×
17.08.2018
218.016.7bc5

Результат интеллектуальной деятельности: Способ получения производных N-алкил- и N,N-диалкилизоцитозина

Вид РИД

Изобретение

Аннотация: Настоящее изобретение относится в химии гетероциклических соединений, конкретно к способу получения новых функциональных производных изоцитозина, являющихся биоизостерическими аналогами ненуклеозидных ингибиторов обратной транскриптазы ВИЧ-Технический результат достигается в способе получения производных N-алкил- и N,N-диалкилизоцитозина общей формулы: где R=Н, R'=с-СН, 4-СНОСНСН, СН(СН), 1-AdCH; R+R'=(СН), (СНСН)O, путем кипячения 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она или 2-метокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она с амином, выбранным из ряда циклопентиламин, 4-метоксибензиламин, 3-фенилпропан-1-амин, (адамантан-1-ил)метанамин, пиперидин или морфолин, взятых в мольных соотношениях пиримидинон:амин=1:5-19,3, в среде 1-бутанола, взятом в объемном соотношении к амину равном 10:3-5, позволяет получать целевые продукты с высоким выходом и чистотой. Техническим результатом является повышение выхода целевых соединений, наряду с упрощением процесса их получения и выделения в чистом виде. 12.пр.

Настоящее изобретение относится в химии гетероциклических соединений, конкретно к способу получения новых функциональных производных изоцитозина, содержащих один или два углеводородных заместителя при экзоциклическом атоме азота, являющихся биоизостерическими аналогами ненуклеозидных ингибиторов обратной транскриптазы ВИЧ-1 [Synthesis and Biological Properties of Novel 2-Aminopyrimidin-4(3H)-ones Highly Potent against HIV-1 Mutant Strains / Mai A., Artico M., Rotili D., Tarantino D., Clotet-Codina I., Ragno R., Simeoni S., Sbardella G., Nawrozkij M.B., Samuele A., Maga G., // J. Med. Chem. - 2007. - Vol. 50. - P. 5412-5424].

Известен способ получения производных N2-алкил- и N2,N2-диалкилизоцитозина с использованием реакции циклоконденсации производных N1-моно- и N1,N1-дизамещенных гуанидинов, полученных из их солей in situ, с соответствующими 3-оксоэфирами в присутствии алкоксидов щелочных металлов [Non-Nucleoside HIV-1 Reverse-Transcriptase Inhibitors. Part 10. Synthesis and Anti-Hiv Activity of 5-Alkyl-6-(1-Naphthylmethyl)pyrimidin-4(3H)-Ones With a Mono- Or Disubstituted 2-Amino Function as Novel 'Dihydro-Alkoxy-Benzyl-Oxopyrimidine' (DABO) Analogues / Wang Y., Chen F.E., Balzarini J., De Clercq E., Pannecouque C. // Chem Biodivers. - 2008. - 5. - P. 168-176; Solid phase synthesis of 2,6-disubstituted-4(3H)-pyrimidinones targeting HIV-1 reverse transcriptase / Nizi E., Corelli F., Manetti F., Messina F., Maga G. // Tetrahedron Lett. - 1998. - Vol. 39. - Is. 20 - P. 3307-3310].

Способ имеет ряд недостатков. Во-первых, при проведении реакции используется пожароопасный и чувствительный к воздействию атмосферной влаги и углекислоты раствор алкоксида щелочного металла. Во-вторых, многие исходные соли замещенных гуанидинов труднодоступны в чистом виде. В-третьих, проведение этой реакции с использованием солей N -монозамещенных гуанидинов приводит к образованию трудноразделяемых смесей региоизомерных продуктов [Solid phase synthesis of 2,6-disubstituted-4(3H)-pyrimidinones targeting HIV-1 reverse transcriptase / Nizi E., Corelli F., Manetti F., Messina F., Maga G. // Tetrahedron Lett. - 1998. - Vol. 39. - Is. 20 - P. 3307-3310].

Известен способ получения производных N2-алкил- и N2,N2-диалкилизоцитозина путем аминолиза соответствующих 2-(алкилсульфанил)пиримидин-4(3H)-онов [Взаимодействие 6-бензил-5-метил-2-(метилсульфанил)-пиримидин-4(3Н)-она с жирноароматическими аминами / Новаков И.А., Орлинсон Б.С, A. Mai, М. Artico, D. Rotili, Навроцкий М.Б // ЖОрХ. - 2009. - Т. 45. - С. 786-789].

Основным недостатком этого способа является выделение в ходе реакции меркаптанов, что требует усиленных мер по очистке и улавливанию отработанных газов. Кроме этого, в ряде случаев продукты реакции, полученные этим способом, имеют невысокую степень чистоты и требуют дополнительной очистки с использованием хроматографических методов.

Известен способ получения производных N2-алкил- и N2,N2-диалкилизоцитозина по реакции аминолиза соответствующих 2-(нитроамино)пиримидин-4(3H)-онов [Diarylpyrimidine-dihydrobenzyloxopyrimidine hybrids: New, wide-spectrum anti-HIV-1 agents active at (Sub)-nanomolar level / D. Rotili, D. Tarantino, M. Artico, M.B. Nawrozkij, E. Gonzalez-Ortega, B. Clotet, A. Samuele, J.A. Este, G. Maga, A. Mai // J. Med. Chem. - 2011. - Vol. - 54. - P. 3091-3096].

Эта реакция, однако, может протекать неоднозначно и, в случае вторичных аминов, приводить к продуктам, отличным от целевых [Исследование синтеза 3-оксоэфиров и функциональных производных пиримидин-4(3H)-она на основе 1-(2,6-дигалогенфенил)циклопропан-1-карбоновых кислот / И.А. Новаков, А.С.Яблоков, М.Б. Навроцкий, А.С. Мкртчян, А.А. Вернигора, А.С. Бабушкин, В.В. Качала, Е.А. Ручко // ЖОХ. - 2017. - Т. 87. - Вып. 2. - С. 247-254].

Известен способ получения производных N2-алкил- и N2,N2-диалкилизоцитозина, основанный на взаимодействии соответствующих производных 2-метоксипиримидин-4(3H)-онов с натриевыми солями первичных аминов в кипящем декалине или тетралине [6-Alky 1- and 5,6-Dialkyl-2-methoxy-4(3H)-pyrimidinones in the Transformations of Pyrimidines. Conversion into 2-Substituted Amino- and 4-Chloro-Pyrimidine-Derivatives / Botta M., De Angelis F., Finizia G., Gambacorta A., Nicoletti R. // Synth. Commun. - 2006. - Vol. - 15. - P. 27-34].

Этот способ подразумевает предварительное получение in situ соответствующих натриевых солей аминов, что предполагает высокую пожаро- и взрывоопасность в связи с использованием металлического натрия или его гидрида, выделением водорода и применением горючих и легковоспламеняющихся амидов. Кроме этого, реакция реализуется в очень жестких условиях, что приводит к образованию побочных продуктов. Целевые продукты, как правило, получаются с умеренным выходом, а их очистка является сложной и трудоемкой. Способ описан лишь для первичных аминов.

Наиболее близким является способ получения производных изоцитозина при взаимодействии соответствующего 2-нитроамино-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она циклопентиламином в среде бутанола [Исследование синтеза 3-оксоэфиров и функциональных производных пиримидин-4(3H)-она на основе 1-(2,6-дигалогенфенил)циклопропан-1-карбоновых кислот / И.А. Новаков, А.С. Яблоков, М.Б. Навроцкий, А.С. Мкртчян, А.А. Вернигора, А.С. Бабушкин, В.В. Качала, Е.А. Ручко // ЖОХ. - 2017. - Т. 87. - Вып. 2. - С. 247-254].

Недостатком способа является трудоемкость выделения продукта реакции в чистом виде и связанное с этим снижение его выхода.

Задачей предлагаемого технического решения является разработка нового технологического способа получения различных производных N2-алкил- и N2,N2-диалкилизоцитозина в одну стадию, с использованием доступных реагентов, приводящего к целевым продуктам с высокой чистотой и хорошим выходом.

Техническим результатом является повышение выхода целевых соединений, наряду с упрощением процесса их получения и выделения в чистом виде.

Технический результат достигается в способе получения производных изоцитозина общей формулы:

где R=Н, R'=с-С5Н9, 4-СН3ОС6Н4СН2, С6Н5(СН2)3, 1-AdCH2; R+R'=(СН2)5, (СН2СН2)2O,

путем кипячения производного 2-замещенного 6-алкил-5-метилпиримидин-4(3H)-она с соответствующим амином в среде 1-бутанола в качестве растворителя, при этом в качестве производного 2-замещенного 6-алкил-5-метилпиримидин-4(3H)-она используют 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3Н)-он или 2-метокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он, в качестве амина используют амин, выбранный из ряда циклопентиламин, 4-метоксибензиламин, 3-фенилпропан-1-амин, (адамантан-1-ил)метанамин, пиперидин или морфолин, взятых в мольных отношениях пиримидинон : амин = 1:5-19,3, а реакцию ведут при объемном соотношении 1-бутанола к амину равном 10:3-5.

Сущностью предлагаемого способа является реакция соответствующего 2-алкокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она с амином, приводящая к обмену алкокси-группы в положении 2 пиримидинового гетероцикла на остаток исходного амина, с образованием целевого вещества.

где R=Н, R'=с-С5Н9, 4-СН3ОС6Н4СН2, С6Н5(СН2)3, 1-AdCH2, R+R'=(СН2)5, (СН2СН2)2O, R''=СН3, С4Н9.

Исходный 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он получают в соответствии с известным методом [Исследование синтеза 3-оксоэфиров и функциональных производных пиримидин-4(3H)-она на основе 1-(2,6-дигалогенфенил)циклопропан-1-карбоновых кислот / И.А. Новаков, А.С. Яблоков, М.Б. Навроцкий, А.С. Мкртчян, А.А. Вернигора, А.С. Бабушкин, В.В. Качала, Е.А. Ручко // ЖОХ. - 2017. - Т. 87. - Вып. 2. - С. 247-254]. 6-[1-(2,6-Дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-он получен путем циклоконденсации этилового эфира 3-[1-(2,6-дифторфенил)циклоиропил]-2-метил-3-оксопропановой кислоты [Синтез и противовирусные свойства новых производных 2-(алкилсульфанил)-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она / И.А. Новаков, А.С. Яблоков, М.Б. Навроцкий, И.А. Кириллов, А.А. Вернигора, А.С. Бабушкин, В.В. Качала, Д. Шольц // ЖОрХ - 2016. - Т. 52. - №8. - С. 1195-1200] с сульфатом О-метилизомочевины в присутствии водно-спиртовой суспензии гидроксида кальция, в соответствии с методом, описанным ранее в литературе [6-Alkyl and 5,6-dialkyl-2-methoxy-4(3H)- pyrimidinones in the transformations of pyrimidines-2. Synthesis and conversion into alkyluracils and 2-alkoxy-4(3H)-pyrimidinones / M. Botta, M. Cawalieri, D. Ceci, F. De Angelis, G. Finizia, R. Nicoletti // Tetrahedron. - 1984. - Vol. 40, - Is.e 17. - P. 3313-3320].

В предлагаемом способе повышение выхода и чистоты целевых продуктов реакции достигается за счет гомофазного проведения процесса в относительно мягких условиях.

Необходимость применения избытка амина обусловливается тем, что последний выступает в качестве реагента и сорастворителя при проведении реакции, а кроме этого, снижение избытка амина приводит к существенному замедлению процесса. Применение 1-бутанола, как растворителя обусловлено необходимостью повышения диэлектрической проницаемости среды. При этом 1-бутанол, отогнанный по окончании реакции вместе с избытком амина, может быть использован после осушки и перегонки для проведения аналогичных синтезов.

Преимуществом предлагаемого способа является возможность получения широкого ряда производных N2-алкил- и N2,N2-диалкилизоцитозина, многие из которых представляют интерес как перспективные противовирусные средства [Synthesis and Biological Properties of Novel 2-Aminopyrimidin-4(3H)-ones Highly Potent against HIV-1 Mutant Strains / Mai A., Artico M., Rotili D., Tarantino D., Clotet-Codina I., Ragno R., Simeoni S., Sbardella G., Nawrozkij M.B., Samuele A., Maga G., // J. Med. Chem. - 2007. - Vol. 50. - P. 5412-5424], в одну стадию в мягких условиях, приводя к желаемым продуктам с хорошим выходом, с использованием доступных и регенерируемых реагентов и растворителей, отсутствии необходимости в применении взрыво- и пожароопасных гидридов и амидов щелочных металлов, препаративной простоте синтеза и легкости выделения целевых продуктов реакции в чистом виде.

Предлагаемый способ осуществляется следующий образом.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 2-алкокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он, безводный 1-бутанол и соответствующий амин. Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 1М водной соляной кислотой, водой, насыщенный водным раствором NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают продукт с содержанием основного вещества свыше 98% согласно данным ВЭЖХ-анализа (неподвижная фаза Reprosil С18 AQ (Dr. Maisch Gmbh) 150 мм ×4.6 мм, 3 мкм, подвижная фаза H2O/CH3CN/H3PO4=200/200/1 (об.), скорость потока элюента 0.8 мл/мин, длина волны детектора λ 220 нм, температура термостата колонки 30°С).

Изобретение иллюстрируется следующими примерами:

Пример 1. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(циклопентиламино)пиримидин-4(3H)-она из 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и циклопентиламин (4 мл, 3.45 г, 0.04 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(циклопентиламино)пиримидин-4(3H)-он с т.пл. 202-204°С (CH3CN), что соответствует данным литературы [ЖОХ. - 2017. - Т. 87. - Вып. 2. - С. 247-254]. Выход - 1.03 г (87%).

Пример 2. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(циклопентиламино)пиримидин-4(3H)-она из 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и циклопентиламин (4 мл, 3.45 г, 0.04 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6- дифторфенил)циклопропил]-5-метил-2-(циклопентиламино)пиримидин-4(3H)-он с т.пл. 202-204°С (CH3CN), что соответствует данным литературы [ЖОХ. - 2017. - Т. 87. - Вып. 2. - С. 247-254]. Выход - 0.90 г (87%).

Пример 3. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-2-[(4-метоксибензил)амино]-5-метилпиримидин-4(3H)-она из 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и (4-метоксифенил)метанамин (3 мл, 3.15 г, 0.023 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6-дифторфенил)циклопропил]-2-[(4-метоксифенил)метиламино]-5-метилпиримидин-4(3H)-он. tR=3.078 мин. Найдено, %: С 66.10; H 4.99; N 10.64. C22H21F2N3O2. Вычислено, %: С 66.49; Н 5.33; N 10.57. Rf=0.35 [EtOAc-С6Н14 (3:1)] (Polygram Sil G/UV254). Выход - 1.22 г (90%).

Пример 4. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-2-[(4-метоксибензил)амино]-5-метилпиримидин-4(3H)-она из 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и (4-метоксифенил)метанамин (3 мл, 3.15 г, 0.023 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6-дифторфенил)циклопропил]-2-[(4-метоксифенил)метиламино]-5-метилпиримидин-4(3H)-он. tR=3.078 мин. Найдено, %: С 66.10; Н 4.99; N 10.64. C22H21F2N3O2. Вычислено, %: С 66.49; Н 5.33; N 10.57. Rf=0.35 [EtOAc - С6Н14 (3:1)] (Polygram Sil G/ UV254). Выход - 0.98 г (82%).

Пример 5. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-[(3-фенилпропил-1)амино]пиримидин-4(3H)-она из 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и 3-фенилпропан-1-амин (3 мл, 4.572 г, 0.034 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-[(3-фенилпропил-1)амино]пиримидин-4(3H)-он. tR=3.41 мин. Найдено, %: С 70.00; Н 6.01; N 10.60. C23H23F2N3O. Вычислено, %: С 69.86; Н 5.86; N 10.63. Спектр ЯМР 1Н (300 МГц, ДМСО-d6), δ, м.д.: 1.35 м (2Н, 2СН2ах, с-Pr); 1.56 м (2Н, 2CH2eq, с-Pr); 1.80-1.85 м (5Н, С2Н2, СН3); 2.64 м (2Н, СН2); 3.29 м (2Н, СН2); 7.04-7.24 м (7Н, С6Н5, С3,5Н (2,6-F2C6H3)); 7.35-7.37 м (1Н, С4Н (2,6-F2C6H3)); 9.51 уш. с. (1Н, N2H); 11.77 уш. с. (1Н, N3H). Т. пл. 199.5-200.5°С с разл. (С6Н14-EtOAc). Rf=0.38 [EtOAc-С6Н14 (4:1)] (Polygram Sil G/UV254). Выход - 1.19 г (88%).

Пример 6. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-[(3-фенилпропил-1)амино]пиримидин-4(3H)-она из 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и (3-фенилпропан-1-ил)амин (3 мл, 4.572 г, 0.034 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-[(3-фенилпропил-1)амино]пиримидин-4(3H)-он. Т. пл. 199.5-200.5°С с разл. (С6Н14-EtOAc). Выход - 0.94 г (79%).

Пример 7. Синтез 2-{[(адамантан-1-ил)метил]амино}-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она из 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и (адамантан-1-ил)метанамин (3 мл, 2.8 г, 0.017 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 2-{[(адамантан-1-ил)метил]амино}-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он. tR=5.95 мин. Найдено, %: С 70.71; Н 7.00; N 10.01. C25H29F2N3O. Вычислено, %: С 70.57; Н 6.87; N 9.88. Спектр ЯМР 1Н (ДМСО-d6), δ, м. д.: 1.09 м (2Н, 2СН2ах, с-Pr); 1.38 м (6Н, 3СН2, С2,8,9 (Ad)); 1.50-1.55 м (9Н, 3СН2, СН3, С4,6,10 (Ad)); 1.87 м (3Н, 3СН, С3,5,7 (Ad)); 2.95 м (2Н, CH2NH); 6.04 уш. с. (1Н, N2H); 6.95 м (2Н, С3,5Н (2,6-F2C6H3)); 7.27 м (1Н, С4Н (2,6-F2C6H3)); 10.36 уш. с. (1Н, N3H). Т. разл.>282.5°С (С2Н5ОН). Rf=0.41 [EtOAc-С6Н14 (4:1)] (Polygram Sil G/UV254). Выход - 1.37 г (94%).

Пример 8. Синтез 2-{[(адамантан-1-ил)метил]амино}-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она из 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и (адамантан-1-ил)метанамин (3 мл, 2.8 г, 0.017 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 2-{[(адамантан-1-ил)метил]амино}-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он. Т. разл.>282.5°С (С2Н5ОН). Выход - 1.15 г (90%).

Пример 9. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(морфолин-4-ил)пиримидин-4(3H)-она из 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и морфолин (5 мл, 5.05 г, 0.058 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(морфолин-4-ил)пиримидин-4(3H)-он. tR=3.75 мин. Найдено, %: С 61.98; Н 5.30; N 11.95. C18H19F2N3O2. Вычислено, %: С 62.24; Н 5.51; N 12.10. Спектр ЯМР 1Н (ДМСО-d6), δ, м. д.: 1.12 м (2Н, 2СН2ах, с-Pr); 1.52 м (2Н, 2CH2eq, с-Pr); 1.61 м (3Н, СН3); 3.46 м (4Н, 2СН2, С3,5 (морфолин)); 3.56 м (2Н, СН2, С2,6 (морфолин)); 6.70 м (2Н, С3,5Н (2,6-F2C6H3)); 7.28 м (1Н, С4Н (2,6-F2C6H3)); 11.15 уш. с. (1Н, N3H). Т. пл. 190-190.5°С (CH3CN). Rf=0.28 [EtOAc-C6H14 (3:1)] (Polygram Sil G/UV254). Выход - 1.12 г (94%).

Пример 10. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(морфолин-4-ил)пиримидин-4(3H)-она из 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и морфолин (5 мл, 5.05 г, 0.058 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(морфолин-4-ил)пиримидин-4(3H)-он. Т. пл. 190-190.5°С (CH3CN). Выход - 0.96 г (92%).

Пример 11. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(пиперидин-1-ил)пиримидин-4(3H)-она из 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-метоксипиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и пиперидин (5 мл, 4.31 г, 0.051 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ. Фильтрат упаривают в вакууме, в остатке получают 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(пиперидин-1-ил)пиримидин-4(3H)-он. tR=3.65 мин. Найдено, %: С 65.81; Н 5.98; N 11.70. C19H21F2N3O. Вычислено, %: С 66.07; Н 6.13; N 12.17. Спектр ЯМР 1Н (ДМСО-d6), δ, м. д.: 1.11 м (2Н, 2СН2ах, с-Pr); 1.43-1.51 м (8Н, 3СН2 3,4,5 (пиперидин), 2CH2eq (с-Pr)); 1.59 м (3Н, СН3); 3.47 м (4Н, 2СН2, С2,6 (пиперидин)); 6.94-6.99 м (2Н, С3,5Н (2,6-F2C6H3)); 7.26-7.31 м (1Н, С4Н (2,6-F2C6H3)); 11.00 с (1H, N3H). Т. пл. 164.5-165.5°С (С6Н14). Rf=0.48 [EtOAc-С6Н14 (3:1)] (Polygram Sil G/ UV254). Выход - 0.99 г (84%).

Пример 12. Синтез 6-[1-(2,6-дифторфенил)циклопропил]-5-метил-2-(пиперидин-1-ил)пиримидин-4(3H)-она из 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-она.

В круглодонную колбу, снабженную магнитной мешалкой и обратным холодильником, закрытым щелочной трубкой, помещают исходный 2-бутокси-6-[1-(2,6-дифторфенил)циклопропил]-5-метилпиримидин-4(3H)-он (1 г, 0.003 моль), безводный 1-бутанол (10 мл) и пиперидин (5 мл, 4.31 г, 0.051 моль). Полученную смесь доводят до кипения при перемешивании и кипятят образовавшийся раствор до тех пор, пока ВЭЖХ-анализ взятой аликвоты не покажет практически полной конверсии исходного производного пиримидина. После этого, растворитель отгоняют в вакууме, а к остатку добавляют последовательно 3 порции ксилола по 50 мл, каждую из которых также отгоняют при пониженном давлении. Оставшийся в кубе технический продукт реакции растворяют в этилацетате, промывают полученный раствор 25 мл 1М водной соляной кислоты, 2×25 мл воды, 2×20 мл насыщенного водного раствора NaCl и сушат безводным MgSO4. Осушитель отделяют фильтрованием через слой силикагеля для ТСХ.


Способ получения производных N-алкил- и N,N-диалкилизоцитозина
Способ получения производных N-алкил- и N,N-диалкилизоцитозина
Источник поступления информации: Роспатент

Показаны записи 141-150 из 362.
09.11.2018
№218.016.9bf3

Теплозащитный материал

Изобретение относится к теплозащитному материалу на основе этиленпропилендиенового каучука, который может использоваться в авиа- и ракетостроении. Теплозащитный материал содержит этиленпропилендиеновый каучук СКЭПТ-40, вулканизующие агенты серу и тиурам Д, ускоритель вулканизации...
Тип: Изобретение
Номер охранного документа: 0002671865
Дата охранного документа: 07.11.2018
30.11.2018
№218.016.a1bb

Способ нанесения покрытия из антифрикционного твердого сплава методом взрывного прессования

Изобретение может быть использовано для изготовления взрывным прессованием композиционных многослойных деталей. На поверхности металлической подложки размещают титановый порошок. Затем формируют промежуточный слой из смеси порошков карбида хрома с титаном в соотношении 78 мас. % CrC и 22 мас. %...
Тип: Изобретение
Номер охранного документа: 0002673594
Дата охранного документа: 28.11.2018
30.11.2018
№218.016.a1d8

Способ комбинированной сварки взрывом

Изобретение может быть использовано при изготовлении сваркой взрывом биметаллических заготовок и переходных элементов, преимущественно из трудносвариваемых толстолистовых разнородных металлов. Метаемую пластину устанавливают над неподвижной пластиной с зазором и инициируют расположенный на ней...
Тип: Изобретение
Номер охранного документа: 0002673595
Дата охранного документа: 28.11.2018
05.12.2018
№218.016.a34a

Способ изготовления легкоочищаемых литейных керамических форм, получаемых по выплавляемым моделям

Изобретение относится к области литейного производства и может быть использовано для изготовления литейных керамических форм по выплавляемым моделям при производстве точных отливок из черных и цветных сплавов. Способ изготовления легкоочищаемых литейных керамических форм, получаемых по...
Тип: Изобретение
Номер охранного документа: 0002673872
Дата охранного документа: 30.11.2018
05.12.2018
№218.016.a364

Суспензия для изготовления легкоочищаемых литейных керамических форм

Изобретение относится к области литейного производства и может быть использовано для изготовления литейных керамических форм по выплавляемым моделям при производстве точных отливок из черных и цветных сплавов. Суспензия включает этилсиликат, ацетон, воду, соляную кислоту, пылевидный огнеупорный...
Тип: Изобретение
Номер охранного документа: 0002673873
Дата охранного документа: 30.11.2018
20.12.2018
№218.016.a920

Состав для огнезащитных покрытий резин

Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Cостав для огнезащитных покрытий включает, мас.ч.: хлорсульфированный полиэтилен 15, толуол 85 и углеродные волокна 1-3. В качестве...
Тип: Изобретение
Номер охранного документа: 0002675558
Дата охранного документа: 19.12.2018
21.12.2018
№218.016.aa2a

Состав для огнезащитных покрытий резин

Изобретение относится к области получения огнезащитных покрытий на основе полимерного связующего и может найти применение в резинотехнической промышленности. Состав для огнезащитных покрытий включает, мас.ч.: хлорсульфированный полиэтилен 15, толуол 85 и микроуглеродные волокна 1-5, полученные...
Тип: Изобретение
Номер охранного документа: 0002675575
Дата охранного документа: 19.12.2018
16.01.2019
№219.016.afd8

Клеевая композиция

Изобретение относится к клеевой промышленности и может быть использовано в резиновой промышленности при склеивании вулканизованных резин на основе различных каучуков друг с другом. Композиция включает компоненты при следующем соотношении, мас.ч.: хлоропреновый каучук наирит ДП (90,00),...
Тип: Изобретение
Номер охранного документа: 0002677175
Дата охранного документа: 15.01.2019
16.01.2019
№219.016.b03a

Эластомерная композиция на основе бутадиен-нитрильного каучука

Изобретение относится к области эластомерных композиций на основе бутадиен-нитрильных каучуков, которые можно использовать в резинотехнических изделиях, обладающих стойкостью к действию нефти и продуктов ее переработки, в отраслях промышленности, где необходима маслобензостойкость и...
Тип: Изобретение
Номер охранного документа: 0002677211
Дата охранного документа: 15.01.2019
19.01.2019
№219.016.b19e

Устройство для контроля состояния воздушных линий электропередачи

Изобретение относится к электроэнергетике и может быть использовано для контроля состояния воздушных линий электропередачи (ВЛЭП), а именно измерения гололедно-ветровых нагрузок и мониторинга температурного режима эксплуатации. Заявленное устройство для контроля состояния воздушных линий...
Тип: Изобретение
Номер охранного документа: 0002677498
Дата охранного документа: 17.01.2019
Показаны записи 61-67 из 67.
24.04.2023
№223.018.5243

Водонабухающая эластомерная композиция

Изобретение относится к водо- и нефтенабухающим эластомерным материалам и может быть использовано при изготовлении резиновых набухающих уплотнительных элементов пакерного оборудования для высокотемпературных скважин. Водонабухающая эластомерная композиция, включает этилен-пропиленовый каучук,...
Тип: Изобретение
Номер охранного документа: 0002744283
Дата охранного документа: 04.03.2021
15.05.2023
№223.018.5862

Способ модификации древесины

Изобретение относится к деревообрабатывающей промышленности, в частности к получению обработанной древесины для повышения ее водостойкости. Способ модификации древесины включает обработку древесины погружным методом в пропиточном растворе при нормальных условиях с последующей термообработкой....
Тип: Изобретение
Номер охранного документа: 0002764921
Дата охранного документа: 24.01.2022
15.05.2023
№223.018.5887

Способ модификации древесины

Изобретение относится к деревообрабатывающей промышленности, в частности к получению обработанной древесины для повышения ее водостойкости. Выполняют обработку древесины погружным методом в пропиточном растворе при нормальных условиях с последующей термообработкой. При этом в качестве...
Тип: Изобретение
Номер охранного документа: 0002764926
Дата охранного документа: 24.01.2022
15.05.2023
№223.018.5891

Способ модификации древесины

Изобретение относится к деревообрабатывающей промышленности, в частности к получению обработанной древесины для повышения ее водостойкости. Способ модификации древесины включает обработку древесины погружным методом в пропиточном растворе при нормальных условиях с последующей термообработкой....
Тип: Изобретение
Номер охранного документа: 0002764925
Дата охранного документа: 24.01.2022
15.05.2023
№223.018.58bf

Способ модификации древесины

Изобретение относится к деревообрабатывающей промышленности, в частности к получению обработанной древесины для повышения ее водостойкости. Способ модификации древесины включает обработку древесины погружным методом в пропиточном растворе при нормальных условиях с последующей термообработкой....
Тип: Изобретение
Номер охранного документа: 0002764924
Дата охранного документа: 24.01.2022
17.05.2023
№223.018.649a

Использование анилов d-камфоры в качестве уф-абсорберов фотополимеризующихся композиций для 3d-печати

Настоящее изобретение относится к использованию анилов D-камфоры в качестве УФ-абсорберов фотополимеризующихся композиций (ФПК) для 3D-печати. Технический результат - расширение ассортимента УФ-абсорберов, используемых при 3D-печати из фотополимеризующихся композиций, высокая детализация...
Тип: Изобретение
Номер охранного документа: 0002794337
Дата охранного документа: 17.04.2023
20.05.2023
№223.018.6518

Способ получения изотиобарбамина

Изобретение относится к способу получения изотиобарбамина из 5-изопропил-2-тиобарбитуровой кислоты и гидрохлорида N,N-диэтил-2-хлорэтан-1-амина, путем нагревания реакционной массы в среде растворителя, при этом используют предварительно приготовленный раствор N,N-диэтил-2-хлорэтан-1-амина, а...
Тип: Изобретение
Номер охранного документа: 0002744470
Дата охранного документа: 09.03.2021
+ добавить свой РИД