×
17.08.2018
218.016.7c7b

Результат интеллектуальной деятельности: Охлаждаемая лопатка соплового аппарата газовой турбины

Вид РИД

Изобретение

Аннотация: Охлаждаемая лопатка соплового аппарата газовой турбины содержит полое перо 1, выполненное в виде передней полости 2 и задней полости 3, разделенных радиальной перегородкой 4. В передней полости 2 установлен передний дефлектор 5, закрепленный первыми поперечными ребрами 6 на стенках полого пера 1 со стороны спинки и корыта. В задней полости 3 установлен задний дефлектор 7, закрепленный вторыми поперечными ребрами 8 на стенках полого пера 1 со стороны спинки и корыта. В переднем дефлекторе 5 выполнены отверстия струйного охлаждения входной кромки и стенок передней полости 9. В заднем дефлекторе 7 выполнены отверстия струйного охлаждения стенок задней полости 10. В передней полости 2 в стенках полого пера 1 выполнены отверстия пленочного охлаждения 11. Вторые поперечные ребра 8 выполнены укороченными и за ними на стенках полого пера 1 со стороны спинки и корыта установлены затеняющие ребра 12 таким образом, что задний дефлектор 7 зафиксирован их торцами. При этом длина участка установки затеняющих ребер 12 выбрана от 0,6b до 0,7b, где b - хорда поперечного сечения полого пера 1. Каждое затеняющее ребро 12 расположено перед соответствующим отверстием струйного охлаждения стенок задней полости 10 со стороны радиальной перегородки 4 и выполнено в виде сектора кольца, центр которого совпадает с центром отверстий струйного охлаждения стенок задней полости 10, а радиус R ближней к ним стенки затеняющего ребра 12 выбран от 1,0d до 1,5d, где d - диаметр отверстия струйного охлаждения стенок задней полости 10. При этом ширина h затеняющих ребер 12 в радиальном направлении выбрана в диапазоне от 1,05d до 1,10d. В щелевом канале выходной кромки 13 установлены штырьки-турбулизаторы 14. Изобретение направлено на повышение эффективности охлаждения лопаток соплового аппарата газовой турбины. 6 ил.

Изобретение относится к турбостроению, в частности к охлаждаемой лопатке соплового аппарата газовой турбины, предназначенной преимущественно для работы в области высоких температур.

Известны охлаждаемые лопатки газовых турбин с тонкостенным полым пером, через которое организуют пропускание охлаждающей среды для обеспечения конвективного теплообмена. Такие лопатки имеют наиболее широкое распространение из-за простоты достижения охлаждающего эффекта. Однако они могут применяться для работы в относительно невысоком диапазоне температур, не превышающем 1500-1800 К. В области более высоких температур необходимо использовать дополнительные средства, обеспечивающие интенсификацию теплообмена при относительно небольшом расходе охлаждающей среды.

Известна сопловая лопатка газовой турбины (публ. US №20150016973, публ. 15.01.2015, МПК F01D 5/18), содержащая полое перо с входной и выходной кромками, переднюю и заднюю полости пера, в которых установлены дефлекторы с отверстиями для подачи охлаждающего воздуха. Дефлекторами сформированы каналы для поперечного относительно пера течения охлаждающего воздуха от входной кромки в сторону выходной кромки. В канале выходной кромки установлены штырьки. В выходной кромке выполнен щелевой канал со штырьками для выпуска воздуха в проточную часть турбины.

Недостатком данного технического решения является низкая эффективность охлаждения задней полости лопатки из-за влияния сносящего потока в каналах спинки и корыта на дальнобойность струй воздуха, поступающих из отверстий дефлектора.

Известна другая лопатка с каналами охлаждения (патент US №6742991, публ. 15.01.2004, МПК F01D 5/18), содержащая входную и выходную кромки, радиальную перегородку, формирующую переднюю и заднюю полости, в которые установлены дефлекторы с отверстиями для струйного охлаждения стенок. В стенке передней полости выполнены отверстия для выпуска воздуха в проточную часть турбины и реализации пленочного охлаждения. В задней полости дефлектором сформированы каналы охлаждения для течения воздуха, поступающего через отверстия дефлектора, от радиальной перегородки к выходной кромке. В выходной кромке выполнен щелевой канал со штырьками для выпуска воздуха в проточную часть турбины.

Основным недостатком данного технического решения является низкая эффективность охлаждения участков пера задней полости, обусловленная влиянием сносящего потока в каналах между стенками пера и дефлектором, а также высоким уровнем коэффициентов теплоотдачи со стороны газового потока на данном участке со стороны спинки.

Наиболее близкой по технической сущности к предлагаемому изобретению является охлаждаемая лопатка соплового аппарата газовой турбины (патент РФ №2238411, публ. 20.10.2004, МПК F01D 5/18), содержащая полое перо, состоящее из передней и задней полостей, разделенных радиальной перегородкой, и имеющих дефлекторы с отверстиями; положение дефлекторов зафиксировано ребрами, а в стенке пера передней полости выполнены отверстия. На радиальной перегородке со стороны задней полости выполнено радиальное ребро с отверстиями. В выходной кромке выполнен щелевой канал со штырьками для выпуска воздуха в проточную часть турбины.

Недостатком настоящего технического решения является недостаточная эффективность охлаждения лопатки на участке задней полости перед щелевым каналом выходной кромки, вызванная деформацией струй сносящим потоком. Это приводит к локальному повышению температуры лопатки на данном участке и недопустимому снижению запасов прочности.

Технической задачей предлагаемого изобретения является снижение температуры стенки лопатки путем интенсификации теплоотдачи в каналах охлаждения задней полости.

Технический результат заключается в повышении эффективности охлаждения сопловых лопаток без использования дополнительного пленочного охлаждения в задней полости, что ведет к повышению их ресурса и, соответственно, ресурса газовой турбины в целом.

Это достигается тем, что известная охлаждаемая лопатка соплового аппарата газовой турбины, содержащая полое перо, выполненное в виде передней полости и задней полости, разделенных радиальной перегородкой, передний дефлектор, установленный в передней полости и закрепленный первыми поперечными ребрами на стенках полого пера со стороны спинки и корыта, задний дефлектор, установленный в задней полости и закрепленный вторыми поперечными ребрами на стенках полого пера со стороны спинки и корыта, щелевой канал выходной кромки с установленными в нем штырьками-турбулизаторами, при этом в переднем дефлекторе выполнены отверстия струйного охлаждения входной кромки и стенок передней полости, в заднем дефлекторе выполнены отверстия струйного охлаждения стенок задней полости, в передней полости в стенках полого пера выполнены отверстия пленочного охлаждения, снабжена затеняющими ребрами, установленными за вторыми поперечными ребрами на стенках полого пера со стороны спинки и корыта таким образом, что задний дефлектор зафиксирован их торцами, вторые поперечные ребра, в свою очередь, выполнены укороченными, при этом длина участка установки затеняющих ребер выбрана от 0,6b до 0,7b, где b - хорда поперечного сечения полого пера, каждое затеняющее ребро расположено перед соответствующим отверстием струйного охлаждения стенок задней полости со стороны радиальной перегородки, и выполнено в виде сектора кольца, центр которого совпадает с центром отверстий струйного охлаждения стенок задней полости, а радиус R ближней к ним стенки затеняющего ребра выбран от 1,0d до 1,5d, где d - диаметр отверстия струйного охлаждения стенок задней полости, при этом ширина h затеняющих ребер в радиальном направлении выбрана в диапазоне от 1,05d до 1,10d.

Сущность изобретения поясняется чертежами, где на фиг. 1 изображена охлаждаемая лопатка соплового аппарата газовой турбины (продольный разрез), на фиг. 2 представлено поперечное сечение А-А пера охлаждаемой лопатки, на фиг. 3 показано выполнение затеняющих ребер, на фиг. 4 представлено натекание струй воздуха по отношению к охлаждаемой поверхности согласно прототипу, на фиг. 5 показано натекание струй воздуха на охлаждаемую поверхность согласно предлагаемому изобретению, на фиг. 6 изображены экспериментальные распределения плотности теплового потока q по длине канала задней полости со стороны спинки в модели лопатки по прототипу (M1) и по длине канала задней полости со стороны спинки в модели лопатки согласно предлагаемому изобретению (М2).

Охлаждаемая лопатка соплового аппарата газовой турбины содержит полое перо 1, выполненное в виде передней полости 2 и задней полости 3, разделенных радиальной перегородкой 4. В передней полости 2 установлен передний дефлектор 5, закрепленный первыми поперечными ребрами 6 на стенках полого пера 1 со стороны спинки и корыта. В задней полости 3 установлен задний дефлектор 7, закрепленный вторыми поперечными ребрами 8 на стенках полого пера 1 со стороны спинки и корыта. В переднем дефлекторе 5 выполнены отверстия струйного охлаждения входной кромки и стенок передней полости 9. В заднем дефлекторе 7 выполнены отверстия струйного охлаждения стенок задней полости 10. В передней полости 2 в стенках полого пера 1 выполнены отверстия пленочного охлаждения 11.

Вторые поперечные ребра 8 выполнены укороченными и за ними на стенках полого пера 1 со стороны спинки и корыта установлены затеняющие ребра 12 таким образом, что задний дефлектор 7 зафиксирован их торцами. При этом длина участка установки затеняющих ребер 12 выбрана от 0,6b до 0,7b, где b - хорда поперечного сечения полого пера 1. Каждое затеняющее ребро 12 расположено перед соответствующим отверстием струйного охлаждения стенок задней полости 10 со стороны радиальной перегородки 4, и выполнено в виде сектора кольца, центр которого совпадает с центром отверстий струйного охлаждения стенок задней полости 10, а радиус R ближней к ним стенки затеняющего ребра 12 выбран от 1,0d до 1,5d, где d - диаметр отверстия струйного охлаждения стенок задней полости 10. При этом ширина h затеняющих ребер 12 в радиальном направлении выбрана в диапазоне от 1,05d до 1,10d. В щелевом канале выходной кромки 13 установлены штырьки-турбулизаторы 14.

Охлаждаемая лопатка соплового аппарата газовой турбины работает следующим образом.

Воздух поступает в передний 5 и задний 7 дефлекторы. Через отверстия струйного охлаждения входной кромки и стенок передней полости 9 воздух струями натекает на внутреннюю поверхность стенок полого пера 1, охлаждает их, движется между стенками переднего дефлектора 5 и полого пера 1, и вытекает в проточную часть турбины через отверстия пленочного охлаждения 11. В задней полости 3 воздух через отверстия струйного охлаждения стенок задней полости 10 поступает в каналы между задним дефлектором 7 и стенками полого пера 1, и движется в сторону щелевого канала выходной кромки 13. Воздух через щелевой канал выходной кромки 13 вытекает в проточную часть турбины.

Участок установки затеняющих ребер 12 соответствует участку локального увеличения коэффициентов со стороны газового потока на корыте. Затеняющие ребра 12 формируют участки поверхности стенки полого пера 1, закрытые от воздействия сносящего потока охлаждающего воздуха, вытекающего из отверстий струйного охлаждения стенок задней полости 10, обеспечивая натекание струй воздуха через отверстия струйного охлаждения стенок задней полости 10 под прямым углом к охлаждаемой поверхности. Ширина затеняющих ребер 12, выбранная экспериментально, обеспечивает гарантированное затенение струй, исключающее их деформацию сносящим потоком. Это обеспечивает максимальную интенсивность струйного охлаждения.

Проведенное численное моделирование течения воздуха в каналах задней полости 3 показало, что установка затеняющих ребер 12 предотвращает воздействие сносящего потока на струи, вытекающие из отверстий струйного охлаждения стенок задней полости 10 (фиг. 5). На данном рисунке видно, что сносящий поток обтекает затеняющие ребра 12, за ними формируются отрывные зоны, в которые вдуваются струи охлаждающего воздуха. В результате, при подаче воздуха в канал через последовательно расположенные отверстия струйного охлаждения стенок задней полости 10, не происходит уменьшения угла натекания струй на охлаждаемую поверхность, как это имеет место в прототипе (фиг. 4).

При этом затеняющие ребра 12 работают и как интенсификаторы теплоотдачи, турбулизируя поток воздуха, а также увеличивают площадь со стороны охладителя. Это уменьшает температуру стенки полого пера 1 на участке установки затеняющих ребер 12 при обтекании потоком горячего газа и уменьшает разность температуры полого пера 1 в поперечном сечении. Снижение неравномерности температурного поля полого пера 1 лопатки уменьшает величину термических напряжений и, как следствие, суммарных напряжений в стенках полого пера 1 лопатки. Это обеспечивает, без изменения суммарного расхода воздуха через лопатку, увеличение запасов прочности и повышения ресурса работы лопатки.

Для подтверждения решения поставленной задачи с использованием технологии селективного лазерного плавления были изготовлены две модели каналов задней полости сопловой лопатки, расположенных со стороны спинки - M1 и М2. Модель М2 отличалась от модели M1 наличием трех рядов затеняющих ребер 12, выполненных на последних рядах отверстий в стенках заднего дефлектора 7, со стороны выходной кромки. Шаг ребер 6 мм. Затеняющие ребра 12 изготовлены шириной 1,1d. Диаметр d отверстий струйного охлаждения стенок задней полости 10 - 0,5 мм. Испытания проводились методом калориметрирования в жидкометаллическом термостате, позволяющим определять распределение плотности теплового потока по наружной поверхности пера лопатки (Копелев, С.З. Тепловые и гидравлические характеристики охлаждаемых лопаток газовых турбин [Текст] / С.З. Копелев, М.Н. Галкин, А.А. Харин, И.В. Шевченко. - М.: Машиностроение, 1993. - 176 с.). На фиг. 6 приведен график распределения плотности теплового потока q по длине канала задней полости со стороны спинки в модели M1, соответствующей конструкции каналов лопатки - прототипа, и модели М2, соответствующей каналам лопатки, согласно предлагаемому изобретению. Начало координат по горизонтальной оси соответствует радиальной перегородке 4. Испытания проводились для рабочего перепада давления Р/Po = 1,8; где Р - давление воздуха на входе в модель, Po - давление на срезе щелевого канала выходной кромки 13.

Как видно, коэффициент теплоотдачи q на участке установки затеняющих ребер 12 в модели М2 увеличился в среднем на 30-40% по сравнению с моделью M1. Таким образом, достигнуто значительное увеличение интенсивности теплоотдачи и, соответственно, эффективности охлаждения на участке пера с локальным максимумом теплоотдачи со стороны газового потока.

Использование изобретения позволяет повысить ресурс рабочих лопаток и, соответственно, газовой турбины в целом за счет выравнивания температурного поля в поперечных сечениях пера лопатки.

Охлаждаемая лопатка соплового аппарата газовой турбины, содержащая полое перо, выполненное в виде передней полости и задней полости, разделенных радиальной перегородкой, передний дефлектор, установленный в передней полости и закрепленный первыми поперечными ребрами на стенках полого пера со стороны спинки и корыта, задний дефлектор, установленный в задней полости и закрепленный вторыми поперечными ребрами на стенках полого пера со стороны спинки и корыта, щелевой канал выходной кромки с установленными в нем штырьками-турбулизаторами, при этом в переднем дефлекторе выполнены отверстия струйного охлаждения входной кромки и стенок передней полости, в заднем дефлекторе выполнены отверстия струйного охлаждения стенок задней полости, в передней полости в стенках полого пера выполнены отверстия пленочного охлаждения, отличающаяся тем, что она снабжена затеняющими ребрами, установленными за вторыми поперечными ребрами на стенках полого пера со стороны спинки и корыта таким образом, что задний дефлектор зафиксирован их торцами, вторые поперечные ребра, в свою очередь, выполнены укороченными, при этом длина участка установки затеняющих ребер выбрана от 0,6b до 0,7b, где b - хорда поперечного сечения полого пера, каждое затеняющее ребро расположено перед соответствующим отверстием струйного охлаждения стенок задней полости со стороны радиальной перегородки и выполнено в виде сектора кольца, центр которого совпадает с центром отверстий струйного охлаждения стенок задней полости, а радиус R ближней к ним стенки затеняющего ребра выбран от 1,0d до 1,5d, где d - диаметр отверстия струйного охлаждения стенок задней полости, при этом ширина h затеняющих ребер в радиальном направлении выбрана в диапазоне от 1,05d до 1,10d.
Охлаждаемая лопатка соплового аппарата газовой турбины
Охлаждаемая лопатка соплового аппарата газовой турбины
Охлаждаемая лопатка соплового аппарата газовой турбины
Источник поступления информации: Роспатент

Показаны записи 141-150 из 208.
05.07.2019
№219.017.a650

Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы

Изобретение относится к технологиям визуально-измерительного контроля. Способ повышения точности геометрических измерений, проводимых с помощью стереоскопического устройства на основе призменно-линзовой оптической системы, включает предварительную калибровку устройства на основе совместной...
Тип: Изобретение
Номер охранного документа: 0002693532
Дата охранного документа: 03.07.2019
10.07.2019
№219.017.a988

Цифровой обнаружитель фазоманипулированных сигналов

Изобретение относится к области радиотехники и может быть использовано в радиотехнических устройствах, использующих фазоманипулированные (ФМ) сигналы. Технический результат - снижение максимального уровня проникновения сигнальной компоненты в канал оценки интенсивности помехи при включении и...
Тип: Изобретение
Номер охранного документа: 0002693930
Дата охранного документа: 08.07.2019
10.07.2019
№219.017.a9a1

Способ контроля устройства релейной защиты электроустановки

Использование: в области электроэнергетики, в системах релейной защиты электроустановки. Технический результат - исключение случаев неправильной работы устройства путем своевременного выявления сверхнормативных отклонений его напряжений срабатывания и возврата, количества электричества импульса...
Тип: Изобретение
Номер охранного документа: 0002693931
Дата охранного документа: 08.07.2019
23.07.2019
№219.017.b81e

Устройство изготовления непрерывных базальтовых волокон

Изобретение относится к устройству для получения непрерывных базальтовых волокон. Устройство содержит фидерную печь, бункер с дозатором и загрузчиком базальта, теплообменник, при этом печь и фидер перекрыты сводом с установленными горелками, в фидере установлены фильерные питатели, под которыми...
Тип: Изобретение
Номер охранного документа: 0002695188
Дата охранного документа: 22.07.2019
23.08.2019
№219.017.c2b4

Устройство определения электропроводимости магнитных отложений на поверхности труб вихретоковым методом

Использование: для неразрушающего контроля. Техническая целесообразность изобретения заключается в том, что устройство вихретокового контроля удельной электрической проводимости магнитных отложения на поверхности труб содержит генератор прямоугольных периодических импульсов тока с периодом Тв,...
Тип: Изобретение
Номер охранного документа: 0002697936
Дата охранного документа: 21.08.2019
23.08.2019
№219.017.c2ec

Способ генерации механических импульсов и устройство для его осуществления

Изобретение относится к электротехнике. Технический результат - повышение надежности генерации механических импульсов. В способе генерации механических импульсов осуществляют формирование на множестве точек фазовой плоскости генератора непустого подмножества статически неустойчивых точек и...
Тип: Изобретение
Номер охранного документа: 0002698103
Дата охранного документа: 22.08.2019
27.08.2019
№219.017.c3f9

Способ защиты от эксцентриситета ротора электрической машины переменного тока

Изобретение относится к области электротехники и может быть использовано для защиты от эксцентриситета ротора электрических машин переменного тока. Технический результат заключается в повышении точности определения эксцентриситета ротора электрической машины в способе защиты от...
Тип: Изобретение
Номер охранного документа: 0002698312
Дата охранного документа: 26.08.2019
29.08.2019
№219.017.c486

Разъём универсальной последовательной шины

Изобретение относится к области цифровой техники. Технический результат - расширение функциональных возможностей стандартного разъема универсальной последовательной шины за счет увеличения скорости передачи данных на расстояния, соответствующие оптоволоконным линиям. Достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002698459
Дата охранного документа: 27.08.2019
06.09.2019
№219.017.c806

Термоядерный реактор

Изобретение относится к термоядерному реактору. Реактор содержит вакуумную камеру, каналы подачи газообразных реагентов в камеру, входной и выходной коллекторы охлаждающего камеру теплоносителя. Камера выполнена в виде полого цилиндра, внутренняя поверхность которого покрыта пористым...
Тип: Изобретение
Номер охранного документа: 0002699243
Дата охранного документа: 04.09.2019
06.09.2019
№219.017.c811

Планетарный магнитный редуктор

Изобретение относится к электротехнике. Технический результат состоит в повышении удельных показателей магнитного редуктора. Планетарный магнитный редуктор содержит статор с осью симметрии О, состоящий из магнитопровода статора 1 в виде полого цилиндра и постоянных магнитов статора 2 с числом...
Тип: Изобретение
Номер охранного документа: 0002699238
Дата охранного документа: 04.09.2019
Показаны записи 11-19 из 19.
24.01.2019
№219.016.b320

Способ определения коэффициента теплопередачи через стенку конвективно охлаждаемой детали

Изобретение относится к теплофизическим измерениям и направлено на определение коэффициента теплопередачи в конвективно охлаждаемых деталях, например в лопатках газовых турбин. Предложен способ определения коэффициента теплопередачи через стенку конвективно охлаждаемой детали, включающий...
Тип: Изобретение
Номер охранного документа: 0002677973
Дата охранного документа: 22.01.2019
27.04.2019
№219.017.3c81

Система торговли на транспортном средстве

Изобретение относится к системе торговли на транспортном средстве общественного пользования (ТСОП) с использованием инфраструктуры транспортных вокзалов, станций. Техническим результатом является расширение арсенала средств и сокращение времени на приобретение товара/услуги. Система содержит:...
Тип: Изобретение
Номер охранного документа: 0002686021
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3cfb

Охлаждаемая лопатка газовой турбины

Охлаждаемая лопатка газовой турбины содержит полое перо, выполненное в виде передней и задней полости, разделенных радиальной перегородкой. В передней полости установлен передний дефлектор, в задней полости - задний дефлектор. В переднем дефлекторе выполнены отверстия струйного охлаждения...
Тип: Изобретение
Номер охранного документа: 0002686244
Дата охранного документа: 24.04.2019
27.04.2019
№219.017.3d25

Охлаждаемая лопатка газовой турбины

Охлаждаемая лопатка газовой турбины содержит полое перо с входной и выходной кромками, замковую часть и торцевую стенку. В полом пере установлена перегородка. Между стенкой входной кромки и перегородкой расположен канал охлаждения входной кромки, а между торцевой стенкой и перегородкой...
Тип: Изобретение
Номер охранного документа: 0002686245
Дата охранного документа: 24.04.2019
27.12.2019
№219.017.f2db

Тепловая паротурбинная электростанция с парогенерирующей водородно-кислородной установкой

Изобретение относится к паросиловым энергетическим установкам, а именно к тепловым электрическим станциям (ТЭС) с паровыми турбинами и системами обеспечения экологичности и восстановления их работоспособности. Технический результат, заключающийся в создании тепловой паротурбинной электростанции...
Тип: Изобретение
Номер охранного документа: 0002710326
Дата охранного документа: 25.12.2019
20.02.2020
№220.018.03f2

Аэродинамический фильтр

Аэродинамический фильтр предназначен для использования в трубопроводах с круглым поперечным сечением. Фильтр содержит несущую крестовину, на которой параллельно друг другу расположены продольные перфорированные пластины, при этом несущая крестовина вместе с продольными перфорированными...
Тип: Изобретение
Номер охранного документа: 0002714590
Дата охранного документа: 18.02.2020
15.05.2023
№223.018.5d8d

Кислородно-топливная энергоустановка с газификацией угля

Изобретение относится к области электроэнергетики, может быть использовано при разработке электрических станций с нулевыми выбросами вредных веществ в атмосферу и направлено на повышение электрического КПД энергоустановки. Кислородно-топливная энергоустановка с газификацией угля содержит...
Тип: Изобретение
Номер охранного документа: 0002757404
Дата охранного документа: 15.10.2021
15.05.2023
№223.018.5d8e

Кислородно-топливная энергоустановка с газификацией угля

Изобретение относится к области электроэнергетики, может быть использовано при разработке электрических станций с нулевыми выбросами вредных веществ в атмосферу и направлено на повышение электрического КПД энергоустановки. Кислородно-топливная энергоустановка с газификацией угля содержит...
Тип: Изобретение
Номер охранного документа: 0002757404
Дата охранного документа: 15.10.2021
23.05.2023
№223.018.6eff

Охлаждаемая лопатка газовой турбины

Изобретение относится к турбостроению, а именно к охлаждаемой лопатке газовой турбины, предназначенной преимущественно для работы в области высоких температур. Охлаждаемая лопатка газовой турбины содержит полое перо (1), выполненное в виде передней полости (2) и задней полости (3), разделенных...
Тип: Изобретение
Номер охранного документа: 0002740627
Дата охранного документа: 18.01.2021
+ добавить свой РИД