×
25.08.2018
218.016.7eb1

Результат интеллектуальной деятельности: Способ генерации терагерцовых импульсов на основе термоупругого эффекта

Вид РИД

Изобретение

Аннотация: Использование: для генерации терагерцовых импульсов на основе термоупругого эффекта. Сущность изобретения заключается в том, что получают акустические колебания путем воздействия лазерным импульсом на пару металлов, один из которых, подвергаемый воздействию лазерного излучения, представляет собой пленку из металлического сплава, а второй материал является подложкой, служащей для преобразования получаемых ультразвуковых импульсов в электромагнитное излучение, при этом толщину металлической пленки выбирают из условия, что поглощение лазерного излучения полностью происходило в ее приповерхностной зоне, а мощность и длительность лазерного импульса рассчитывают исходя из недопущения испарения облучаемого вещества и образования в нем фазовых переходов. Технический результат: обеспечение возможности стабильной генерации терагерцовых электромагнитных импульсов. 1 з.п. ф-лы, 2 ил., 2 табл.

Предлагаемое изобретение относится к неразрушающим методам исследования твердых материалов и может быть использовано при диагностике структуры различных твердых материалов.

Известен способ возбуждения когерентного электромагнитного излучения в диапазоне частот 1-100 ТГц в кристаллических материалах при воздействии ударной волны или распространяющегося возбуждения в виде солитона. Согласно данному способу терагерцовое электромагнитное излучение генерируется в результате синхронного движения большого чисел атомов при распространении ударной волны через кристалл. Частоты излучения определяются скоростью удара и постоянными решетки кристалла и могут потенциально использоваться для определения атомно-масштабных свойств материала (Статья «Coherent Optical Photons from Shock Waves in Crystals», Evan J. Reed, Marin Soljacic, Richard Gee, and J. D. Joannopoulos, Phys. Rev. Lett. 96, 013904 - Published 11 January 2006.)

Данный способ позволяет создавать мощные импульсы с высокой проникающей способностью и эффективно исследовать практически любые типы твердых материалов. Это техническое решение авторы рассматривают в качестве аналога.

Основными недостатками данного способа являются трудность создания высоких скоростей удара и частичное разрушение поверхностного слоя материала при мощном импульсном воздействии.

Известен также «МЕТОД ГЕНЕРАЦИИ ТГЦ ЧАСТОТЫ ИЗЛУЧЕНИЯ И ВОСПРИЯТИЯ ДЕФОРМАЦИОННЫХ ВОЛН БОЛЬШОЙ АМПЛИТУДЫ В ПЬЕЗОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛАХ» (Патент US 20090173159 А1, Pub. No.: US 2009/0173159 Al, Jul. 9, 2009).

Данный способ включает получение колебания деформации в первом материале, который находится в контакте со вторым пьезоэлектрическим гетерогенным материалом, в котором колебания деформации преобразуются в терагерцовое электромагнитное излучение. При этом получение колебаний деформации в первом материале включает в себя формирование ударной волны, при котором происходит частичное испарение части материала, контактирующего с лазерным излучением. В качестве материала, контактирующего с лазерным излучением, используется алюминий.

Вышеназванный способ позволяет создавать более мощные импульсы с меньшими затратами энергии. Это техническое решение авторы рассматривают в качестве прототипа.

Недостатками указанного технического решения является то, что при образовании ударной волны излучатель претерпевает пластические деформации, что приводит к нарушению его геометрии. Кроме этого, выбор в качестве генераторной среды алюминия приводит к уменьшению частотного диапазона сигналов вследствие его высокой теплопроводности. К тому же в измерительном приборе появляются ударные нагрузки, что ведет к нелинейному искажению сигнала.

Технический результат предлагаемого изобретения состоит в стабильной генерации терагерцовых электромагнитных импульсов на основе линейного термоупругого эффекта при отсутствии фазовых переходов облучаемого вещества и, как следствие, повышении четкости изображения при использовании данных импульсов для диагностики структуры и свойств твердых материалов. Кроме того, технический результат предлагаемого решения состоит в повышении долговечности излучателя за счет отсутствия испарения части облучаемого материала.

Технический результат достигается за счет получения акустических колебаний путем воздействия лазерным импульсом на пару материалов, один из которых, подвергаемый воздействию лазерного излучения, представляет собой пленку из металлического сплава, а второй материал является подложкой, служащей для преобразования получаемых ультразвуковых импульсов в терагерцовое электромагнитное излучение, толщину металлической пленки выбирают таким образом, чтобы поглощение лазерного излучения полностью происходило в ее приповерхностной зоне, а мощность и длительность лазерного импульса рассчитывают, исходя из недопущения испарения облучаемого вещества и образования в нем фазовых переходов.

Кроме того, согласно предлагаемому способу при создании излучателя терагерцового излучения в качестве подложки используют ниобат лития, а в качестве материала, подвергаемого воздействию лазера, используют никель или хром. Причем толщина металлической пленки не превышает 100 нм, а шероховатость поверхности, на которую она наносится, не выше чем λ/30.

Реализация предлагаемого способа показана на Фиг. 1 и Фиг. 2. Излучение 1 от работающего в импульсно-периодическом режиме лазера (на Фиг. 1 и Фиг. 2. не показан) поступает на пленку из металлического сплава 2, покрывающую подложку 3. При воздействии лазерного излучения 1 в пленке 2 происходит расширение нагретой области. Состав пленки, мощность и время воздействия излучения подбираются таким образом, что фазового перехода материала пленки 2 не происходит.

Последующее расширение нагретой области металлической пленки 2 за счет линейного термоупругого эффекта приводит к генерации мощного короткого ультразвукового импульса 4. Данный импульс 4 распространяется в подложку 3, например, из ниобата лития, где за счет пьезоэффекта возникает широкополосный импульс электромагнитной волны 5.

Форма подложки 3 может иметь два варианта, отличающиеся направлением распространения электромагнитного импульса 6. В первом случае (Фиг. 1) сформированный электромагнитный импульс распространяется в том же направлении, что и ультразвуковой импульс 4. Во втором случае (Фиг. 2) электромагнитный импульс 5 отклоняется от направления образования ультразукового импульса 4 на 90°. В обоих случаях граница раздела 7 пленки 2 и подложки 3 имеют одни и те же характеристики, определяемые степенью шероховатости поверхности подложки 3.

Данный тип волн проникает на большую глубину и позволяет исследовать структуры различных типов объектов. В случае, показанном на Фиг. 1, объект исследования 8 помещают между излучателем 9 и приемником 10, представляющим собой специальный терагерцовый спектрометр. В случае, показанном на Фиг. 2, излучатель 9 перемещают по поверхности исследуемого объекта 8.

Глубина проникновения света имеет порядок La-1=10 нм, излучение лазера полностью поглощается на расстоянии 3La=30 нм. Длина диффузии тепла за время лазерного воздействия варьируется от 5 нм для никеля до 20 нм для серебра. Это означает, что за время действия лазерного импульса равномерно прогревается металлическая пленка толщиной не более 20 нм. Пространственная протяженность акустического импульса LA0 τ0 лежит в диапазоне от 8 нм до 15 нм.

Таким образом шероховатость поверхности подложки не должна быть хуже λ/30, где λ - длина волны используемого лазерного излучения, а напыляемая пленка металла не должна превышать 60-100 нм. При энергии в импульсе порядка 100 мкДж и его длительности 1-3 пс с учетом того, что коэффициент отражения от поверхности металла может достигать 90%, поверхностная плотность поглощенной энергии имеет порядок w0=0,5 Дж/м2 при ширине оптического пучка, а=2 мм.

В этом случае реализуется термоупругий режим воздействия, при котором поглощение оптического пучка происходит в приповерхностной зоне материала и отсутствуют фазовые переходы вещества. Исходя из этого толщина подложки будет оптимальной в диапазоне от 1-го до 3-х мм и ее точное значение может быть установлено опытным путем.

Основные параметры металлов, которые могут быть использованы в качестве оптико-акустических генераторов приведены в таблице 1. Где λ - коэффициент теплопроводности, χ=λ/(ρ0СР) - коэффициент диффузии тепла, Tm - температура плавления.

Известно, что амплитуда напряженности электрического поля определяется выражением E0=dp00, где Е0 - пьезомодуль, а e0 - электрическая постоянная. Для ниобата лития d=6⋅10-12Кл ~ /H - а ε0=8,85⋅10-12Кл/м⋅В. Оценочные значения р0, Е0 и приращение температуры ΔТ при поглощении лазерного импульса в металлической пленке приведены в таблице 2.

Из приведенных данных видно, что использование алюминия в качестве генераторной среды неэффективно, поскольку температура его плавления существенно ниже, а коэффициент теплопроводности выше, чем у никеля или хрома. Использование пары никель / ниобат лития или хром / ниобат лития при соблюдении геометрических размеров элементов излучателя и качества поверхности подложки на границе раздела подложки и покрывающей ее металлической пленки позволяет получить электромагнитный импульс в частотном диапазоном от 0,1 ТГц до 2,5 ТГц и напряженностью электрического поля порядка 107 В/м без фазового перехода части металлической пленки и ее испарения.

Таким образом все признаки, характеризующие предлагаемый способ, необходимы и достаточны для его осуществления и достижения заявляемого технического результата.


Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Источник поступления информации: Роспатент

Показаны записи 191-200 из 322.
18.05.2018
№218.016.5126

Композит с металлической матрицей и упрочняющими наночастицами карбида титана и способ его изготовления

Группа изобретений относится к композитам с алюминиевой матрицей и упрочняющими наночастицами карбида титана. Композит содержит упрочняющие наночастицы карбида титана округлой формы размером 5-500 нм в количестве 1-50 об. % от всего объема композита и алюминиевую матрицу, имеющую литую...
Тип: Изобретение
Номер охранного документа: 0002653393
Дата охранного документа: 08.05.2018
18.05.2018
№218.016.522b

Способ импульсно-периодического лазерно-ультразвукового контроля твердых материалов и устройство для его осуществления

Использование: для неразрушающего контроля материалов ультразвуковыми методами. Сущность изобретения заключается в том, что выполняют генерацию серии оптических импульсов, преобразование их в акустические сигналы, излучение полученных сигналов в исследуемый материал, возбуждение продольных и...
Тип: Изобретение
Номер охранного документа: 0002653123
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.523f

Устройство измерения поверхностного натяжения и коэффициента вязкости металлов

Изобретение относится к средствам определения физико-химических констант вещества, а именно его поверхностного натяжения и коэффициента вязкости. Устройство содержит печь электросопротивления, установленную с возможностью вертикального перемещения посредством подвижного держателя, измерительную...
Тип: Изобретение
Номер охранного документа: 0002653114
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.572a

Способ дробления материалов и устройство для его осуществления

Группа изобретений относится к способу дробления и устройству для его осуществления, которые могут найти применение в горнодобывающей, металлургической, строительной и других отраслях промышленности, связанных с дезинтеграцией материалов. Способ дробления материалов заключается в том, что перед...
Тип: Изобретение
Номер охранного документа: 0002654788
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.589b

Датчик измерения механических деформаций

Изобретение относится к измерительной технике и представляет собой датчик механических деформаций на основе аморфных ферромагнитных микропроводов. Датчик конструктивно объединяет магниточувствительный элемент и электронное измерительное устройство. Магниточувствительный элемент представляет...
Тип: Изобретение
Номер охранного документа: 0002653563
Дата охранного документа: 11.05.2018
09.06.2018
№218.016.5caa

Способ получения порошка молибдена

Изобретение относится к получению порошка молибдена. Способ включает засыпку оксида молибдена MoO в лодочку, загрузку лодочки в трубчатую печь, подачу в трубчатую печь водорода и двухстадийное восстановление оксида молибдена MoO с продвижением лодочки в печи. Подачу водорода осуществляют...
Тип: Изобретение
Номер охранного документа: 0002656124
Дата охранного документа: 01.06.2018
09.06.2018
№218.016.5db3

Способ газификации различных видов топлива в политопливном газогенераторе

Изобретение может быть использовано в энергетике и химической промышленности. Газификацию топлива осуществляют в политопливном газогенераторе барботажного типа. В ванну оксидного расплава сбоку струями подают газообразный окислитель. Брикеты, состоящие из твердого и жидкого топлива, загружают...
Тип: Изобретение
Номер охранного документа: 0002656487
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f84

Способ получения модифицированных кристаллов магнетита

Изобретение относится к области неорганической химии и касается способа получения модифицированных кристаллов магнетита FeO, содержащих на поверхности флуоресцентный краситель, что дает возможность визуализировать и отслеживать их поведение как в живой клетке, так и в живом организме in vivo....
Тип: Изобретение
Номер охранного документа: 0002656667
Дата охранного документа: 06.06.2018
14.06.2018
№218.016.61b1

Способ выбора мест размещения углепородных отвалов

Изобретение относится к горной промышленности, может быть использовано при выборе мест для расположения углепородных отвалов и предназначено для предотвращения самовозгорания складируемой горной массы. Техническим результатом изобретения является предотвращение самовозгорания складируемой...
Тип: Изобретение
Номер охранного документа: 0002657302
Дата охранного документа: 13.06.2018
16.06.2018
№218.016.6249

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии, а именно к получению слитков из конструкционной криогенной аустенитной высокопрочной коррозионно-стойкой свариваемой стали, для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке и хранении сжиженных газов....
Тип: Изобретение
Номер охранного документа: 0002657741
Дата охранного документа: 15.06.2018
Показаны записи 41-41 из 41.
17.06.2023
№223.018.81ad

Фармацевтическая композиция пембролизумаба и ее применение

Группа изобретений относится к области фармацевтики и медицины. 1 и 2 объекты представляют собой фармацевтическую композицию пембролизумаба для лечения злокачественного новообразования или инфекционного заболевания, содержащую: 5-50 мг/мл пембролизумаба; 0,087-0,432 мг/мл гистидина; 0,464-0,931...
Тип: Изобретение
Номер охранного документа: 0002791857
Дата охранного документа: 14.03.2023
+ добавить свой РИД