×
19.08.2018
218.016.7d45

Результат интеллектуальной деятельности: Способ фотометрического определения железа (III)

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации. Способ фотометрического определения железа (III) включает переведение железа (III) в комплексное соединение с органическим реагентом – ксиленоловым оранжевым и поверхностно-активным веществом в слабокислой среде, добавление дистиллированной воды до 10 мл объема с нагреванием на водяной бане при температуре 60-80°C и последующим фотометрированием полученного раствора после его охлаждения, отличающийся тем, что к (0,8-2)·10 М раствору железа (III) с pH, равным 3,5-4,0, создаваемым введением 3,0 мл ацетатного буферного раствора, добавляют 0,5 мл 1·10 М раствора ксиленолового оранжевого и 0,1 мл 4·10 М раствора поверхностно-активного вещества в виде этоксилата изодецилового спирта, при этом нагревание на водяной бане осуществляют в течение 10 мин, а фотометрирование производят при длине волны, равной 440 нм, и толщине кюветы, равной 1 см. Изобретение позволяет сократить время проведения анализа, улучшить его воспроизводимость, а также повысить устойчивость окраски полученного комплексного соединения. 2 табл., 9 ил.

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа Fe(III) в растворах чистых солей, содержащих Fe(III) в очень малой концентрации.

В молекулярной спектроскопии можно исследовать однокомпонентные (окрашенные реагенты или ионы металлов), бинарные (ион металла с органическим реагентом), трехкомпонентные (ион металла с двумя органическими реагентами) и др. Последние интересны тем, что в присутствии третьего компонента некоторые трехкомпонентные фотометрические системы обладают повышенной чувствительностью по сравнению с соответствующими бинарными.

Известно бинарное комплексное соединение Fe(III) с ксиленоловым оранжевым (КО) [1, 2]. Изучению трехкомпонентных фотометрических систем посвящены работы [3-8].

Влияние поверхностно-активного вещества (ПАВ) - этоксилата изодецилового спирта на чувствительность определения Fe(III) с КО не изучено.

Наиболее близким по технической сущности к заявляемому изобретению является способ фотометрического определения Fe(III) в растворах чистых солей, который включает переведение Fe(III) в комплексное соединение с органическим реагентом и ПАВ в слабокислой среде, нагревание на водяной бане и последующее фотометрирование полученного раствора, при этом к раствору Fe(III) с pH 3,9-5,2 добавляют 50-кратное количество органического реагента, в качестве которого используют ксиленоловый оранжевый, 1,8-2,2 мл раствора ПАВ в виде 2%-ного раствора ETHAL LA-7, и воды до 10 мл объема с последующим нагреванием на водяной бане при температуре 60-80°C в течение 15 мин и добавление в полученный раствор 1 мл ацетона [9].

Недостатками известного способа являются низкая устойчивость окраски раствора (2 час), длительное время нагревания (15 мин), необходимость наличия дополнительно органического растворителя - ацетона, отрицательно влияющего на организм человека, а также дорогостоящего французского ПАВ - ETHAL LA-7.

Технический результат заключается в сокращении времени проведения анализа, улучшении его воспроизводимости, повышении устойчивости окраски полученного комплексного соединения, за счет использования ПАВ в виде этоксилата изодецилового спирта и фотометрирования в кювете с толщиной слоя равной 1 см.

Сущность изобретения заключается в том, что в способе фотометрического определения железа(III) производят переведение Fe(III) в комплексное соединение с органическими реагентами - КО и ПАВ в слабокислой среде. К (0,8-2)⋅10-4 М раствору Fe(III) с pH равным 3,5-4,0, создаваемым введением 3,0 мл ацетатного буферного раствора, добавляют 0,5 мл 1⋅10-2 М раствора КО и 0,1 мл 4⋅10-3 М раствора ПАВ в виде этоксилата изодецилового спирта. Доводят дистиллированной водой до 10 мл объема с нагреванием на водяной бане при температуре 60-80°C в течение 10 мин и фотометрируют полученный раствор при длине волны равной 440 нм и толщине кюветы, равной 1 см.

В изобретении используют следующие реагенты.

1. ПАВ - этоксилат изодецилового спирта:

С10Н21-О-(СН2-СНОН-)n-Н, где n=7.

Этоксилат изодецилового спирта применяют в качестве адъювата в гербицидных препаратах. Вещество уменьшает поверхностное натяжение побегов растений, обеспечивает образование однородной пленки на поверхности листьев, что уменьшает адгезию гербицида и его адсорбцию листвой. За счет этого повышается гербицидный эффект и скорость воздействия препарата, что особенно важно в период замедленного роста (связанного с сухой и/или холодной погодой).

2. Стандартный 1⋅10-2 М раствор Fe(III) готовят растворением рассчитанной навески сульфата Fe(III) (х.ч.) в воде при подкислении раствором серной кислоты (H2SO4) для предотвращения гидролиза. Точную концентрацию полученного раствора определяют гравиметрическим методом. Для изучения оптимальных условий комплексообразования Fe(III) с КО рабочий раствор Fe(III) 1⋅10-3 М получают разбавлением исходного раствора дистиллированной водой.

3. 1⋅10-2 М раствор КО готовят растворением соответствующей навески в дистиллированной воде. КО - органический реагент, применяемый при комплексонометрическом титровании. Температура плавления 222°C; растворим в воде, не растворим в этаноле, диэтиловом эфире. Получают аминометилированием крезолового красного действием CH2O и иминодиуксусной кислоты в СН3СООН.

4. Для создания необходимой кислотности среды применяют ацетатные буферные растворы, которые готовят из 1 М раствора СН3СООН и 1 М раствора CH3COONa согласно данным табл. 1.

* - pH приготовленных буферных растворов измеряют на pH-метре (индикаторный электрод - стеклянный, сравнения - каломельный), оптическую плотность - на спектрофотометре «СФ ПЭ 5300 ВН».

Пример. Определение оптимальных условий комплексообразования Fe(III) с КО в присутствии ПАВ - этоксилата изодецилового спирта.

В градуированные пробирки помещают по 0,2 мл 1⋅10-4 М раствора Fe(III) с pH=3,7, по 3,0 мл ацетатных буферных растворов с переменным значением pH, по 0,5 мл 1⋅10-2 М раствора КО, по 0,1 мл 4⋅10-3 М раствора ПАВ. Ионную силу растворов для хорошей воспроизводимости анализа равную 0,6 поддерживают постоянной добавлением рассчитанного количества раствора нитрата калия (KNO3). Общий объем раствора доводят до 10 мл дистиллированной водой. Реакционную смесь нагревают 10 мин на водяной бане при температуре 60-80°C, по охлаждении фотометрируют относительно растворов сравнения. На фиг. 1 показаны спектры светопоглощения комплекса Fe(III)+КО+ПАВ (1) и КО+ПАВ (2); фиг. 2 - зависимость А - pH комплекса Fe(III)+КО+ПАВ; фиг. 3 - зависимость А - VПАВ, мл, для комплекса Fe(III)+КО+ПАВ; фиг. 4 - зависимость А - VКО, мл, для комплекса Fe(III)+КО+ПАВ.

Линейность градуировочного графика для системы Fe(III)+КО+ПАВ (λmax=440 нм; pHопт=3,7; VПАВ=0,1 мл 4⋅10-3 М; VКО=0,7 мл 10-2 М) соблюдается в интервале концентраций (0,8-2)⋅10-4 М Fe(III).

Расчет величины молярного коэффициента светопоглощения комплексного соединения Fe(III)+КО+ПАВ:

Температуру и продолжительность нагревания устанавливают опытным путем. Интенсивность окраски полученных комплексных соединений сохраняется в течение 6 час.

При сравнении:

величина молярного коэффициента светопоглощения в присутствии ПАВ в 8 раз выше той же величины в отсутствие ПАВ и в 2 раза выше предельно известной (100000) величины.

Величина молярного коэффициента светопоглощения трехкомпонентного комплексного соединения превысила ту же величину по сравнению с бинарной в 8 раз. Если предельная величина молярного коэффициента светопоглощения, известная из литературы равна 100000, то заявляемый способ фотометрического определения Fe(III) с КО в присутствии ПАВ увеличивает величину молярного коэффициента светопоглощения в 2 раза, а это позволяет определять железо(III) в растворах при меньших концентрациях.

Как известно, чувствительность фотометрируемого комплексного соединения иона металла с органическим реагентом может возрастать за счет увеличения числа донорно-акцепторных связей, а за счет них и количества 5-ти- и 6-ти-членных циклов.

Для выяснения предполагаемого строения комплекса Fe(III)+КО+ПАВ фотометрическим методом определяют pKПАВ.

Определение pKПАВ:

для ПАВ pK определяют фотометрическим методом. В пробирки помещают по 1,0 мл 4⋅10-3 М раствора ПАВ, по 5,0 мл ацетатных буферных растворов с переменным значением pH, воду до объема 10 мл, нагревают на кипящей водяной бане 10 мин. По охлаждении фотометрируют относительно растворов сравнения, при λmax=350 нм и На фиг. 5 показан спектр светопоглощения ПАВ; фиг. 6 - зависимость А - pH для ПАВ.

Согласно расчету методом Хона рКПАВ=3,7.

Определение соотношения компонентов Me:R в трехкомпонентной системе Fe(III)+КО+ПАВ:

Метод изомолярных серий: готовят трехкомпонентные системы: Fe(III)+КО одинаковой концентрации, смешивают их в разных соотношениях при одном и том же оптимальном количестве ПАВ, pHmax и нагревании для получения комплекса. Соотношение Me:R в присутствии ПАВ равно 1:3.

Какие функциональные группы реагентов и ионные формы металла вступают в реакцию комплексообразования, при каком соотношении компонентов Me:R идет реакция могут показать расчеты pHопт комлексообразования.

Для определения соотношения Me:R используют расчетный метод для бинарных комплексных соединений. При взаимодействии гидролизующихся ионов металла с реактивами слабокислого характера выход продукта реакции зависит от pH раствора. При повышении pH происходит увеличение концентрации иона реагента, из-за усиления гидролиза уменьшается концентрация иона металла. При понижении pH гидролиз подавляется, но увеличивается протонизация реагента. При некотором pH оптимальном (pHопт) наблюдается максимальный выход продукта реакции.

Определяют, какие ионные формы металла и реагента вступают в реакцию расчетом pHопт раствора. Для расчета pHопт учитывают основные процессы, протекающие в растворе.

Образование фотометрируемого соединения:

mMe+nR↔MmRn.

Образование гидроксокомплексов иона металла:

Ме++qH2O↔Me(OH)q+qH+.

Образование ионных форм органического реагента:

HR↔H++R-.

Образование ионных форм ПАВ:

HK↔Н++K-.

В водных растворах солей ионы металлов (вследствие гидролиза вблизи pH осаждения их гидроксидов при pHопт комплексообразования) могут присутствовать в виде различных ионных форм.

pH начала осаждения Fe(OH)3 равен 2,3, то есть в реакцию с КО и ПАВ вступает гидролизованная форма Fe(III) - Fe(OH)2+ или FeOH2+. Гидролизованными формами ионов Fe(III) могут быть (в скобках указаны их pK): [FeOH(H2O)5]2+ (2,2); [Fe2(OH)2(H2O)8]4+ (2,9); [Fe(OH)2(H2O)4]+ (3,26). Ионизированные формы КО имеют следующие значения pK: H6Ind (1,2); H5Ind (2,6); H4Ind (3,2); H3Ind (6,4); H2Ind (10,4); Hind (12,3) [2], рКПАВ=3,7.

В очень сильно кислой среде (в интервале значений функции кислотности Гаммета) и щелочной среде Fe(III) с органическим реагентом окрашенного комплексного соединения не образует, поэтому pK1, pK5, pK6 для КО в расчетах при определении соотношения Me:R не используют.

Формулы расчетного метода для бинарных систем преобразовывают для трехкомпонентных при соотношении Me:R=1:1:

при соотношении Me:R=1:2:

при соотношении Me:R=1:3:

Для вычисления соотношения Me:R расчетным методом используют рКПАВ, РКко, рКFe(III) для компонентов комплекса. В табл. 2 показан пример, данные для расчета.

Результаты вычислений представлены графически (фиг. 7), из которых видно, что в присутствии ПАВ образуется комплекс с соотношением компонентов Me:R=1:3, где Fe(III) присутствует в виде двух ионных форм FeOH2+(1') и [Fe2(OH)2]4+(1''), КО ионизированным по третьей ступени. Результаты остальных расчетов соотношения Me:R не даны, так как полученные графики параллельны оси абсцисс (расчеты не приведены).

Из фиг. 7 видно, что, предположительно, шесть атомов азота (по два из каждой молекулы КО) трех молекул КО образуют донорно-акцепторные связи. Возникают три восьмичленных цикла за счет сближения двух бензольных колец в каждой из молекул КО.

На фиг. 8 показана вероятная структурная формула комплексного соединения Fe(III) с КО в присутствии ПАВ, где Fe(III) в ионной форме FeOH2+(1'); фиг. 9 - вероятная структурная формула комплексного соединения Fe(III) с КО в присутствии ПАВ, где Fe(III) в ионной форме [Fe2(OH)2]4+(1'').

Вероятно, аналогично действию ПАВ на растения (уменьшает поверхностное натяжение побегов растений) при добавлении ПАВ к комплексному соединению Fe(III) с КО происходит следующее: ПАВ уменьшает расстояние между КО и Fe(III), сильнее притягивает их в трехкомпонентном комплексе, чем в бинарном, а за счет избытка КО свободные молекулы КО плотнее окружают Fe(III), образуя дополнительные донорно-акцепторные связи, увеличивая число и членность компонентов циклов между металлом и КО. Это ведет к увеличению соотношения Me:R (если в бинарном оно равно 1:1, то в трехкомпонентном 1:3). А это, как известно, повышает чувствительность определения иона металла, что и подтверждают расчеты. Величина молярного коэффициента светопоглощения в присутствии ПАВ в 2 раза выше предельно известной (100000) величины.

По сравнению с известным бинарным комплексным соединением Fe(III) с КО предлагаемое позволяет повысить чувствительность способа фотометрического определения железа(III) за счет использования органического реагента КО в присутствии ПАВ - этоксилата изодецилового спирта. Молярный коэффициент светопоглощения предлагаемого способа в 8 раз превышает эту величину в соответствующем бинарном комплексном соединении Fe(III) с КО и в 2 раза превышает предельной этой величины известной из литературы, что позволяет определять Fe(III) в растворах чистых солей в очень малой концентрации.

Кроме того по сравнению с прототипом толщина кюветы равная 1 см быстро заполняется, время нагревания на водяной бане комплексного соединения для получения максимальной интенсивности окраски сокращено на 5 мин, соответственно для анализа требуется меньше времени. У предлагаемого способа хорошая воспроизводимость анализа, образующийся комплекс более устойчив (окраска сохраняется в течение 6 час), комплексное соединение не выпадает в осадок, а реакция его образования идет в водной среде, поэтому отсутствует необходимость в органических растворителях, отрицательно влияющих на организм человека.

Источники информации:

1. Булатов М.И., Калинкин И.П., Практическое руководство по фотоколориметрическим и спектрофотометрическим методам анализа. - «Химия», 1976. - С. 244, 406.

2. Индикаторы. Э. Бишоп. - М.: Мир, 1976. Т. 1. - С. 402.

3. Hiroto Watanabe. Spektrophotometric determination of cobalt with 1-(2-pyridilazo-2 naftanol and surfact-ants. - Talanta, Vol. 21 pp. 295-302, 1974 / Хирото Ватанабе. Спектрофотометрическое определение кобальта с 1-(2-пиридилазо)-2-нафтанолом и поверхностно-активными веществами. - Таланта, 1974. Вып. 21, - С. 295-302.

4. RU 2312338, МПК G01N 31/22, G01N 21/78, опубл. 10.12.2007.

5. RU 2312339, МПК G01N 31/22, G01N 21/78, опубл. 10.12.2007.

6. RU 2298171, МПК G01N 21/78, опубл. 27.04.2007.

7. RU 2331875, МПК G01N 31/22, G01N 21/78, опубл. 20.08.2008.

8. RU 2333487, МПК G01N 31/22, G01N 21/78, опубл. 10.09.2008.

9. RU 2531053, МПК G01N 31/22, G01N 21/78, опубл. 20.10.2014.

Способ фотометрического определения железа (III), включающий переведение железа (III) в комплексное соединение с органическим реагентом – ксиленоловым оранжевым и поверхностно-активным веществом в слабокислой среде, добавление дистиллированной воды до 10 мл объема с нагреванием на водяной бане при температуре 60-80°C и последующим фотометрированием полученного раствора после его охлаждения, отличающийся тем, что к (0,8-2)·10 М раствору железа (III) с pH, равным 3,5-4,0, создаваемым введением 3,0 мл ацетатного буферного раствора, добавляют 0,5 мл 1·10 М раствора ксиленолового оранжевого и 0,1 мл 4·10 М раствора поверхностно-активного вещества в виде этоксилата изодецилового спирта, при этом нагревание на водяной бане осуществляют в течение 10 мин, а фотометрирование производят при длине волны, равной 440 нм, и толщине кюветы, равной 1 см.
Способ фотометрического определения железа (III)
Способ фотометрического определения железа (III)
Способ фотометрического определения железа (III)
Источник поступления информации: Роспатент

Показаны записи 31-40 из 87.
11.10.2018
№218.016.900c

Модифицированный битум

Изобретение относится к дорожно-строительным материалам, а именно битумным вяжущим, и может быть использовано в дорожном строительстве при устройстве асфальтобетонного покрытия. Модифицированный битум включает, мас.%: битум нефтяной дорожный вязкий 98,0–99,0 и продукт конденсации олеиновой...
Тип: Изобретение
Номер охранного документа: 0002669085
Дата охранного документа: 08.10.2018
21.10.2018
№218.016.94bd

Способ подготовки загрязненной тяжелыми металлами почвы для фиторемедиации

Изобретение относится к области охраны окружающей среды, в частности к прикладной экологии, занимающейся проблемой очистки почв, грунтов и территорий, загрязненных свинцом и цинком, и может найти применение при рекультивации отвалов предприятий, добывающих и перерабатывающих металлургическое...
Тип: Изобретение
Номер охранного документа: 0002670253
Дата охранного документа: 19.10.2018
14.12.2018
№218.016.a704

Способ фотометрического определения железа (iii) в растворах чистых солей в присутствии поверхностно-активного вещества

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации. Способ включает переведение железа (III) в...
Тип: Изобретение
Номер охранного документа: 0002674760
Дата охранного документа: 13.12.2018
15.12.2018
№218.016.a7d3

Способ прогнозирования течения репаративного процесса кишечного анастомоза

Изобретение относится к медицине, а именно к хирургии, и может быть использовано при прогнозировании течения репаративного процесса кишечного анастомоза. Для этого после формирования кишечного анастомоза незамедлительно и через 30 минут в тканях по линии анастомоза производят измерение...
Тип: Изобретение
Номер охранного документа: 0002675089
Дата охранного документа: 14.12.2018
20.12.2018
№218.016.a9d8

Способ получения биологического препарата для стимуляции роста и защиты растений от заболеваний

Изобретение относится к биотехнологии. Предложен способ получения препарата для стимуляции роста и защиты сельскохозяйственных культур. Способ включает раздельное культивирование штаммов бактерий Pseudomonas aureofaciens ВКПМ В-11634 и Azotobacter vinelandii ВКПМ В-5787 в мелассной среде до...
Тип: Изобретение
Номер охранного документа: 0002675503
Дата охранного документа: 19.12.2018
26.12.2018
№218.016.ab63

Способ получения n-(индолил)трифторацетамидов, обладающих противомикробным действием

Изобретение относится к области химии, а именно к способу получения N-(2,3-диметил-1Н-индол-7-ил)-2,2,2-трифторацетамида и N-(1,2,3-триметил-1Н-индол-7-ил)-2,2,2-трифторацетамида, которые могут найти применение для получения лекарственных препаратов, обладающих противомикробным действием....
Тип: Изобретение
Номер охранного документа: 0002675806
Дата охранного документа: 25.12.2018
29.12.2018
№218.016.ad28

Способ прогнозирования тяжести острого панкреатита в ранней стадии по признакам гепатодепрессии

Изобретение относится к области медицины, в частности к хирургии и может быть использовано для прогнозирования тяжести острого панкреатита в ранней стадии по признакам гепатодепрессии. Способ включает исследование венозной крови, при этом ежедневно, начиная с первых суток после поступления...
Тип: Изобретение
Номер охранного документа: 0002676331
Дата охранного документа: 28.12.2018
18.01.2019
№219.016.b16b

Способ иммунодиагностики заболеваний гастродуоденальной зоны

Изобретение относится к медицине, а именно к клинической иммунологии и гастроэнтерологии, и может быть использовано для диагностики заболеваний гастродуоденальной зоны. Способ включает определение клинических показателей и иммунологическое исследование факторов крови. В сыворотке крови...
Тип: Изобретение
Номер охранного документа: 0002677228
Дата охранного документа: 16.01.2019
16.02.2019
№219.016.bb8a

Устройство контроля и управления зарядом аккумуляторных батарей

Изобретение относится к области электротехники и может быть использовано для контроля и управления зарядом аккумуляторных батарей (АБ) различных типов. Технический результат - упрощение связи с внешним источником постоянного тока за счет использования аналогового сигнала 0-5 В, обеспечение...
Тип: Изобретение
Номер охранного документа: 0002679883
Дата охранного документа: 14.02.2019
22.02.2019
№219.016.c5c3

Способ повышения точности навигации автономного необитаемого подводного аппарата с инерциальной навигационной системой и системой технического зрения

Изобретение относится к области навигации и может быть использовано для повышения точности оценивания местоположения автономных необитаемых подводных аппаратов с инерциальной навигационной системой и системой технического зрения. Способ повышения точности навигации автономного необитаемого...
Тип: Изобретение
Номер охранного документа: 0002680395
Дата охранного документа: 20.02.2019
Показаны записи 1-9 из 9.
20.03.2014
№216.012.ad10

Способ фотометрического определения железа (ii) в растворах чистых солей

Настоящее изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (II) в растворах чистых солей, содержащих железо (II) в очень малой концентрации. Способ включает переведение железа (II) в...
Тип: Изобретение
Номер охранного документа: 0002510019
Дата охранного документа: 20.03.2014
10.04.2014
№216.012.b35b

Способ фотометрического определения железа (ii)

Изобретение относится к области аналитической химии, а именно фотоколориметрическому методу анализа, и может быть использовано для определения содержания железа (II) в экстракте хвои ели, содержащей железо (II) в очень малой концентрации. Способ включает переведение его в комплексное соединение...
Тип: Изобретение
Номер охранного документа: 0002511631
Дата охранного документа: 10.04.2014
20.08.2014
№216.012.ece6

Способ получения тонкодисперсного аморфного микрокремнезема

Изобретение относится к строительным материалам, а именно к производству модифицированных добавок для бетонов, строительных растворов, сухих строительных смесей, теплоизоляционных материалов. Способ включает предварительное размельчение и растирание в агатовой ступке до состояния пудры...
Тип: Изобретение
Номер охранного документа: 0002526454
Дата охранного документа: 20.08.2014
20.10.2014
№216.012.fead

Способ фотометрического определения железа (iii) в растворах чистых солей

Изобретение относится к аналитической химии, а именно к фотометрическому определению малых концентраций железа (III) в растворах чистых солей. Способ включает переведение железа (III) в комплексное соединение с органическим реагентом и поверхностно-активным веществом в слабокислой среде...
Тип: Изобретение
Номер охранного документа: 0002531053
Дата охранного документа: 20.10.2014
20.06.2015
№216.013.576c

Способ фотометрического определения хрома (iii) в растворах чистых солей

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания хрома (III) в растворах чистых солей, содержащих хром (III) в малой концентрации. В способе фотометрического определения хрома (III) в растворах...
Тип: Изобретение
Номер охранного документа: 0002553910
Дата охранного документа: 20.06.2015
27.12.2015
№216.013.9e2b

Защитно-декоративный препарат для древесных материалов

Изобретение относится к препаратам для защиты и декоративной обработки древесины и материалов на ее основе. Защитно-декоративный препарат содержит бороксан и живицу. Используют живицу, содержащую 65% канифоли и 35% скипидара. Изобретение придает поверхности декоративный вид и обеспечивает...
Тип: Изобретение
Номер охранного документа: 0002572121
Дата охранного документа: 27.12.2015
26.08.2017
№217.015.dffc

Способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом

Изобретение относится к технологии переработки минерального сырья. Предложен способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом. Способ включает предварительное просушивание и измельчение диатомита. В измельченный диатомит добавляют 10-30%-ный раствор гидроксида...
Тип: Изобретение
Номер охранного документа: 0002625114
Дата охранного документа: 11.07.2017
14.12.2018
№218.016.a704

Способ фотометрического определения железа (iii) в растворах чистых солей в присутствии поверхностно-активного вещества

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации. Способ включает переведение железа (III) в...
Тип: Изобретение
Номер охранного документа: 0002674760
Дата охранного документа: 13.12.2018
15.03.2020
№220.018.0c59

Способ применения живицесодержащего стимулятора роста растений

Изобретение относится к области биотехнологии. Изобретение представляет собой способ применения живицесодержащего стимулятора роста ячменя и пшеницы состоящего из 10% живицы сосновой, 1% эмульгатора, 5% щелочи и воды (концентрации 0,02%), заключающийся в протравливании семян при посеве (в...
Тип: Изобретение
Номер охранного документа: 0002716583
Дата охранного документа: 12.03.2020
+ добавить свой РИД