×
09.08.2018
218.016.7939

Результат интеллектуальной деятельности: СПОСОБ МОНИТОРИНГА ЛЕСНЫХ ПОЖАРОВ И КОМПЛЕКСНАЯ СИСТЕМА РАННЕГО ОБНАРУЖЕНИЯ ЛЕСНЫХ ПОЖАРОВ

Вид РИД

Изобретение

Аннотация: Предлагаемый способ и система относятся к области пожарной безопасности и могут быть использованы для постоянного наземного мониторинга лесных массивов и населенных пунктов в местах, где развернута система сотовой связи. Техническим результатом является повышение достоверности обмена аналоговой и дискретной информации между телекоммуникационным модулем и центральным сервером путем использования двух частот ω, ω и сложных сигналов с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн). Комплексная система раннего обнаружения лесных пожаров, реализующая способ мониторинга лесных пожаров, содержит тепловизионный модуль 1, видеокамеру 2, сканирующую платформу 3, контроллер 4 управления, блок 5 глобальной навигационной спутниковой системы, угломерно-азимутальной измеритель 6, устройство 7 сбора метеоданных, телекоммуникационный модуль 8, дуплексную связь 9 (радиоканал) и центральный сервер 10. Телекоммуникационный модуль 8 и центральный сервер 10 содержат задающий генератор 11.1(11.2), формирователь 12.1(12.2) аналоговых сообщений, формирователь 14.1(14.2) дискретных сообщений, амплитудный модулятор 13.1(13.2), фазовый манипулятор 15.1(15.2), первый гетеродин 16.1(16.2), первый смеситель 17.1(17.2), усилитель 18.1(18.2), первой промежуточной частоты, первый усилитель 19.1(19.2) мощности, дуплексер 20.1(20.2), приемопередающую антенну 21.1(21.2), второй усилитель 22.1(22.2) мощности, второй гетеродин 23.1(23.2), второй смеситель 24.1(24.2), усилитель 25.1(25.2) второй промежуточной частоты, амплитудный ограничитель 26.1(26.2), синхронный детектор 27.1(27.2), перемножитель 28.1(28.2), полосовой фильтр 29.1(29.2), фазовый детектор 30.1(30.2). В состав телекоммуникационного модуля 8 входит также контроллер 21, в состав центрального сервера 10 - компьютер 31. 2 н.п. ф-лы, 4 ил.

Предлагаемый способ и система относятся к области пожарной безопасности и могут быть использованы для постоянного наземного мониторинга лесных массивов и населенных пунктов в местах, где развернута система сотовой связи.

Известны способы и системы раннего обнаружения пожаров (патенты РФ №№2.032.229, 2.078.377, 2.110.094, 2.177.179, 2.207.631, 2.210.813, 2.256.228, 2.256.231, 2.340.002, 2.409.865, 2.486.594; патенты США №№5.049.861, 5.079.422, 5.557.260, 5.734.335, 6.400.265; патенты Франции №№2.811.456, 2.893.743; патенты Германии №3.710.265; патенты ЕР №№0.940.679, 1.667.453; патенты WO №0.948.070; Шаровар Ф.И. Устройства и системы пожарной сигнализации. М. Стройиздат, 1985, с. 292-295 и другие).

Из известный способов и систем наиболее близкими к предлагаемым являются «Способ мониторинга лесных пожаров и комплексная система раннего обнаружения лесных пожаров, построенная на принципе разносенсорного панорамного обзора местности с функцией высокоточного определения очага возгорания» (патенты РФ №2.486.594, G08B 13/194, 2011), которые и выбраны в качестве прототипов.

Известные способ и система обеспечивают расширение функциональных возможностей за счет увеличения ограничений по разрешению видеокамеры и тепловизорного изображения, увеличение угла обзора и объема получаемой информации. Мониторинг местности ведут, по меньшей мере, с двух точек, расположенных на мачтах сотовой связи, посредством тепловизорной камеры и видеокамеры, установленных так, что их оси параллельны и закреплены на сканирующей платформе, размещенной на каждой мачте сотовой связи, при этом передают изображения, полученные в тепловом и видеоканалах, совместно с данными углового и азимутального направления осей камер, на центральный сервер, в котором преобразуют изображения, полученные от тепловизионных и видеокамер, и данных от угломерно-азимутальных измерителей, расположенных на мачтах сотовой связи, в систему географических координат, осуществляют привязку очагов возгорания к географическим координатам с отображением на электронной карте местности, накладывают видеоизображение на изображение от тепловизионной камеры и выводят полученные изображения в виде трех отдельных изображений на монитор оператора, и/или на запоминающее устройство.

Технической задачей изобретения является повышение достоверности обмена аналоговой и дискретной информацией между телекоммуникационным модулем и центральным сервером путем использования двух частот ω1, ω2 и сложных сигналов с комбинированной амплитудной модуляций и фазовой манипуляцией (АМ-ФМн).

Поставленная задача решается тем, что способ мониторинга лесных пожаров, характеризующийся, в соответствии с ближайшим аналогом, тем, что мониторинг ведут, по меньшей мере, с двух точек, расположенных на мачтах сотовой связи посредством тепловизионной камеры и видеокамеры, установленных так что их оси параллельны, и закрепленных на сканирующей платформе, размещенной на каждой мачте сотовой связи, при этом передают изображения, полученные в тепловом и видеоканалам, совместно с данными углового и азимутального направления осей камер, полученными с помощью угломерно-азимутального измерителя, на центральный сервер, в котором преобразуют изображения, полученные от тепловизионных и видеокамер, и данные от угломерно-азимутальных измерителей, расположенных на мачтах сотовой связи, в систему географических координат, осуществляют привязку очагов возгорания к географическим координатам с отображением на электронной карте местности, накладывают видеоизображение на изображение от тепловизионной камеры и выводят полученные изображения в виде трех отдельных изображений - полученного наложением разносенсорного панорамного изображения, тепловизионного изображения и видиоизображения на монитор оператора и/или на запоминающее устройство, отличается от ближайшего аналога тем, что на телекоммуникационном модуле формируют гармоническое колебание на частоте ωс, моделируют его по амплитуде аналоговым сообщением м1(t), манипулирует по фазе дискретным сообщением M1(t), полученый сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией преобразуют по частоте с использованием частоты ωг1, первого гетеродина, выделяют сигнал первый промежуточной частоты ωпр1сг1, усиливают его по мощности и излучают в эфир на частоте ω1прг2, где ωг2 - частота второго гетеродина, принимают и усиливают его по мощности на центральном сервере, преобразуют по частоте с использованием частоты ωг1 второго гетеродина, выделяют сигнал второй промежуточной частоты ωпр21г1с, ограничивают его по амплитуде, полученный сигнал с фазовой манипуляцией используют в качестве опорного напряжения для синхронного детектирования сложного сигнала с комбинированной амплитудной модуляцией и фазовой манипуляцией, выделяют низкочастотное напряжение, пропорциональной аналоговому сообщению м1(t), фиксируют и анализируют его, одновременно полученный сигнал с фазовой манипуляцией перемножают с напряжением первого гетеродина, выделяют сигнал с фазовой манипуляцией на частоте ωг2пр2г1, синхронно детектируют его с использованием частоты ωг2 второго гетеродина, выделяют низкочастотное напряжение, пропорциональное дискретному сообщению M1(t), фиксируют и анализируют его, на центральном сервере формируют также гармоническое колебание на частоте ωс, модулируют его по амплитуде аналоговым сообщением м2(t), манипулируют по фазе дискретным сообщением M2(t), полученный сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией преобразуют по частоте с использованием частоты ωг2 первого гетеродина, выделяют сигнал третьей промежуточной частоты ωпр3г2с, усиливают его по мощности и излучают в эфир на частоте ω2пр3г1, принимают и усиливают по мощности на телекоммуникационном модуле, преобразуют по частоте с использованием частоты ωг2 второго гетеродина, выделяют сигнал второй промежуточной частоты ωпр2г22, ограничивают его по амплитуде, полученный сигнал с фазовой манипуляцией используют в качестве опорного напряжения для синхронного детектирования сложного сигнала с комбинированной амплитудной модуляцией и фазовой манипуляцией, выделяют низкочастотное напряжение, пропорциональное аналоговому сообщению м2(t), фиксируют и анализируют его, одновременно полученный сигнал с фазовой манипуляцией перемножают с напряжением первого гетеродина, выделяют сигнал с фазовой манипуляций на частоте ωг2 второго гетеродина, выделяют низкочастотное напряжение, пропорциональное дискретному сообщению M2(t), фиксируют и анализируют его, причем частоты ωг1 и ωг2 гетеродинов разнесены на значение второй промежуточной частоты ωг2г1пр2, сложные сигналы с комбинированной амплитудной модуляцией и фазовой манипуляцией на телекоммуникационном модуле излучают на частоте ω1, а принимают на частоте ω2, а на центральном сервере, наоборот, излучают на частоте ω2, а принимают на частоте ω1.

Поставленная задача решается тем, что комплексная система раннего обнаружения лесных пожаров, содержащая, в соответствии с ближайшим аналогом, по меньшей мере, два тепловизионно-телевизионных модуля кругового сканирования местности, расположенных на мачтах сотовой связи, каждый тепловизионно-телевизионный модуль образован тепловизионной камерой и видеокамерой, установленными так, что их оси параллельны, угломерно-азимутальному измерителю, ось которого параллельна осям тепловизионной камеры и видеокамеры, и контроллером управления, при этом тепловизионная камера, видеокамера и угломерно-азимутальный измеритель закреплены на сканирующей платформе, установленной на мачте сотовой связи и имеют возможность вращения относительно вертикальной оси и поворота относительно горизонтальной оси, причем выходы тепловизионной камеры, видеокамеры и угломерно-азимутного измерителя связаны с первым-третьим входами контроллера управления, вход устройства управления движения сканирующей платформы связан с первым выходом контроллера, четвертым вход контроллера управления связан с блоком глобальной навигационной спутниковой системы, при этом система снабжена телекоммуникационным модулем, осуществляющим беспроводную связь с центральным сервером, причем телекоммуникационный модуль связан входом-выходом соответственно со вторым выходом и пятым входом контроллера управления, шестой вход, которого связан с выходом устройства сбора метеоданных, отличается от ближайшего аналога тем, что телекоммуникационный модуль и центральный сервер выполнены в виде последовательно включенных задающего генератора, амплитудного модулятора, второй вход которого соединен с выходом формирователя аналоговых сообщений фазового манипулятора, второй вход которого соединен с выходом формирователя дискретных сообщений, первого смесителя, второй вход которого соединен с выходом первого гетеродина, усилителя первой промежуточной частоты, первого усилителя мощности, дуплексера, вход-выход которого связан с приемопередающей антенной, второго усилителя мощности, второго смесителя, второй вход которого соединен с выходом второго гетеродина, усилителя второй промежуточной частоты, амплитудного ограничителя и синхронного детектора, второй вход которого соединен с выходом усилителя второй промежуточной частоты, последовательно подключенных к выходу амплитудного ограничителя, второй вход которого соединен с выходом первого гетеродина, полосового фильтра и фазового детектора, второй вход которого соединен с выходом второго гетеродина, причем выходы синхронного детектора и фазового детектора телекоммуникационного модуля подключены к первому и второму входам контроллера управления соответственного, к первому и второму входам которого подключены формирователь аналоговых сообщений и формирователь дискретных сообщений соответственно, а выходы синхронного детектора и фазового детектора центрального сервера подключены к первому и второму входом компьютера соответственно, к первому и второму выходам которого подключены формирователь аналоговых сообщений и формирователь дискретных сообщений соответственно, частоты ωг1 и ωг2 гетеродинов разнесены на значение второй промежуточной частоты ωг2г1пр2, сложные сигналы с комбинированный амплитудной модуляцией и фазовой манипуляцией телекоммуникационным модулем излучаются на частоте ω1, а принимаются на частоте ω2, а центральным сервером, наоборот, излучаются на частоте ω2, а принимаются на частоте ω1.

Структурная схема комплексной системы раннего обнаружения лесных пожаров представлена на фиг. 1. Частотная диаграмма, поясняющая преобразование сигналов, изображена на фиг. 2. Структурная схема телекоммуникационного модуля 8 показана на фиг. 3. Структурная схема центрального сервера 10 показана на фиг. 4.

Комплексная система раннего обнаружения лесных пожаров содержит тепловизионный модуль 1, видеокамеру 2 и угломерно-азимутальный измеритель 6, выходы, которых связаны с первым-третьим входами контроллера 4 управления, вход устройства управления движением сканирующей платформы 3 связан с первым выходом контроллера 4. Четвертый вход контроллера 4 управления связан с блоком 5 глобальной навигационной спутниковой системы. Шестой вход контроллера 4 управления, соединен с выходом устройства 7 сбора метеоданных. Телекоммуникационный модуль 8, осуществляющий беспроводную связь 9 с центральным сервером 10 связан входом-выходом соответственно со вторым выходом и пятым входом контроллера 4 управления.

Телекоммуникационный модуль 8 и центральный сервер 10 содержат последовательно включенные задающий генератор 11.1(11.2), амплитудный модулятор 13.1(13.2), второй вход которого соединен с выходом формирователя 12.1(12.2) аналоговых сообщений, фазовый манипулятор 15.1(15.2), второй вход которого соединен с выходом формирователя 14.1(14.2) дискретных сообщений, первый смеситель 17.1(17.2), второй вход которого соединен с выходом первого гетеродина 16.1(16.2), усилитель первой (третьей) 18.1(18.2) промежуточной частоты, первый усилитель 19.1(19.2) мощности, дуплексер 20.1(20.2), вход-выход которого связан с приемопередающей антенной 21.1(21.2), второй усилитель 22.1(22.2) мощности, второй смеситель 24.1(24.2), второй вход которого соединен с выходом второго гетеродина 23.1(23.2), усилителя 25.1(25.2) второй промежуточной частоты, амплитудный ограничитель 26.1(26.2) и синхронный детектор 27.1(27.2), второй вход которого соединен с выходом усилителя 25.1(25.2) второй промежуточной частоты. К выходу амплитудного ограничителя 26.1(26.2) последовательно подключены перемножитель 28.1(28.2), второй вход которого соединен с выходом гетеродина 16.1(16.2), полосовой фильтр 29.1(29.2) и фазовый детектор 30.1(30.2).

Выходы синхронного детектора 27.1 и фазового детектора 30.1 телекоммуникационного модуля 8 подключены к первому и второму входам контроллера и управления соответственно, к первому и второму выходам которого подключены формирователь 12.1 аналоговых сообщений и формирователь 14.1 дискретных сообщений соответственно.

Выходы синхронного детектора 27.2 и фазового детектора 30.2 центрального сервера 10, подключены к первому и второму входам компьютера 31 соответственно, к первому и второму выходам которого подключены формирователь 12.2 аналоговых сообщений и формирователь 14.2 дискретных сообщений соответственно.

Способ мониторинга лесных пожаров осуществляют следующим образом.

На двух, трех (или более) мачтах сотовой связи устанавливаются тепловизионно-телевизионный модуль кругового сканирования местности. Каждый тепловизионно-телевизионный модуль содержит тепловизионную камеру 1 и видеокамеру 2, установленные на сканирующей платформе 3 так, что их оптические оси параллельны. В состав тепловизионно-телевизионного модуля входят также контроллер 4 управления и угломерно-азимутальный измеритель 5, определяющий ориентацию сканирующей платформы 3 и, соответственно, расположенные тепловизионный камеры 1 и видеокамеры 2 по азимуту и углу отклонения от горизонтальной плоскости.

Использование в системе как минимум двух, а при необходимости достаточно большого количества разносенсорного (тепло- и видео-) панорамного обзора, монтируемых на мачтах сотовой связи, позволяет повысить достоверность обнаружения очагов возгорания благодаря тому, что источник огня обнаруживают два и более устройства. Одновременно получение сигнала от двух или более тепловизионно-телевизионных модулей кругового сканирования местности обуславливается снижением вероятности ложных обнаружений очагов возгорания и повышение надежности и достоверности получаемой информации вследствие того, что тепловизионные и видеокамеры панорамного обзора установлены на мачтах антенн базовых станций сотовой связи, и наблюдение за каждой точкой территории ведется с нескольких (2-х и более) соседних вышек, т.е. каждая точка контролируемого участка леса (или другого объекта наблюдения) просматривается под разными углами, что снижает вероятность того, что очаг возгорания будет не замечен. Очаг возгорания, закрытый от одной из точек наблюдения рельефом местности или другой помехой, будет виден с другой точки (вышки сотовой связи).

Так как в силу своего целевого назначения мачты антенны базовых станций расположены на господствующих высотах и имеет высоту от 50 до 100 метров, размещенные на них тепловизорные и видео камеры с круговым обзором, позволяет обеспечить обнаружение очагов возгорания на дальности до 18-50 км.

Поскольку координаты базовых станций известны, размещение тепловизорных и видеокамер на высотных сооружениях базовых станций операторов сотовой связи и применение совместный обработки данных от тепловизорных и видеокамер, расположенных на 2-х-3-х соседних мачтах на площадях покрытия сотовой связью, позволяет с использованием метода триангуляции определить место расположения очага возгорания с точностью до 20-50 метров. Очаг возгорания с площадью до 50 кв. метров может быть обнаружен на дальностях до 35 км. Все это позволяет обеспечить быстрое реагирование на пожары и, как следствие, безопасность жителей, мест их проживания, сохранность природных ресурсов.

Техническое решение позволяет осуществлять раннее выявление очагов возгорания, возникающих в лесных массивах на значительном (до 50 км) удалении от населенных пунктов и важных стратегических объектов, что позволяет своевременно принять адекватные противопожарные меры, не допуская последующего приближения огня к местам жизнедеятельности людей.

Режим разносенсорного панорамного обзора заключается в наложении панорамного видеоизображения на изображение от тепловизионной камеры, что позволяет осуществить визуальную привязку очага возгорания к панорамному видеоизображению.

Изображения, полученные в тепло- и видео каналах, совместно с данными углового азимутального направления осей камер, полученными с помощью угломерно-азимутального измерителя, передают на центральный сервер 10 через контроллер 4 управления и телекоммуникационный модуль (модем) 8.

Для этого задающим генератором 11.1 формируется гармоническое колебание

Uc1(t)=Vc1*cos(ωct+ϕс1), 0≤t≤Тс1,

где Vc1, ωс, ϕс1, Tc1 - амплитуда, несущая частота, начальная фаза и длительность гармонического колебания;

которое поступает на первый вход амплитудного модулятора 13.1, на второй вход которого подается аналоговое сообщение м1(t) с выхода формирователя 12.1 аналоговых сообщений. На выходе амплитудного модулятора 13.1 образуется сигнал с амплитудной модуляцией (AM).

U1(t)=Vc1[1+м1(t)]*cos(ωct+ϕc1), 0≤t≤Tc1,

где м1(t) - модулирующая функция амплитудной модуляции, отображающая структуру аналоговых сообщений;

который поступает на первый вход фазового манипулятора 15.1. На второй вход последнего подается дискретное сообщение M1(t) с выхода формирователя 14.1 дискретных сообщений. На выходе фазового манипулятора 15.1 формируется сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн)

U2(t)=Vc1[1+м1(t)]*cos[ωct+ϕk1(t)+ϕc1], 0≤t≤Tc1,

где ϕk1(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с моделирующим кодом M1(t).

Формирователи 12.1 и 14.1 аналоговых и дискретных сообщений связаны с первым и вторым выходами контроллера 4 управления и содержат информацию, полученную от угломерно-азимутального измерителя и тепло- и видеоканалов.

Сформированный АМ-ФМн сигнал U2(t) с выхода фазового манипулятора 15.1 поступает на первый вход первого смесителя 17.1, на второй вход которого подается напряжение первого гетеродина 16.1.

Uг1(t)=Vг1*cos(ωг1t+ϕг1).

На выходе смесителя 17.1 образуются напряжения комбинационных частот. Усилителем 18.1 выделяется напряжение первой промежуточной (суммарной) частоты.

Uпр1(t)=Vпр1*[1+м1(t)]*cos[ωпр1t+ϕk1(t)+ϕпр1], 0≤t≤Tc1,

где Vпр1=1/2Vc1*Vг1

ωпр1cг1 - первая промежуточная (суммарная) частота;

ϕпр1с1г1.

Это напряжение представляет собой сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн) на первой промежуточной частоте ωпр1 и после усиления по мощности в усилители 19.1 мощности через дуплексер 20.1 поступает в приемопередающую антенну 21.1, излучается ею в эфир на частоте ω1пр1г2, улавливается приемопередающий антенной 21.2 центрального сервера 10 и через дуплексер 20.2 и усилитель 22. 2 мощности поступает на первый вход смесителя 24.2, на второй вход которого продается напряжение второго гетеродина 23.2

Uг1(t)=Vг1*cos(ωг1t+ϕг1).

На выходе смесителя 24.2 образуются напряжения комбинационных частот. Усилителем 25.2 выделяется напряжение второй промежуточной (разностной) частоты.

Uпр2(t)=Vпр2*[1+м1(t)]*cos[ωпр2t+ϕk1(t)+ϕпр2], 0≤t≤Tc1,

где Vпр2=1/2Vпр1*Vг1;

ωпр2пр1г1 - первая промежуточная (суммарная) частота;

ϕпр2пр1г1.

Это напряжение поступает на первый (информационный) вход синхронного детектора 27. 2 и на вход амплитудного ограничителя 26. 2, на выходе которого образуется напряжение

U3(t)=Vo*cos[ωпр2t+ϕk1(t)+ϕпр2], 0≤t≤Тс1,

где Vo - порог ограничения.

Это напряжение представляет собой ФМн сигнал на второй промежуточной частоте ωпр2, используется в качестве опорного напряжения и подается на второй (опорный) вход синхронного детектора 27.2. На выходе последнего образуется низкочастотное напряжение

UH1(t)=VH1*[1+м1(t)],

где VH1=1/2Vпр2*Vo,

пропорциональное моделирующей функции м1(t).

Одновременно ФМн сигнал U3(t) с выхода амплитудного ограничителя 26.2 поступает на первый вход перемножителя 28.2, на второй вход которого подается напряжение гетеродина 16.2.

Uг2(t)=Vг2*cos(ωг2t+ϕг2).

На выходе перемножителя 28.2 образуется напряжение

U4(t)=V4*cos[ωг1k1(t)+ϕг1], 0≤t≤Тс1,

где V4=1/2Vo*Vг2;

которое выделяется полосовым фильтром 29.2 и поступает на первый (информационный) вход фазового детектора 30.2, на второй (опорный) вход которого подается напряжение гетеродина 23.2

Uг1(t)=Vг1*cos(ωг1t+ϕг1)

На выходе фазового детектора 30.2 образуется низкочастотное напряжение

UH2(t)=VH2*cosϕk1(t),

где VH2=1/2V4*Vг1;

пропорциональное моделирующему коду M1(t).

Низкочастотные напряжения UH1(t) и UH2(t) поступают в компьютер 31, где данные, полученные от тепловизионных камер 1, видеокамер 2 и угломерно-азимутальных измерителей 5, расположенных на соседних мачтах сотовой связи, преобразуют в систему географических координат, осуществляют привязку очагов возгорания к географическим координатам, с отображением на электронной карте местности, накладывают видеоизображения на тепловизионное изображение и выводят полученные изображения в виде трех отдельных изображений:

- полученного наложением, разносенсорного панорамного изображения;

- тепловизионного изображения;

- видеоизображения,

на монитор оператора и/или на запоминающее устройство, причем фазовую синхронизацию сигнала для передачи информации на центральный сервер 10 и дополнительную привязку к географическим координатам осуществляется по спутниковым сигналам точного времени посредством глобальной навигационной спутниковой системы, преимущественно, ГЛОНАСС.

Результаты в дальнейшем могут быть переданы службам реагирования МЧС России и Рослесхоза с целью своевременного принятия решений. Возможна также передача информации с указанием координат очагов пожаров на авиационные средства охраны лесов и пожаротушения.

Движением сканирующей платформы 3 управляет устройство управления сканирующей платформы 3, получающие команды и информацию от центрального сервера 10 через контроллер 4 управления.

Для этого на центральном сервере 10 задающим генератором 11.2 формируется гармоническое колебание

Uc2(t)=Vc2*cos(ωct+ϕг2), 0≤t≤Тс1,

которая поступает на первый вход амплитудного модулятора 13.2, на второй вход которого подается аналоговое сообщение м2(t) с выхода формирователя 12.2 аналоговых сообщений.

На выходе амплитудного модулятора 13.2 образуется сигнал с амплитудной модуляцией (AM)

U5(t)=Vc2*[1+м2(t)]*cos[ωct+ϕс2], 0≤t≤Tc2,

где м2(t) - моделирующая функция амплитудной модуляции, отображающая структуру аналоговых сообщений,

который поступает на первый вход фазового манипулятора 15.2. На второй вход последнего подается дискретное сообщение M2(t) с выхода формирователя 14.2 дискретных сообщений. На выходе фазового манипулятора 15.2 формируется сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн)

U6(t)=Vc2*[1+м2(t)]*cos[ωct+ϕk2(t)+ϕс2], 0≤t≤Тс2,

где ϕk2(t)={0,π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с моделирующим кодом M2(t).

Формирователи 12.2 и 14.2 аналоговых и дискретных сообщений связаны с первым и вторым выходами компьютера 31 и содержат информацию и команды управление сканирующей платформой 3.

Сформированный АМ-ФМн сигнал U6(t) с выхода фазового манипулятора 15.2 поступает на первый вход первого смесителя 17.2, на второй вход которого подается напряжение первого гетеродина 16.2.

Uг2(t)=Vг2*cos(ωг2t+ϕг2),

На выходе смесителя 17.2 образуются напряжения комбинационных частот. Усилителем 18.2 выделяется напряжение третьей промежуточной (разностной) частоты

Uпр3(t)=Vпр4*[1+м2(t)]*cos[ωпр3t+ϕk2(t)+ϕпр3], 0≤t≤Тс2,

где Vпр3=1/2Vc2*Vг2;

ωпр3г2c - третья промежуточная (разностная) частота;

ϕпр3г2с2.

Это напряжение представляет собой сложный сигнал с комбинированной амплитудной модуляцией и фазовой манипуляцией) АМ-ФМн) на третьей промежуточной частоте ωпр3 и после усиления по мощности в усилителе 19.2 мощности через дуплексер 20.2 поступает в приемопередающую антенну 21.2, излучается ею в эфир на частоте ϕ2пр3г1, улавливается приемопередающий антенной 21.1 телекоммуникационного модуля 8 и через дуплексер 20.1 и усилитель в 22.1 мощности поступает на первый вход смесителя 24.1, на второй вход которого подается напряжение гетеродина 23.1

Uг2(t)=Vг2*cos(ωг2t+ϕг2)

На выходе смесителя 24.1 образуются напряжения комбинационных частот. Усилителем 25.1 выделяется напряжение второй промежуточный (разностной) частоты

Uпр4(t)=Vпр4*[1+м2(t)]*cos[ωпр2t+ϕk2(t)+ϕпр4], 0≤t≤Tc2,

где Vпр4=1/2Vпр3*Vг2;

ωпр2г2пр3 - вторая промежуточная (разностная) частота.

ϕпр4г2пр3.

Это напряжение поступает на первый (информационный) вход синхронного детектора 27.1 и на вход амплитудного ограничителя 26.1, на выходе которого образуется напряжение

U7(t)=Vo*cos[ωпр2t+ϕk2(t)+ϕпр4],

где Vo - порог ограничения.

Это напряжением предоставляет собой ФМн сигнал на второй промежуточной частоте ωпр2, используется в качестве опорного напряжения и подается на второй (опорный) вход синхронного детектора 27.1. На выходе последнего образуется низкочастотное напряжение

UH3(t)=VH3*[1+м2(t)],

где VH3=1/2Vпр4*Vo,

пропорциональное модулирующей функции м2(t).

Одновременно ФМн сигнал U7(t) с выхода амплитудного ограничителя 26.1 поступает на первый вход перемножителя 28.1, на второй вход которого подается напряжение гетеродина 16.1

Uг1(t)=Vг1*cos(ωг1t+ϕг1),

На выходе перемножителя 28.1 образуется напряжение

U8(t)=V8*cos[ωг2t+ϕk2(t)+ϕг2], 0≤t≤Тс2,

где V8=1/2Vo*Vг1,

ωг2пр2г1;

которое выделяется полосовым фильтром 29.1 и поступает на первый (информационный) вход фазового детектора 30.1, на второй (опорный) вход которого подается напряжение гетеродина 23.1.

Uг2(t)=Vг2*cos(ωг2t+ϕг2).

На выходе фазового детектора 30.1 образуется низкочастотное напряжение

UH4(t)=VH4*cosϕk2, 0≤t≤Tc2,

где - VH4=1/2V8*Vг2,

пропорциональное моделирующему коду M2(t).

Сканирующая платформа 3, на которой установлены тепловизионная камера 1, видеокамера 2 и угломерно-азимутальный измеритель 6, представляет собой самостоятельное устройство, позволяющее осуществлять движение в горизонтальной плоскости от 0 до 360 градусов и по углу места в 45 градусов. Движением сканирующий платформы 3 управляет устройство управления сканирующей платформой, связанное через контроллер 4 с центральным сервером 10. Указанная связь проявляется через низкочастотные напряжения UH3(t) и UH4(t).

На мачте сотовой связи также установлено устройство 7 сбора метеоданных, которое предназначено для получения данных о текущей температуре, температуре точки росы, количество выпавших осадков, направлении и скорости ветра. Эти данные также передаются на контроллер 4 управление. На основании этих данных в дальнейшем прогнозируется пожароопасность (возможность распространения огня, скорость распространения и направление).

Сигнал с блока 5 глобальной навигационной спутниковой системы ГЛОНАСС, поступающий на четвертый вход контроллера 4, позволяет осуществлять привязку работы системы раннего обнаружения пожаров к географическим координатам, а также служит для синхронизации каждого устройства в единой системе по спутниковым сигналам точного времени и фазовой синхронизации сигнала для передачи информации на центральный сервер 10.

Тепловизионная камера 1 и видеокамера 2 предназначен для работы в температурном режиме от -40°С до +50°С, что позволяет использовать их непрерывно в течение года.

За счет того, что базовым сигналом для обнаружения очага возгорания является сигнал с тепловизионной камеры 1, на результаты работы и чувствительность подсистемы выявления очагов возгорания не влияет время суток и года, наличие облачности, тумана и других помех визуальной видимости.

Азимутальная плоскость разбивается на несколько секторов исходя из особенностей и рельефа местности. Горизонтальная плоскость разбита на сектора таким образом, чтобы при перемещении камеры от точки к точке получалась единая панорамная картина. После прохождения одного азимутального сектора камеры 1 и 2 переходит на следующий, сканирующий таким образом выделенную территорию.

При обнаружении в автоматизированном режиме очага возгорания система останавливает автоматическое сканирование, определяет координаты источника возгорания и пересылает видео- и тепловизионное изображение в реальном масштабе времени, а также координаты очага возгорания оператору.

Оператор для правильного принятия решения может в ручном режиме зуммировать изображение от видеокамеры и посмотреть отдельно тепловизионную картинку. Все эти данные необходимы для принятия решения оператора о дальнейшем реагировании на очаг возгорания. Применение автоматизации данного процесса позволяет сократить число операторов и повысить вероятность обнаружения.

Таким образом, предлагаемый способ и система по сравнению с прототипами и другими техническими решениями аналогичного назначения обеспечивают повышение достоверности обмена аналоговой и дискретной информацией между телекоммуникационным модулем и центральным сервером. Это достигается путем использования двух частот ωг1, ωг2 и сложных сигналов комбинированной амплитудной модуляцией и фазовой манипуляцией (АМ-ФМн).

Сложные сигналы с комбинированной амплитудной модуляцией и фазовой манипуляцией обладают энергетической и структурной скрытностью.

Энергетическая скрытность данных сигналов обусловлена их высокой сжимаемостью во времени или по спектру при оптимальной обработке, что позволяет снизить мгновенную излучаемую мощность. Вследствие этого сложный АМ-ФМн сигнал в точке приема может оказаться замаскированным шумами и помехами. Причем энергия сложного АМ-ФМн сигнала отнюдь не мала, она просто распределена по частотно временной области так, что в каждой точке этой области мощность сигнала меньшей мощности шумов и помех.

Структурная скрытность сложных АМ-ФМн сигналов обусловлена большим разнообразием их форм и значительными диапазонами изменения значений параметров, что затрудняет оптимальную или хотя бы квазиоптимальную обработку сложных АМ-ФМн сигналов априорно неизвестной структуры с целью повышения чувствительности приемного устройства.

Сложные АМ-ФМн сигналы позволяют применять современный вид селекции - структурную селекцию. Это значит, что появляется новая возможность выделять эти сигналы среди других сигналов и помех, действующих в той же полосе частот и в те же промежутки времени.


СПОСОБ МОНИТОРИНГА ЛЕСНЫХ ПОЖАРОВ И КОМПЛЕКСНАЯ СИСТЕМА РАННЕГО ОБНАРУЖЕНИЯ ЛЕСНЫХ ПОЖАРОВ
СПОСОБ МОНИТОРИНГА ЛЕСНЫХ ПОЖАРОВ И КОМПЛЕКСНАЯ СИСТЕМА РАННЕГО ОБНАРУЖЕНИЯ ЛЕСНЫХ ПОЖАРОВ
СПОСОБ МОНИТОРИНГА ЛЕСНЫХ ПОЖАРОВ И КОМПЛЕКСНАЯ СИСТЕМА РАННЕГО ОБНАРУЖЕНИЯ ЛЕСНЫХ ПОЖАРОВ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 52.
25.08.2017
№217.015.cacd

Аналитическая система оценки потребления воды абонентами

Система содержит абонентский комплект (1), установленный в водомерном узле (2) абонента. Абонентский комплект включает в себя контроллер (3), счетчик (4) учета потребления воды (4) и приемно-передающее устройство (5) абонента, выполненное в виде GSM-модема, для передачи информации по...
Тип: Изобретение
Номер охранного документа: 0002620041
Дата охранного документа: 22.05.2017
25.08.2017
№217.015.ce5e

Специальное фортификационное сооружение

Изобретение относится к области специальных фортификационных сооружений и энергетических систем объектов, функционирующих без связи с атмосферой, например специальных фортификационных сооружений. Достигаемый технический результат - увеличение сроков функционирования специального...
Тип: Изобретение
Номер охранного документа: 0002620698
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.d36e

Защитная композиция для обеспечения защиты гидравлических приводов тормозных систем от коррозии

Изобретение относится к защитным консервационным материалам для противокоррозионной защиты металлических изделий от воздействия окружающей среды. Композиция содержит тормозную жидкость "Томь" и ингибитор коррозии, при этом в качестве ингибитора коррозии она содержит 3,5-динитробензоат...
Тип: Изобретение
Номер охранного документа: 0002621940
Дата охранного документа: 08.06.2017
26.08.2017
№217.015.dd7e

Система радиочастотной идентификации объектов военного назначения

Изобретение относится к области телеметрических систем и может использоваться для радиочастотной идентификации объектов военного назначения. Технический результат изобретения заключается в повышении помехоустойчивости и достоверности радиочастотной идентификации объектов военного назначения...
Тип: Изобретение
Номер охранного документа: 0002624556
Дата охранного документа: 04.07.2017
26.08.2017
№217.015.e4a7

Система разведки наземных объектов и целеуказания

Система разведки наземных объектов и целеуказания содержит беспилотный летательный аппарат вертолетного типа, подвесной контейнер с оборудованием, наземную аппаратуру управления. Подвесной контейнер содержит блок датчиков, устройство информационно-командной радиолинии, радионавигационное...
Тип: Изобретение
Номер охранного документа: 0002625691
Дата охранного документа: 18.07.2017
20.11.2017
№217.015.ef64

Территориальная система контроля транспортировки особо важных и опасных грузов

Предлагаемая система относится к области контроля и тревожной сигнализации и может быть использована для оперативного контроля и управления транспортировкой особо важных и опасных грузов. Технической задачей изобретения является повышение избирательности и помехоустойчивости радиоприемников,...
Тип: Изобретение
Номер охранного документа: 0002628986
Дата охранного документа: 23.08.2017
29.12.2017
№217.015.f019

Воздухораспределитель

Изобретение относится к области вентиляции и кондиционирования воздуха. Воздухораспределитель содержит диффузорный корпус, к которому присоединен тангенциально подающий воздуховод, сообщенный с корпусом через щелевое отверстие в последнем. На входе подающего воздуховода закреплена пластина с...
Тип: Изобретение
Номер охранного документа: 0002629156
Дата охранного документа: 24.08.2017
29.12.2017
№217.015.f18a

Автономный фундамент

Автономный фундамент относится к области мостостроения и может быть использован при сооружении промежуточных опор временных мостов при большой глубине воды. Автономный фундамент промежуточных опор временных мостов включает платформу с узлами сопряжения разной высоты для поворота в требуемое...
Тип: Изобретение
Номер охранного документа: 0002636835
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.fc43

Контейнер для транспортирования горючего

Контейнер для транспортирования горючего состоит из герметичного корпуса, покрытого изнутри энергопоглотителем, двух внутренних параллельных емкостей, размещенных в корпусе с образованием межстенного с корпусом пространства, магистралей наполнения и опорожнения емкостей. Емкости размещены в...
Тип: Изобретение
Номер охранного документа: 0002638147
Дата охранного документа: 11.12.2017
29.12.2017
№217.015.fe59

Способ идентификации субъекта на обслуживаемом объекте и устройство для его осуществления

Предлагаемые способ и устройство относятся к методам защиты объектов от доступа посторонних лиц и регистрации штатного персонала, обслуживающего объекты, а именно к способам идентификации, позволяющим регистрировать субъекты, получившие доступ на объекты, а также регистрировать отпирание замков...
Тип: Изобретение
Номер охранного документа: 0002638504
Дата охранного документа: 13.12.2017
Показаны записи 1-10 из 178.
10.01.2013
№216.012.19ea

Устройство для дистанционного измерения давления

Устройство относится к приборостроению и может быть использовано в системах дистанционного сбора информации о давлении в различных отраслях промышленности. Техническим результатом изобретения является повышение чувствительности устройства при измерении малых фазовых сдвигов, соответствующих...
Тип: Изобретение
Номер охранного документа: 0002472126
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.19ed

Система мониторинга безопасной эксплуатации зданий и инженерно-строительных сооружений

Изобретение относится к измерительной технике и может быть использовано для мониторинга безопасной эксплуатации зданий и инженерно-строительных сооружений. Система содержит автоматизированное рабочее место (АРМ), объекты диагностики, цифровую линию связи, блоки предварительной обработки...
Тип: Изобретение
Номер охранного документа: 0002472129
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.1e8f

Трость для инвалида по зрению

Предложенная трость относится к медицинской технике, в частности к устройствам для ориентирования слепых в окружающем пространстве, и может быть использована при самостоятельном передвижении слепого. Трость содержит палку с рукояткой, в которой размещены приемоизлучатель, установленный на...
Тип: Изобретение
Номер охранного документа: 0002473324
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20b4

Система дистанционного контроля и диагностики состояния конструкций и инженерно-строительных сооружений

Заявленное устройство относится к контрольно-измерительной технике и может быть использовано для дистанционного контроля, оценки и прогнозирования технического состояния конструкций и инженерно-строительных сооружений. Устройство содержит пункт контроля, состоящий из радиостанции и связанной с...
Тип: Изобретение
Номер охранного документа: 0002473873
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.2116

Система контроля расхода и утечек бытового газа в многоквартирных домах

Изобретение относится к области приборостроения, в частности к системам и устройствам формирования измерительной и управляющей информации по первичным параметрам, определяющим расход природного газа и контроль его утечек в многоквартирных домах. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002473971
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.24a4

Экологическая система сбора информации о состоянии региона

Изобретение относится к области контрольных устройств (систем) и может быть использовано при конструировании систем экологического мониторинга городов и регионов. Технический результат - повышение помехоустойчивости и достоверности приема сложных сигналов с фазовой манипуляцией путем ослабления...
Тип: Изобретение
Номер охранного документа: 0002474882
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.2862

Система охраны и наблюдения

Изобретение относится к охранным средствам видеонаблюдения и может быть использовано для защиты от несанкционированного доступа на охраняемые объекты, например, жилые квартиры и помещения. Техническим результатом является повышение надежности охраны и наблюдения за жилыми помещениями и другими...
Тип: Изобретение
Номер охранного документа: 0002475858
Дата охранного документа: 20.02.2013
27.03.2013
№216.012.3196

Способ идентификации транспортных средств и выявления заявленных на поиск автомобилей при прохождении контрольных пунктов и устройство для его осуществления

Группа изобретений относится к области систем контроля потока транспортных средств (ТС). В способе идентификации транспортных средств и выявления заявленных на поиск автомобилей, при прохождении ТС контрольных пунктов сравнивают коды сигналов, принятых на контрольных пунктах, с кодами...
Тип: Изобретение
Номер охранного документа: 0002478232
Дата охранного документа: 27.03.2013
10.04.2013
№216.012.32b4

Способ управления самолетом при заходе на посадку

Предлагаемый способ относится к области авиации и может быть использован в приборном оборудовании летательного аппарата для упрощения восприятия и переработки приборной информации летчиком при выполнении захода на посадку, посадке и полете по маршруту, в ручном и автоматическом режимах...
Тип: Изобретение
Номер охранного документа: 0002478523
Дата охранного документа: 10.04.2013
10.04.2013
№216.012.3509

Радиоприемное устройство для обнаружения широкополосных сигналов с фазовой манипуляцией

Устройство относится к радиотехнике и может быть использовано в аппаратуре, предназначенной для приема и анализа фазоманипулированных (ФМн) сигналов с бинарным значением фазы. Техническим результатом является повышение помехоустойчивости и достоверности обнаружения широкополосных сигналов с...
Тип: Изобретение
Номер охранного документа: 0002479120
Дата охранного документа: 10.04.2013
+ добавить свой РИД