×
09.06.2018
218.016.5f84

Результат интеллектуальной деятельности: Способ получения модифицированных кристаллов магнетита

Вид РИД

Изобретение

Аннотация: Изобретение относится к области неорганической химии и касается способа получения модифицированных кристаллов магнетита FeO, содержащих на поверхности флуоресцентный краситель, что дает возможность визуализировать и отслеживать их поведение как в живой клетке, так и в живом организме in vivo. Такие кристаллы могут найти применение в качестве средств доставки лекарств и Т2-контрастных агентов. Способ получения модифицированных кристаллов магнетита включает смешение 138 мас. ч. кристаллов магнетита и 1 мас. ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицерометокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас. ч. хлороформа, затем с 82240 мас. ч. N-метил-2-пирролидона, обработку смеси ультразвуком, удаление хлороформа и добавление в нее воды с последующим диализом полученной дисперсии модифицированных кристаллов магнетита против воды, при этом в качестве кристаллов используют кристаллы магнетита, полученные путем смешения октадецена с олеатом железа(III) или ацетилацетонатом железа(III), олеиновой кислотой и олеатом натрия, нагрева смеси до 70°C и ее выдерживания при этой температуре в течение 30 мин, повторного нагрева смеси в атмосфере инертного газа с 70°C до 320°C, ее выдерживания при этой температуре и охлаждения смеси до комнатной температуры, проводимыми в атмосфере инертного газа, введения в систему изопропанола, отделения кристаллов магнетита, их диспергирования в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин, в присутствии олеиновой кислоты и олеата натрия, нагрева полученной дисперсии до температуры 290-350°C в атмосфере инертного газа с последующим введением в нагретую дисперсию по каплям раствора олеата железа(III) в неполярном высококипящем органическом растворителе в течение 1-10 ч и охлаждения дисперсии до комнатной температуры, проводимыми в атмосфере инертного газа, повторного введения в систему изопропанола и отделения магнетита, а после диализа дисперсию концентрируют, добавляют в нее раствор в диметилсульфоксиде флуоресцентного красителя, выбранного из группы, включающей 1,1-диоктадецил-3,3,3,3 тетраметилиндодикарбоцианин, 1,1-диоктадецил-3,3,3,3-тетраметилиндотрикарбоцианионид и 9-(диэтиламино)бензо[а]феноксазин-5-он, отделяют модифицированный магнетит методом центрифугирования, затем его промывают смесью воды и диметилсульфоксида, потом водой. Изобретение позволяет получать кристаллы магнетита с улучшенными магнитными свойствами: намагниченность насыщения магнетита по сравнению с прототипом возрастает в 2,09-2,51 раза, значение скорости r-релаксивности увеличивается в 1,22-1,38 раза. 4 пр.

Изобретение относится к области неорганической химии и касается способа получения модифицированных кристаллов магнетита (Fe3O4), содержащих на поверхности флуоресцентный краситель, что дает возможность визуализировать и отслеживать их поведение, как в живой клетке, так и в живом организме in vivo. Такие кристаллы могут найти применение в качестве средств доставки лекарств и Т2-контрастных агентов.

Известен способ получения модифицированных кристаллов магнетита путем смешения дисперсии кристаллов магнетита сферической формы, имеющих размер 26-38 нм, в хлороформе с раствором, содержащим смесь 1,2-диолеоил-3-триметиламмоний-пропана и холестерина в хлороформе, добавлением в полученную смесь дистиллированной воды, обработки смеси ультразвуком, удаления хлороформа и повторной обработки смеси ультразвуком (Namiki Y. et al. A novel magnetic crystal-lipid nanostructure for magnetically guided in vivo gene delivery // Nature Nanotechnology. 2009. V. 4, P. 598-606). Данный способ получения модифицированных кристаллов магнетита имеет такие признаки, совпадающие с существенными признаками предлагаемого способа, как смешение дисперсии кристаллов магнетита в хлороформе с раствором в хлороформе смеси холестерина и липида, добавления в нее воды и обработки смеси ультразвуком.

Недостатками данного способа является то, что полученные модифицированные кристаллы магнетита не содержат флуоресцентного красителя, необходимого для визуализации, и обладают относительно невысокими магнитными свойствами, что затрудняет проведение с их помощью эффективной МРТ-диагностики и осложняет удаленное манипулирование ими во внешнем магнитном поле.

Известен способ получения модифицированных кристаллов магнетита путем диспергирования сферических кристаллов магнетита, имеющих диаметр 4-11 нанометров (нм), в хлороформе под действием ультразвука, добавления в дисперсию раствора дипальмитоилфосфатидилхолина, выпаривания хлороформа из смеси в инертной атмосфере, удаления остаточного растворителя в вакуумной камере, добавления фосфатного буферного раствора, нагрева смеси до 50°C и обработки ее ультразвуком (Gonzales М. & Krishnan K.M. Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia // Journal of Magnetism and Magnetic Materials. 2005. V. 293, P. 265-270). Данный способ получения модифицированных кристаллов магнетита имеет такие признаки, совпадающие с существенными признаками предлагаемого способа, как смешение дисперсии кристаллов магнетита в хлороформе с раствором липида в хлороформе, удаление из смеси хлороформа и воздействие на смесь ультразвука.

Недостатками данного способа является то, что полученные модифицированные кристаллы магнетита не содержат флуоресцентного красителя, необходимого для визуализации, и обладают относительно невысокими магнитными свойствами, что затрудняет проведение с их помощью эффективной МРТ-диагностики и осложняет удаленное манипулирование ими во внешнем магнитном поле.

Наиболее близким к заявляемому является известный способ получения модифицированных кристаллов оксида железа, в котором используют исходную навеску оксида, обладающего магнитными свойствами, содержащую 5 мг по железу. В данном техническом решении нет уточнений относительно того, какой из магнитных оксидов железа, обладающих гидрофобными свойствами, был использован (γ-Fe2O3 или Fe3O4). Следовательно, описанная в известном техническом решении модификация оксида железа является универсальной и может быть применима в том числе и для используемого в предлагаемом способе магнетита. Проведенный расчет показывает, что 5 мг по железу содержится в 6,91 мг магнетита. Таким образом, известный способ получения модифицированных кристаллов магнетита осуществляют путем смешения 6,91 мг (138 мас. ч. (мас. ч.)) магнетита, имеющих размер 16 нм, и 0,05 мг (1 мас. ч.) смеси холестерина, фосфолипида DSPC, имеющего название по химической номенклатуре 1,2-дистеароил-sn-глицеро-3-фосфохолин (http://www.sigmaaldrich.com/catalog/product/sigma/p6517?lang=en&region=RU), липидоида С12-200, имеющего название по химической номенклатуре 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ол (https://www.google.com/patents/WO2011017548A1?cl=en) и липида mPEG2000-DMG, имеющего название по химической номенклатуре 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоль)-2000 (https://www.nofamerica.corn/store/index.php?dispatch=products.view&product_id=329), взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 2 мл (60000 мас. ч.) хлороформа, затем с 4 мл (82240 мас. ч.) N-метил-2-пирролидона, обработки смеси ультразвуком, удаления хлороформа и добавления в нее воды с последующим диализом полученной дисперсии модифицированных кристаллов против воды (Jiang S., Eltoukhy A.A., Love K.T., Langer R. & Anderson, D.G. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery // Nano Letters, 2013. V. 13, P. 1059-1064 - прототип). Данный способ получения модифицированных кристаллов магнетита имеет такие признаки, совпадающие с существенными признаками предлагаемого способа, как смешение 138 мас. ч. кристаллов магнетита и 1 мас. ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас. ч. хлороформа, затем с 82240 мас. ч. N-метил-2-пирролидона, обработка смеси ультразвуком, удаление хлороформа и добавление в нее воды с последующим диализом полученной дисперсии модифицированных кристаллов магнетита против воды.

Недостатками данного способа является то, что полученные модифицированные кристаллы магнетита не содержат флуоресцентного красителя, необходимого для визуализации, и обладают относительно невысокими магнитными свойствами (см. контрольный пример 4), что затрудняет проведение с их помощью эффективной МРТ-диагностики и осложняет удаленное манипулирование ими во внешнем магнитном поле.

Задача изобретения заключается в разработке способа получения модифицированных кристаллов магнетита, лишенного вышеуказанных недостатков.

Технический результат изобретения заключается в придании кристаллам флуоресцентных свойств и улучшении магнитных свойств кристаллов за счет увеличения их намагниченности насыщения и повышения скорости их r2-релаксивности.

Предварительно были проведены эксперименты с различными исходными кристаллами магнетита, с различным составом модифицирующего покрытия на кристаллах и разными вводимыми флуоресцентными красителями, которые показали, что указанный технический результат достигается в том случае, когда в способе получения модифицированных кристаллов магнетита путем смешения 138 мас. ч. кристаллов магнетита и 1 мас. ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас. ч. хлороформа, затем 82240 мас. ч. N-метил-2-пирролидона, обработки смеси ультразвуком, удаления хлороформа и добавления в нее воды с последующим диализом полученной дисперсии модифицированных кристаллов магнетита против воды, в качестве кристаллов используют кристаллы магнетита, полученные путем смешения октадецена с олеатом железа(III) или ацетилацетонатом железа(III), олеиновой кислотой и олеатом натрия, нагрева смеси до 70°C и ее выдерживания при этой температуре в течение 30 мин, повторного нагрева смеси в атмосфере инертного газа с 70°C до 320°C, ее выдерживания при этой температуре и охлаждения смеси до комнатной температуры, проводимыми в атмосфере инертного газа, введения в систему изопропанола, отделения кристаллов магнетита, их диспергирования в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин, в присутствии олеиновой кислоты и олеата натрия, нагрева полученной дисперсии до температуры 290-350°C в атмосфере инертного газа с последующим введением в нагретую дисперсию по каплям раствора олеата железа(III) в неполярном высококипящем органическом растворителе в течение 1-10 ч и охлаждения дисперсии до комнатной температуры, проводимыми в атмосфере инертного газа, повторного введения в систему изопропанола и отделения магнетита, а после диализа дисперсию концентрируют, добавляют в нее раствор в диметилсульфоксиде флуоресцентного красителя, выбранного из группы, включающей 1,1-диоктадецил-3,3,3,3 тетраметилиндодикарбоцианин, 1,1-диоктадецил-3,3,3,3-тетраметилиндотрикарбоцианионид и 9-(диэтиламино)бензо[а]феноксазин-5-он, отделяют модифицированный магнетит методом центрифугирования, затем его промывают смесью воды и диметилсульфоксида, потом водой.

Предлагаемый способ является новым и не описан в патентной и научно-технической литературе. Способ получения используемых в предлагаемом техническом решении исходных кристаллов магнетита также является новым и не описан в патентной и научно-технической литературе.

Исходные кристаллы магнетита в предлагаемом способе получают в два этапа с использованием на втором этапе синтеза неполярного высококипящего органического растворителя, выбранного из группы, включающей дибензиловый эфир, октадецен и триоктиламин. Если на этой стадии предложенного способа синтеза вместо неполярного высококипящего органического растворителя использовать полярный высококипящий органический растворитель, то технический результат изобретения не достигается.

В предложенном техническом решении при получении исходных кристаллов магнетита в качестве органического соединения трехвалентного железа можно использовать олеат железа(III) или ацетилацетонат железа(III). При этом концентрация органического соединения железа(III) в неполярном высококипящем органическом растворителе может варьироваться и составлять, например, 0,02-0,10 моль/л. Концентрации олеиновой кислоты и олеата натрия также могут варьироваться и составлять, например, 0,02-0,10 моль/л и 0,06-0,3 моль/л, соответственно.

В предлагаемом способе оптимальная температура первоначального нагрева смеси органического соединения железа(III), олеиновой кислоты, олеата натрия и октадецена, равная 70°C, и оптимальная продолжительность первоначального нагрева вышеуказанной смеси при 70°C, равная 30 мин, были установлены экспериментально. При этом скорость нагрева смеси зависит от мощности электрической плитки, нагревающей используемую при осуществлении способа масляную баню, и может составлять, например, 2-6°C/мин. Следует отметить, что проводить вышеуказанные стадии синтеза кристаллов магнетита можно в присутствии воздуха. После проведения вышеуказанных стадий синтеза необходимо повторно нагреть реакционную смесь от 70°C до 320°C. При этом скорость нагрева смеси может быть различна и составлять, например, 2-6°C/мин, причем данную стадию синтеза кристаллов магнетита необходимо проводить в атмосфере любого инертного газа, например, такого, как азот, аргон и т.д. После нагрева смеси до 320°C реакционную смесь необходимо выдержать при данной температуре в атмосфере инертного газа в течение определенного времени, например, в течение 25-60 мин, при этом данную операцию также необходимо проводить в атмосфере инертного газа. Затем реакционную смесь необходимо охладить до комнатной температуры в атмосфере инертного газа. Продолжительность охлаждения реакционной смеси может также быть различной и составлять, например, 30-120 мин. Если вышеуказанные стадии синтеза проводить не в атмосфере инертного газа, а, например, в присутствия воздуха или хотя бы одну из вышеуказанных стадий синтеза вообще не проводить, то технический результат изобретения не достигается.

После охлаждения смеси до комнатной температуры в предложенном способе в систему необходимо ввести изопропанол для декантации полученных кристаллов магнетита, причем для выполнения этой стадии синтеза атмосфера инертного газа не требуется и ее можно проводить в присутствии воздуха. При этом количество вводимого изопропанола может варьироваться и составлять, например, 200-400% от объема реакционной смеси.

После введения изопропанола кристаллы магнетита необходимо отделить с использованием традиционно применяемых для этих целей методов, например, таких, как центрифугирование или магнитная декантация. Второй этап синтеза исходных кристаллов магнетита необходим для контролированного увеличения размера кристаллов.

В предлагаемом техническом решении на втором этапе синтеза отделенные кристаллы диспергируют в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин. При этом в неполярный высококипящий органический растворитель необходимо добавить олеиновую кислоту и олеат натрия. На этой стадии синтеза концентрации олеиновой кислоты и олеата натрия в неполярном высококипящем органическом растворителе могут варьироваться и составлять, например, 0,02-0,10 моль/л и 0,06-0,30 моль/л, соответственно.

На второй стадии синтеза концентрация дисперсии ранее полученных кристаллов магнетита в смеси неполярного высококипящего органического растворителя, олеиновой кислоты и олеата натрия также может варьироваться и составлять, например, 3,20-15,5 г/л. В предлагаемом способе после диспергирования кристаллов магнетита полученную дисперсию нагревают до температуры 290-350°C в атмосфере любого инертного газа, например, аргона. Затем в нагретую дисперсию в атмосфере инертного газа по каплям вводят раствор олеата железа(III) в неполярном высококипящем органическом растворителе в течение 1-10 ч. При этом концентрация олеата железа(III) в вышеуказанном растворителе может варьироваться и составлять, например, 0,04-0,50 моль/л. Если в предлагаемом способе любую из вышеуказанных стадий синтеза кристаллов магнетита не проводить, или их проводить в других условиях, например, вводить раствор олеата железа(III) не по каплям в течение 1-10 ч, а ввести его за один прием, то предлагаемый способ утрачивает работоспособность.

В предлагаемом техническом решении после введения раствора олеата железа(III) в нагретую дисперсию кристаллов магнетита ее охлаждают до комнатной температуры в течение 30-120 мин в атмосфере инертного газа, затем в систему повторно вводят изопропанол, необходимый для декантации полученных кристаллов магнетита, увеличивших свой размер, причем для выполнения этой стадии синтеза атмосфера инертного газа не требуется и ее можно проводить в присутствии воздуха. При этом количество повторно вводимого изопропанола также может варьироваться и составлять, например, 200-400% от объема реакционной смеси. Затем увеличившие свой размер в процессе второй стадии синтеза кристаллы магнетита отделяются с использованием традиционно применяемых для этих целей методов, например, таких, как центрифугирование или магнитная декантация.

В предлагаемом техническом решении модифицированные кристаллы магнетита получают путем смешения 138 мас. ч. кристаллов магнетита и 1 мас. ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас. ч. хлороформа, затем 82240 мас. ч. N-метил-2-пирролидона, обработки смеси ультразвуком, удаления хлороформа и добавления в нее воды с последующим диализом полученной дисперсии модифицированных кристаллов магнетита против воды. Однако в прототипе полученные таким образом модифицированные кристаллы магнетита используют в качестве носителей для доставки нуклеиновых кислот в клетки биологических объектов. При этом введение в вышеописанные кристаллы флуоресцентных красителей, осуществляемое в предлагаемом техническом решении, ни в прототипе, ни в научно-технической литературе не описано и является новым.

При этом также экспериментально было показано, что смешение вышеуказанных количеств магнетита, смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1 -ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, хлороформа и N-метил-2-пирролидона не сопровождается полной адсорбцией холестерина и вышеуказанных липидов на кристаллах магнетита (Love, K. Т. et al. Lipid-like materials for low-dose, in vivo gene silencing // Proceedings of the National Academy of Sciences, 2010. V. 107, P. 1864-1869).

Следует отметить, что в предлагаемом способе можно использовать любой холестерин. Синтез 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола описан (Love, K. Т. et al. Lipid-like materials for low-dose, in vivo gene silencing // Proceedings of the National Academy of Sciences, 2010. V. 107, P. 1864-1869). Реагенты 1,2-дистеароил-sn-глицеро-3-фосфохолин и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000 коммерчески доступны (http://www.echelon-inc.com/index.php?module=Products&func=detail&id=618 и https://avantilipids.com/product/880150, соответственно).

В данном техническом решении выбор в качестве растворителя хлороформа обусловлен тем, что он хорошо растворяет смесь холестерина и вышеуказанных липидов, обладает низкой температурой кипения и впоследствии может быть легко удален из реакционной системы.

Экспериментально было показано, что N-метил-2-пирролидон не только хорошо смешивается с хлороформом и водой, но и инициирует процесс образования на кристаллах магнетита покрытия, состоящего из холестерина и вышеуказанных липидов.

В предлагаемом техническом решении после введения N-метил-2-пирролидона полученную смесь обрабатывают ультразвуком с получением дисперсии частиц магнетита. Продолжительность обработки смеси ультразвуком может варьироваться и составлять, например, 0,5-7,0 ч. При этом мощность ультразвука также может быть различна и составлять, например, 116-580 Вт.

В предложенном способе после обработки смеси ультразвуком полученную дисперсию помещают в круглодонную колбу, хлороформ удаляют на роторном испарителе, затем в колбу добавляют воду, при этом объем введенной воды может варьироваться и составлять, например, 400-600% от объема смеси после упаривания хлороформа. После добавления воды содержимое колбы переносят в мешок для диализа с размером пор, например, 25-50 кДа и проводят диализ дисперсии против воды. Продолжительность диализа может варьироваться и составлять, например, 24-48 ч.

После диализа получают разбавленную водную дисперсию модифицированных кристаллов магнетита, которую концентрируют путем удаления части воды, например, с использованием роторного испарителя или центрифугирования. При этом содержание магнетита в сконцентрированной водной дисперсии может варьироваться и составлять, например, 0,7-2,8 мг/мл. Затем в водную дисперсию модифицированных кристаллов магнетита добавляют раствор в ДМСО одного известного флуоресцентного красителя, выбранного из группы, включающей 1,1-диоктадецил-3,3,3,3 тетраметилиндодикарбоцианин, 1,1-диоктадецил-3,3,3,3-тетраметилиндотрикарбоцианионид и 9-(диэтиламино)бензо[а]феноксазин-5-он. Все вышеуказанные флуоресцентные красители коммерчески доступны. При этом концентрация красителя в ДМСО может варьироваться и составлять, например, 1-5 мг/мл. Экспериментально было показано, что в данных условиях происходит связывание любого из вышеуказанных красителей путем гидрофобного взаимодействия с поверхностью модифицированного магнетита.

Полученный модифицированный магнетит с флуоресцентной меткой отделяют от остальных компонентов смеси методом центрифугирования, после чего отделенный магнетит промывают вначале смесью воды и ДМСО, затем водой. Объемы воды и ДМСО могут варьироваться и составлять, например, вначале 1-5 мл воды и 1-5 мл ДМСО, затем 1-5 мл воды, соответственно.

Следует отметить, что получить магнетит с флуоресцентной меткой без предварительной модификации магнетита вышеуказанной смесью холестерина и трех липидов не удается.

Модифицированные кристаллы магнетита можно хранить в водной среде или в различных буферных растворах в закрытой стеклянной емкости, например, при 4°C. В этих условиях продолжительность хранения модифицированных кристаллов магнетита составляет не менее 1 мес.

Преимущества предложенного способа иллюстрируют следующие примеры.

Пример 1

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 20,0 мл октадецена, 1,800 г олеата железа(III), 0,570 г олеиновой кислоты и 1,220 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°C со скоростью 6°C/мин и выдерживают при этой температуре в течение 30 мин. После чего в колбу подают ток азота, после дегазации содержимого колбы ее нагревают с 70°C до 320°C со скоростью 2°C/мин с постепенным увеличением мощности плитки. Колбу выдерживают при 320°C в течение 25 мин, затем извлекают из масляной бани и содержимое колбы оставляют остывать до комнатной температуры, проводя эти стадии синтеза в атмосфере азота. Через 30 мин содержимое колбы выливают в химический стакан, содержащий 80,0 мл изопропанола, после чего содержимое стакана перемешивают. Выпавший в осадок кристаллы магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 10,0 мл триоктиламина, 0,284 г олеиновой кислоты и 0,912 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают азотом, колбу помещают в масляную баню и нагревают до 350°C со скоростью 2°C/мин, после чего туда в атмосфере азота по каплям вводят раствор 18,000 г олеата железа(III) в 22,0 мл триоктиламина в течение 10 ч. Затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере азота. После чего содержимое колбы переносят в химический стакан, содержащий 200,0 мл изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 1,701 г кристаллов магнетита.

345 мг (138 мас. ч.) полученных кристаллов магнетита и 2,5 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 100 мл (60000 мас. ч.) хлороформа, затем с 200 мл (82240 мас. ч.) N-метил-2-пирролидона, после чего полученную смесь обрабатывают в течение 6 ч ультразвуком мощностью 580 Вт. После этого смесь переносят в круглодонную колбу и хлороформ удаляют с помощью роторного испарителя в вакууме при температуре 40°C. Затем в колбу добавляют 1000 мл воды, содержимое колбы переносят в мешок для диализа с размером пор 25 кДа и проводят диализ дисперсии против воды продолжительностью 24 ч. Получают разбавленную водную дисперсию модифицированных кристаллов магнетита, которую концентрируют до 250 мл путем удаления части воды с использованием роторного испарителя. Затем к 1 мл водной сконцентрированной дисперсии модифицированных кристаллов магнетита с концентрацией 1,38 мг/мл добавляют 1 мкл раствора в ДМСО флуоресцентного красителя 1,1-диоктадецил-3,3,3,3 тетраметилиндодикарбоцианина с концентрацией 1 мг/мл. Полученный модифицированный магнетит с флуоресцентной меткой отделяют от остальных компонентов смеси методом центрифугирования, отделенный магнетит промывают вначале смесью 1 мл воды и 1 мл ДМСО, затем 1 мл воды.

Модифицированные кристаллы магнетита хранят в водной среде в закрытой стеклянной емкости при 4°C. В этих условиях продолжительность хранения модифицированных кристаллов магнетита составляет не менее 1 мес.

Методом просвечивающей электронной микроскопии было показано, что полученные кристаллы магнетита имеют кубическую форму со стороной 25 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 78 А*м2/кг. Скорость r2-релаксивности полученных кристаллов магнетита, определенная методом МРТ-томографии, составляет 310 мМ-1-1. С помощью дифрактометра Rigaku Smartlab было выявлено, что положение рентгеновских рефлексов полученных кристаллов соответствует справочным значениям рефлексов магнетита. Методом сканирующей ион-проводящей микроскопии с конфокальной приставкой на клетках клеточной линии гепатоцеллюлярной карциномы человека Hep G2 было показано, что при облучении электромагнитным излучением с длиной волны в области 750 нм клеточной культуры с введенными в нее модифицированными кристаллами магнетита наблюдается флуоресценция в области 782 нм благодаря наличию флуоресцентного красителя, связанного с кристаллами магнетита.

Пример 2

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 15,0 мл октадецена, 0,900 г олеата железа(III), 0,280 г олеиновой кислоты и 0,610 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°C со скоростью 5°C/мин и выдерживают при этой температуре в течение 30 мин. После чего в колбу подают ток аргона и после дегазации содержимого колбы ее нагревают с 70°C до 320°C со скоростью 5°C/мин, затем содержимое колбы выдерживают при 320°C в течение 30 мин, после чего колбу извлекают из масляной бани и оставляют остывать до комнатной температуры в атмосфере аргона. Через 60 мин содержимое колбы выливают в химический стакан, содержащий 30 мл изопропанола, после чего содержимое стакана перемешивают. Выпавшие в осадок кристаллы магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 8,0 мл октадецена, 0,057 г олеиновой кислоты и 0,180 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают аргоном, колбу помещают в масляную баню и нагревают со скоростью 5°C/мин до 318°C, после чего туда в атмосфере аргона по каплям вводят раствор 9,00 г олеата железа(III) в 18 мл октадецена в течение 5 ч. Затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона. После этого содержимое колбы переносят в химический стакан, содержащий 110 мл изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 0,851 г кристаллов магнетита.

691 мг (138 мас. ч.) полученных кристаллов магнетита и 5 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 200 мл (60000 мас. ч.) хлороформа, затем с 400 мл (82240 мас. ч.) N-метил-2-пирролидона, после чего полученную смесь обрабатывают в течение 7 ч ультразвуком мощностью 290 Вт. После этого смесь переносят в круглодонную колбу и хлороформ удаляют с помощью роторного испарителя в вакууме при температуре 43°C. Затем в колбу добавляют 1600 мл воды, содержимое колбы переносят в мешок для диализа с размером пор 50 кДа и проводят диализ дисперсии против воды продолжительностью 48 ч. Получают разбавленную водную дисперсию модифицированных кристаллов магнетита, которую концентрируют до 246 мл путем удаления части воды с использованием роторного испарителя. Затем к 1 мл водной сконцентрированной дисперсии модифицированных кристаллов магнетита с концентрацией 2,8 мг/мл добавляют 1 мкл раствора в ДМСО флуоресцентного красителя 1,1-диоктадецил-3,3,3,3 тетраметилиндодикарбоцианина с концентрацией 2,5 мг/мл. Полученный модифицированный магнетит с флуоресцентной меткой отделяют от остальных компонентов смеси методом центрифугирования, отделенный магнетит промывают вначале смесью 5 мл воды и 5 мл ДМСО, затем 5 мл воды.

Модифицированные кристаллы магнетита хранят в водной среде в закрытой стеклянной емкости при 4°C. В этих условиях продолжительность хранения модифицированных кристаллов магнетита составляет не менее 1 мес.

Методом просвечивающей электронной микроскопии было показано, что полученные кристаллы магнетита имеют кубическую форму со стороной 23 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 73 А*м2/кг. Значение скорости r2-релаксивности полученных кристаллов магнетита, определенное методом МРТ-томографии, составляет 293 мМ-1-1. С помощью дифрактометра Rigaku Smartlab было выявлено, что положение рентгеновских рефлексов полученных кристаллов соответствует справочным значениям рефлексов магнетита. Методом сканирующей ион-проводящей микроскопии с конфокальной приставкой на клетках клеточной линии гепатоцеллюлярной карциномы человека Hep G2 было показано, что при облучении электромагнитным излучением с длиной волны в области 648 нм клеточной культуры с введенными в нее модифицированными кристаллами магнетита наблюдается флуоресценция в области 668 нм благодаря наличию флуоресцентного красителя, связанного с кристаллами магнетита.

Пример 3

В трехгорлую колбу, помещенную в масляную баню и снабженную обратным холодильником, высокотемпературным термометром и системой подачи инертного газа, при комнатной температуре вводят 25,0 мл октадецена, 0,177 г ацетилацетоната железа(III), 0,142 г олеиновой кислоты и 0,456 г олеата натрия. Затем включают нагрев масляной бани, содержимое колбы нагревают до 70°C со скоростью 2°C/мин и выдерживают при этой температуре в течение 30 мин. После чего в колбу подают ток аргона и после дегазации содержимого колбы ее нагревают с 70°C до 320°C со скоростью 4°C/мин, затем колбу выдерживают при 320°C в течение 60 мин, после чего колбу извлекают из масляной бани и содержимое колбы оставляют остывать до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона. Через 120 мин содержимое колбы выливают в химический стакан, содержащий 75,0 мл изопропанола, после чего содержимое стакана перемешивают. Выпавшие в осадок кристаллы магнетита отделяют магнитной декантацией, затем их переносят в химический стакан, содержащий 12,0 мл дибензилового эфира, 0,068 г олеиновой кислоты и 0,219 г олеата натрия, и диспергируют путем перемешивания. Полученную дисперсию переносят в ранее использованную трехгорлую колбу. Содержимое колбы продувают аргоном, колбу помещают в масляную баню и нагревают до 290°C со скоростью 6°C/мин. После чего туда в атмосфере аргона по каплям подают раствор 1,368 г олеата железа(III) в 38,0 мл дибензилового эфира в течение 1 ч, затем колбу извлекают из масляной бани и охлаждают до комнатной температуры, проводя эти стадии синтеза в атмосфере аргона, и содержимое колбы переносят в химический стакан, содержащий 100,0 мл изопропанола. Выпавший магнетит отделяют от остальных компонентов реакционной смеси методом магнитной декантации, затем сушат до постоянной массы. Получают 0,155 г кристаллов магнетита.

138 мг (138 мас. ч.) полученных кристаллов магнетита и 1 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 40 мл (60000 мас. ч.) хлороформа, затем с 80 мл (82240 мас. ч.) N-метил-2-пирролидона, после чего полученную смесь обрабатывают в течение 0,5 ч ультразвуком мощностью 580 Вт. После этого смесь переносят в круглодонную колбу и хлороформ удаляют с помощью роторного испарителя в вакууме при температуре 35°C. Затем в колбу добавляют 480 мл воды, содержимое колбы переносят в мешок для диализа с размером пор 50 кДа и проводят диализ дисперсии против воды продолжительностью 36 ч. Получают разбавленную водную дисперсию модифицированных кристаллов магнетита, которую концентрируют до 197 мл путем удаления части воды с использованием роторного испарителя. Затем к 1 мл водной сконцентрированной дисперсии модифицированных кристаллов магнетита с концентрацией 1,38 мг/мл добавляют 1 мкл раствора в ДМСО флуоресцентного красителя 9-(диэтиламино)бензо[а]феноксазин-5-он с концентрацией 5 мг/мл. Полученный модифицированный магнетит с флуоресцентной меткой отделяют от остальных компонентов смеси методом центрифугирования, отделенный магнетит промывают вначале смесью 3 мл воды и 3 мл ДМСО, затем 3 мл воды.

Модифицированные кристаллы магнетита хранят в водной среде в закрытой стеклянной емкости при 4°C. В этих условиях продолжительность хранения модифицированных кристаллов магнетита составляет не менее 1 мес.

Методом просвечивающей электронной микроскопии было показано, что полученные кристаллы магнетита имеют кубическую форму со стороной 27 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 88 А*м2/кг. Скорость r2-релаксивности полученных кристаллов магнетита, определенная методом МРТ-томографии, составляет 332 мМ-1-1. С помощью дифрактометра Rigaku Smartlab было выявлено, что положение рентгеновских рефлексов полученных кристаллов соответствует справочным значениям рефлексов магнетита. Методом сканирующей ион-проводящей микроскопии с конфокальной приставкой на клетках клеточной линии гепатоцеллюлярной карциномы человека Hep G2 было показано, что при облучении электромагнитным излучением с длиной волны в области 550 нм клеточной культуры с введенными в нее модифицированными кристаллами магнетита наблюдается флуоресценция в области 633 нм благодаря наличию флуоресцентного красителя, связанного с кристаллами магнетита.

Пример 4 (контрольный, по прототипу)

690 мг (138 мас. ч.) сферических кристаллов магнетита с диаметром 16 нм и 5 мг (1 мас. ч.) смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, смешивают вначале с 200 мл (60000 мас. ч.) хлороформа, затем с 400 мл (82240 мас. ч.) N-метил-2-пирролидона, после чего полученную смесь обрабатывают в течение 5 ч ультразвуком мощностью 290 Вт. После этого смесь переносят в круглодонную колбу и хлороформ удаляют с помощью роторного испарителя в вакууме при температуре 43°C. Затем в колбу добавляют 2000 мл воды, содержимое колбы переносят в мешок для диализа с размером пор 50 кДа и проводят диализ дисперсии против воды продолжительностью 48 ч. Получают разбавленную водную дисперсию модифицированных кристаллов магнетита, которую концентрируют до 500 мл путем удаления части воды с использованием роторного испарителя.

С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 35 А*м2/кг. Скорость r2-релаксивности полученных кристаллов магнетита, определенная методом МРТ-томографии, составляет 240 мМ-1-1.

Таким образом, из приведенных примеров видно, что предлагаемый способ действительно дает возможность получать модифицированные кристаллы магнетита, обладающие флуоресцентными свойствами и улучшенными магнитными свойствами. Так, намагниченность кристаллов магнетита возрастает в 2,09-2,51 раза, а значение скорости r2-релаксивности увеличивается в 1,22-1,38 раза.

Способ получения модифицированных кристаллов магнетита, включающий смешение 138 мас. ч. кристаллов магнетита и 1 мас. ч. смеси холестерина, 1,2-дистеароил-sn-глицеро-3-фосфохолина, 1,1'-(2-(4-(2-((2-(бис(2-гидроксидодецил)амино)этил)(2-гидроксидецил)амино)этил)пиперазин-1-ил)этилазанедиил)дидодекан-2-ола и 1,2-димиристоил-sn-глицеро-метокси(полиэтиленгликоля)-2000, взятых в массовом соотношении 15:7:75:3, соответственно, вначале с 60000 мас. ч. хлороформа, затем с 82240 мас. ч. N-метил-2-пирролидона, обработку смеси ультразвуком в течение 0,5-7,0 ч с мощностью ультразвука 116-580 Вт, удаление хлороформа и добавление в нее воды объемом 400-600% от объема смеси с последующим диализом полученной дисперсии модифицированных кристаллов магнетита против воды в течение 24-48 ч в диализном мешке с размером пор 25-50 кДа, концентрирования водной дисперсии до концентрации 0,7-2,8 мг/мл под вакуумом, при этом в качестве кристаллов используют кристаллы магнетита, полученные путем смешения октадецена с олеатом железа(III) или ацетилацетонатом железа(III) в диапазоне концентраций 0,02-0,10 моль/л, олеиновой кислотой и олеатом натрия в диапазоне концентраций 0,02-0,10 моль/л и 0,06-0,3 моль/л соответственно, нагрева смеси до 70°С и ее выдерживания при этой температуре в течение 30 мин, повторного нагрева смеси в атмосфере инертного газа с 70°С до 320°С со скоростью от 2 до 6°С/мин, ее выдерживания при этой температуре в течение 25-60 мин и охлаждения смеси до комнатной температуры в течение 30-120 мин, проводимыми в атмосфере инертного газа, введения в систему изопропанола объемом 200-400% от объема реакционной смеси, отделения кристаллов магнетита, их диспергирования в неполярном высококипящем органическом растворителе, выбранном из группы, включающей дибензиловый эфир, октадецен и триоктиламин, до достижения концентрации 3,20-15,5 мг/мл по магнетиту в присутствии олеиновой кислоты и олеата натрия с концентрациями в диапазоне 0,02-0,10 моль/л и 0,06-0,30 моль/л соответственно, нагрева полученной дисперсии до температуры 290-350°С в атмосфере инертного газа со скоростью 2-6°С/мин с последующим введением в нагретую дисперсию по каплям раствора олеата железа(III) в неполярном высококипящем органическом растворителе с концентрацией 0,04-0,50 моль/л в течение 1-10 ч и охлаждения дисперсии до комнатной температуры в течение 30-120 мин, проводимыми в атмосфере инертного газа, повторного введения в систему изопропанола и отделения магнетита, а после диализа дисперсию концентрируют, добавляют в нее раствор в диметилсульфоксиде флуоресцентного красителя, выбранного из группы, включающей 1,1-диоктадецил-3,3,3,3 тетраметилиндодикарбоцианин, 1,1-диоктадецил-3,3,3,3-тетраметилиндотрикарбоцианионид и 9-(диэтиламино)бензо[а]феноксазин-5-он, отделяют модифицированный магнетит методом центрифугирования, затем его промывают смесью воды и диметилсульфоксида, потом водой.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 322.
20.06.2016
№217.015.03df

Оправка прошивного стана

Изобретение относится к области обработки металлов давлением на станах винтовой прокатки. Оправка имеет переменный профиль. Возможность удаления дефектов непрерывнолитой заготовки, уменьшение разностенности получаемых гильз обеспечивается за счет того, что в оправке с переднего торца,...
Тип: Изобретение
Номер охранного документа: 0002587702
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2b53

Способ изготовления струеформирующих сопел

Изобретение относится к области производства струеформирующих сопел, которые могут быть использованы для очистки поверхностей, удаления покрытий, создания шероховатости на поверхности, для резки и разделения материалов. Способ включает формирование рабочего отверстия в композиционном алмазном...
Тип: Изобретение
Номер охранного документа: 0002579598
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2b79

Усиливающий сверхпроводящий метаматериал

Использование: для сверхмалошумящего усиления слабых радиотехнических сигналов. Сущность изобретения заключается в том, что усиливающий сверхпроводящий метаматериал состоит из гальванически связанных элементарных ячеек, смещенных постоянным током и проявляющих эффект квантовой интерференции с...
Тип: Изобретение
Номер охранного документа: 0002579813
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2c52

Способ акустического каротажа

Изобретение относится к горному делу и предназначено для определения координат трещиноватых зон, пересекающих измерительную скважину, пробуренную в кровле выработки. Способ основан на экспериментально установленной закономерности влияния трещиноватой зоны на корреляционные характеристики...
Тип: Изобретение
Номер охранного документа: 0002579820
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cca

Способ извлечения золота из руд

Изобретение относится к области цветной металлургии. Способ извлечения золота включает цианирование руды при измельчении. В мельницу последовательно подают при соотношении твердой фазы к жидкой фазе от 3:2 до 2:1 предварительно дробленную до крупности фракций от 2 мм до 4 мм руду, добавку...
Тип: Изобретение
Номер охранного документа: 0002579858
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2cd6

Способ защиты поверхности сляба из низколегированной стали перед его нагревом в методической печи под прокатку

Изобретение относится к области металлургии и может быть использовано при подготовке слябов из низколегированных сталей перед нагревом под прокатку. Способ защиты поверхности сляба из низколегированной стали при прокатке включает напыление алюминиевого газотермического покрытия на широкие грани...
Тип: Изобретение
Номер охранного документа: 0002579866
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2d7d

Способ получения деформированных полуфабрикатов из сплава на основе алюминия

Изобретение относится к области металлургии, в частности к деформируемым сплавам на основе алюминия системы Al-Fe-Si в виде тонколистового проката, фольги, листов, плит, прессованных профилей, проволоки и др. Из деформированных полуфабрикатов могут быть получены изделия, предназначенные для...
Тип: Изобретение
Номер охранного документа: 0002579861
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e9d

Способ определения количества незамерзшей воды в мерзлых грунтах

Изобретение относится к геологии и может быть использовано при проектировании зданий и сооружений для определения количества незамерзшей воды в мерзлых грунтах. Для этого осуществляют бурение скважин с отбором керна, оттаивают полученный образец замороженного грунта и определяют суммарное...
Тип: Изобретение
Номер охранного документа: 0002580316
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3217

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к медицине. Описан способ получения биоактивного покрытия с антибактериальным эффектом, который включает электроискровую обработку поверхности подложки обрабатывающим электродом, следующего состава (вес. %):биоактивная добавка - 5-40,антибактериальная металлическая добавка...
Тип: Изобретение
Номер охранного документа: 0002580628
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.321e

Способ получения биоактивного покрытия с антибактериальным эффектом

Изобретение относится к области медицины, а именно к способу получения биоактивного покрытия с антибактериальным эффектом, включающий электроискровую обработку поверхности токопроводящей подложки обрабатывающим электродом, состоящим из биоактивной добавки в количестве 5-40 вес.%;...
Тип: Изобретение
Номер охранного документа: 0002580627
Дата охранного документа: 10.04.2016
Показаны записи 1-10 из 39.
27.02.2015
№216.013.2db6

Способ получения наногибридного функционального сепарационного материала на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области материаловедения и аналитической химии. Наногибридный функциональный сепарационный материал содержит ковалентно закрепленные на носителе наночастицы золота и ковалентно закрепленные серосодержащие органические лиганды на поверхности наночастиц золота. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002543170
Дата охранного документа: 27.02.2015
10.07.2015
№216.013.5bc1

Наногибридный функциональный сепарационный материал на основе модифицированного носителя и модифицированных наночастиц металла

Изобретение относится к области аналитической химии. Предложен способ получения сепарационного материала, содержащего носитель на основе диоксида кремния и наночастицы золота. Носитель модифицируют кремнийорганическим соединением, содержащим группу -SH или -NH, обрабатывают коллоидным раствором...
Тип: Изобретение
Номер охранного документа: 0002555030
Дата охранного документа: 10.07.2015
10.08.2016
№216.015.559e

Устройство для исследования воздействия низкочастотного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы

Изобретение относится к медицинской технике. Устройство для исследования биохимических систем, содержащих магнитные наночастицы, при воздействии низкочастотного негреющего магнитного поля, включающее источник питания, соединенный с генератором, питающим обмотки электромагнита. При этом...
Тип: Изобретение
Номер охранного документа: 0002593238
Дата охранного документа: 10.08.2016
25.08.2017
№217.015.ca4c

Способ покрытия наночастиц магнетита слоем золота

Изобретение относится к способам получения наночастиц магнетита (FeO), покрытых слоем золота, которые могут быть использованы в качестве контрастного агента для магнитно-резонансной томографии, магнитной сепарации, адресной доставки лекарств и т.д. Изобретение увеличивает выход покрытых золотом...
Тип: Изобретение
Номер охранного документа: 0002620166
Дата охранного документа: 23.05.2017
29.12.2017
№217.015.f8cc

Композиция, ингибирующая теломеразу

Изобретение относится к композиции, ингибирующей теломеразу. Указанная композиция включает блок-сополимер полиоксиэтилена и полиоксипропилена, а также координационное соединение производного имидизол-4-она, ингибирующее теломеразу, общей формулы При этом координационное соединение производного...
Тип: Изобретение
Номер охранного документа: 0002639819
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.011f

Новые диспиро-индолиноны, ингибиторы mdm2/p53 взаимодействия, способ получения и применения

Изобретение относится к области органической химии, а именно к новым производным диспиро-индолинонам формулы 1 или к их фармацевтически приемлемым солям, или оптическим изомерам, где R выбран из группы, включающей фенил, возможно замещенный 1-2 заместителями, выбранными из атома галогена,...
Тип: Изобретение
Номер охранного документа: 0002629750
Дата охранного документа: 01.09.2017
10.05.2018
№218.016.3aae

Способ определения цитотоксичности веществ

Изобретение относится к биомедицине и может быть использовано для определения цитотоксичности веществ путем обработки клетки веществом с последующим определением токсичности вещества по изменению уровня внутриклеточных активных форм кислорода. Определение уровня внутриклеточных активных форм...
Тип: Изобретение
Номер охранного документа: 0002647464
Дата охранного документа: 15.03.2018
16.06.2018
№218.016.62ab

Способ получения системы для доставки противоопухолевого препарата в клетки опухоли

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения системы для доставки противоопухолевого препарата в клетки опухоли, включающий смешение в присутствии воды модифицированных полимером наночастиц магнетита, эпитаксиально выращенных на...
Тип: Изобретение
Номер охранного документа: 0002657835
Дата охранного документа: 15.06.2018
05.07.2018
№218.016.6c03

Способ получения препарата на основе магнитных наночастиц (мнч) оксида железа для мрт-диагностики новообразований

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения препарата для МРТ-диагностики опухолевых заболеваний, включающий приготовление раствора ацетилацетоната железа (III) в бензиловом спирте с концентрацией 75-200 г/л с последующим нагревом в токе...
Тип: Изобретение
Номер охранного документа: 0002659949
Дата охранного документа: 04.07.2018
06.07.2018
№218.016.6ce9

Способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота

Изобретение относится к области неорганической химии и касается способа получения наночастиц магнетита (FeO), эпитаксиально выращенных на наночастицах золота, которые могут быть использованы в магнитно-резонансной томографии в качестве контрастного агента, в магнитной сепарации, магнитной...
Тип: Изобретение
Номер охранного документа: 0002660149
Дата охранного документа: 05.07.2018
+ добавить свой РИД