×
25.08.2018
218.016.7eb1

Результат интеллектуальной деятельности: Способ генерации терагерцовых импульсов на основе термоупругого эффекта

Вид РИД

Изобретение

Аннотация: Использование: для генерации терагерцовых импульсов на основе термоупругого эффекта. Сущность изобретения заключается в том, что получают акустические колебания путем воздействия лазерным импульсом на пару металлов, один из которых, подвергаемый воздействию лазерного излучения, представляет собой пленку из металлического сплава, а второй материал является подложкой, служащей для преобразования получаемых ультразвуковых импульсов в электромагнитное излучение, при этом толщину металлической пленки выбирают из условия, что поглощение лазерного излучения полностью происходило в ее приповерхностной зоне, а мощность и длительность лазерного импульса рассчитывают исходя из недопущения испарения облучаемого вещества и образования в нем фазовых переходов. Технический результат: обеспечение возможности стабильной генерации терагерцовых электромагнитных импульсов. 1 з.п. ф-лы, 2 ил., 2 табл.

Предлагаемое изобретение относится к неразрушающим методам исследования твердых материалов и может быть использовано при диагностике структуры различных твердых материалов.

Известен способ возбуждения когерентного электромагнитного излучения в диапазоне частот 1-100 ТГц в кристаллических материалах при воздействии ударной волны или распространяющегося возбуждения в виде солитона. Согласно данному способу терагерцовое электромагнитное излучение генерируется в результате синхронного движения большого чисел атомов при распространении ударной волны через кристалл. Частоты излучения определяются скоростью удара и постоянными решетки кристалла и могут потенциально использоваться для определения атомно-масштабных свойств материала (Статья «Coherent Optical Photons from Shock Waves in Crystals», Evan J. Reed, Marin Soljacic, Richard Gee, and J. D. Joannopoulos, Phys. Rev. Lett. 96, 013904 - Published 11 January 2006.)

Данный способ позволяет создавать мощные импульсы с высокой проникающей способностью и эффективно исследовать практически любые типы твердых материалов. Это техническое решение авторы рассматривают в качестве аналога.

Основными недостатками данного способа являются трудность создания высоких скоростей удара и частичное разрушение поверхностного слоя материала при мощном импульсном воздействии.

Известен также «МЕТОД ГЕНЕРАЦИИ ТГЦ ЧАСТОТЫ ИЗЛУЧЕНИЯ И ВОСПРИЯТИЯ ДЕФОРМАЦИОННЫХ ВОЛН БОЛЬШОЙ АМПЛИТУДЫ В ПЬЕЗОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛАХ» (Патент US 20090173159 А1, Pub. No.: US 2009/0173159 Al, Jul. 9, 2009).

Данный способ включает получение колебания деформации в первом материале, который находится в контакте со вторым пьезоэлектрическим гетерогенным материалом, в котором колебания деформации преобразуются в терагерцовое электромагнитное излучение. При этом получение колебаний деформации в первом материале включает в себя формирование ударной волны, при котором происходит частичное испарение части материала, контактирующего с лазерным излучением. В качестве материала, контактирующего с лазерным излучением, используется алюминий.

Вышеназванный способ позволяет создавать более мощные импульсы с меньшими затратами энергии. Это техническое решение авторы рассматривают в качестве прототипа.

Недостатками указанного технического решения является то, что при образовании ударной волны излучатель претерпевает пластические деформации, что приводит к нарушению его геометрии. Кроме этого, выбор в качестве генераторной среды алюминия приводит к уменьшению частотного диапазона сигналов вследствие его высокой теплопроводности. К тому же в измерительном приборе появляются ударные нагрузки, что ведет к нелинейному искажению сигнала.

Технический результат предлагаемого изобретения состоит в стабильной генерации терагерцовых электромагнитных импульсов на основе линейного термоупругого эффекта при отсутствии фазовых переходов облучаемого вещества и, как следствие, повышении четкости изображения при использовании данных импульсов для диагностики структуры и свойств твердых материалов. Кроме того, технический результат предлагаемого решения состоит в повышении долговечности излучателя за счет отсутствия испарения части облучаемого материала.

Технический результат достигается за счет получения акустических колебаний путем воздействия лазерным импульсом на пару материалов, один из которых, подвергаемый воздействию лазерного излучения, представляет собой пленку из металлического сплава, а второй материал является подложкой, служащей для преобразования получаемых ультразвуковых импульсов в терагерцовое электромагнитное излучение, толщину металлической пленки выбирают таким образом, чтобы поглощение лазерного излучения полностью происходило в ее приповерхностной зоне, а мощность и длительность лазерного импульса рассчитывают, исходя из недопущения испарения облучаемого вещества и образования в нем фазовых переходов.

Кроме того, согласно предлагаемому способу при создании излучателя терагерцового излучения в качестве подложки используют ниобат лития, а в качестве материала, подвергаемого воздействию лазера, используют никель или хром. Причем толщина металлической пленки не превышает 100 нм, а шероховатость поверхности, на которую она наносится, не выше чем λ/30.

Реализация предлагаемого способа показана на Фиг. 1 и Фиг. 2. Излучение 1 от работающего в импульсно-периодическом режиме лазера (на Фиг. 1 и Фиг. 2. не показан) поступает на пленку из металлического сплава 2, покрывающую подложку 3. При воздействии лазерного излучения 1 в пленке 2 происходит расширение нагретой области. Состав пленки, мощность и время воздействия излучения подбираются таким образом, что фазового перехода материала пленки 2 не происходит.

Последующее расширение нагретой области металлической пленки 2 за счет линейного термоупругого эффекта приводит к генерации мощного короткого ультразвукового импульса 4. Данный импульс 4 распространяется в подложку 3, например, из ниобата лития, где за счет пьезоэффекта возникает широкополосный импульс электромагнитной волны 5.

Форма подложки 3 может иметь два варианта, отличающиеся направлением распространения электромагнитного импульса 6. В первом случае (Фиг. 1) сформированный электромагнитный импульс распространяется в том же направлении, что и ультразвуковой импульс 4. Во втором случае (Фиг. 2) электромагнитный импульс 5 отклоняется от направления образования ультразукового импульса 4 на 90°. В обоих случаях граница раздела 7 пленки 2 и подложки 3 имеют одни и те же характеристики, определяемые степенью шероховатости поверхности подложки 3.

Данный тип волн проникает на большую глубину и позволяет исследовать структуры различных типов объектов. В случае, показанном на Фиг. 1, объект исследования 8 помещают между излучателем 9 и приемником 10, представляющим собой специальный терагерцовый спектрометр. В случае, показанном на Фиг. 2, излучатель 9 перемещают по поверхности исследуемого объекта 8.

Глубина проникновения света имеет порядок La-1=10 нм, излучение лазера полностью поглощается на расстоянии 3La=30 нм. Длина диффузии тепла за время лазерного воздействия варьируется от 5 нм для никеля до 20 нм для серебра. Это означает, что за время действия лазерного импульса равномерно прогревается металлическая пленка толщиной не более 20 нм. Пространственная протяженность акустического импульса LA0 τ0 лежит в диапазоне от 8 нм до 15 нм.

Таким образом шероховатость поверхности подложки не должна быть хуже λ/30, где λ - длина волны используемого лазерного излучения, а напыляемая пленка металла не должна превышать 60-100 нм. При энергии в импульсе порядка 100 мкДж и его длительности 1-3 пс с учетом того, что коэффициент отражения от поверхности металла может достигать 90%, поверхностная плотность поглощенной энергии имеет порядок w0=0,5 Дж/м2 при ширине оптического пучка, а=2 мм.

В этом случае реализуется термоупругий режим воздействия, при котором поглощение оптического пучка происходит в приповерхностной зоне материала и отсутствуют фазовые переходы вещества. Исходя из этого толщина подложки будет оптимальной в диапазоне от 1-го до 3-х мм и ее точное значение может быть установлено опытным путем.

Основные параметры металлов, которые могут быть использованы в качестве оптико-акустических генераторов приведены в таблице 1. Где λ - коэффициент теплопроводности, χ=λ/(ρ0СР) - коэффициент диффузии тепла, Tm - температура плавления.

Известно, что амплитуда напряженности электрического поля определяется выражением E0=dp00, где Е0 - пьезомодуль, а e0 - электрическая постоянная. Для ниобата лития d=6⋅10-12Кл ~ /H - а ε0=8,85⋅10-12Кл/м⋅В. Оценочные значения р0, Е0 и приращение температуры ΔТ при поглощении лазерного импульса в металлической пленке приведены в таблице 2.

Из приведенных данных видно, что использование алюминия в качестве генераторной среды неэффективно, поскольку температура его плавления существенно ниже, а коэффициент теплопроводности выше, чем у никеля или хрома. Использование пары никель / ниобат лития или хром / ниобат лития при соблюдении геометрических размеров элементов излучателя и качества поверхности подложки на границе раздела подложки и покрывающей ее металлической пленки позволяет получить электромагнитный импульс в частотном диапазоном от 0,1 ТГц до 2,5 ТГц и напряженностью электрического поля порядка 107 В/м без фазового перехода части металлической пленки и ее испарения.

Таким образом все признаки, характеризующие предлагаемый способ, необходимы и достаточны для его осуществления и достижения заявляемого технического результата.


Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Источник поступления информации: Роспатент

Показаны записи 311-320 из 322.
23.04.2023
№223.018.51e8

Способ получения композиционного электроконтактного материала cu-sic

Изобретение относится к порошковой металлургии, в частности к получению электротехнического композиционного материала на основе меди, содержащего частицы карбида кремния. Может использоваться в производстве силовых разрывных электрических контактах, в переключателях мощных электрических сетей и...
Тип: Изобретение
Номер охранного документа: 0002739493
Дата охранного документа: 24.12.2020
23.04.2023
№223.018.5219

Способ комбинаторного получения новых композиций материалов в многокомпонентной системе

Изобретение относится к области металлургии, в частности к способу комбинаторного получения композиций материалов в многокомпонентной системе. Может использоваться для построения фазовых диаграмм и поиска новых интерметаллических соединений в многокомпонентных системах. Из тугоплавкого...
Тип: Изобретение
Номер охранного документа: 0002745223
Дата охранного документа: 22.03.2021
24.04.2023
№223.018.5294

Способ получения монооксида углерода из лигнина гидролизного под действием co

Изобретение относится к способу получения монооксида углерода из гидролизного лигнина, включающему контактирование при температуре 500-800°С лигнина с диоксидом углерода, при объемной скорости подачи СО в реактор 900 ч, в присутствии железного или кобальтового катализатора, представляющего...
Тип: Изобретение
Номер охранного документа: 0002741006
Дата охранного документа: 22.01.2021
14.05.2023
№223.018.5654

Способ переработки минерального сырья, содержащего сульфиды металлов

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и промпродуктов обогащения, богатых руд, а именно к выщелачиванию металлов из сульфидного минерального сырья....
Тип: Изобретение
Номер охранного документа: 0002739492
Дата охранного документа: 24.12.2020
15.05.2023
№223.018.5739

Способ синтеза нанокомпозитов nicocu/c на основе полиакрилонитрила

Изобретение относится к области химии и нанотехнологиям синтеза наночастиц металла (сплава), а именно к способу синтеза нанокомпозита NiCoCu/C. Способ включает приготовление совместного раствора полиакрилонитрила, Со(СНСОО)⋅4HO, Ni(CHCOO)⋅4HO, (CHCOO)Cu⋅HO в диметилформамиде при температуре...
Тип: Изобретение
Номер охранного документа: 0002770599
Дата охранного документа: 18.04.2022
15.05.2023
№223.018.5806

Способ получения термостойкой проволоки из алюминиево-кальциевого сплава

Изобретение относится к области металлургии легких сплавов, в частности к сплавам на основе алюминия, и может быть использовано при получении проволоки из алюминиево-кальциевого сплава, в том числе диаметром менее 0,3 мм. Способ получения проволоки из алюминиево-кальциевого сплава включает...
Тип: Изобретение
Номер охранного документа: 0002767091
Дата охранного документа: 16.03.2022
15.05.2023
№223.018.5822

Способ растворения сульфидов металлов с использованием озона и пероксида водорода

Изобретение относится к гидрометаллургическому извлечению цветных, редких и благородных металлов из минерального сырья, содержащего сульфиды металлов, преимущественно из концентратов и продуктов обогащения, богатых руд. Способ растворения сульфидов металлов с использованием озона и пероксида...
Тип: Изобретение
Номер охранного документа: 0002768928
Дата охранного документа: 25.03.2022
16.05.2023
№223.018.5e79

Способ получения поликристаллических алмазных пленок

Изобретение относится к области материаловедения и может быть использовано при изготовлении теплоотводов, детекторов ионизирующего излучения, инфракрасных окон, упрочняющих и износостойких покрытий на деталях и режущем инструменте. Сначала готовят суспензию, содержащую наноалмазные порошки, и...
Тип: Изобретение
Номер охранного документа: 0002750234
Дата охранного документа: 24.06.2021
16.05.2023
№223.018.602d

Лазер с устройствами юстировки

Изобретение относится к области квантовой электроники и лазерной техники, в частности к твердотельным ВКР-лазерам, и может быть применено в нелинейной оптике, аналитической спектроскопии, оптическом приборостроении, медицине, экологии, фотодинамической терапии. Лазер с источником накачки,...
Тип: Изобретение
Номер охранного документа: 0002749046
Дата охранного документа: 03.06.2021
16.05.2023
№223.018.60f8

Термостойкий электропроводный алюминиевый сплав (варианты)

Изобретение относится к области металлургии, в частности к сплаву на основе алюминия, и может быть использовано при получении изделий электротехнического назначения при производстве кабельно-проводниковой продукции для электропроводки зданий и сооружений. Термостойкий электропроводный...
Тип: Изобретение
Номер охранного документа: 0002743499
Дата охранного документа: 19.02.2021
Показаны записи 41-41 из 41.
17.06.2023
№223.018.81ad

Фармацевтическая композиция пембролизумаба и ее применение

Группа изобретений относится к области фармацевтики и медицины. 1 и 2 объекты представляют собой фармацевтическую композицию пембролизумаба для лечения злокачественного новообразования или инфекционного заболевания, содержащую: 5-50 мг/мл пембролизумаба; 0,087-0,432 мг/мл гистидина; 0,464-0,931...
Тип: Изобретение
Номер охранного документа: 0002791857
Дата охранного документа: 14.03.2023
+ добавить свой РИД