

Мишень для распыления, имеющая увеличенную энергетическую совместимость

Изобретение относится к системе центрирования пластины, которая имеет пластину с держателем, в которой пластина центруется в держателе как при комнатной температуре, так и при более высоких температурах, независимо от теплового расширения пластины и держателя, и пластина может свободно...
Тип: Изобретение
Номер охранного документа: 0002665059
Дата охранного документа: 28.08.2018
+ добавить свой РИД