×
24.07.2018
218.016.749d

Результат интеллектуальной деятельности: Способ и устройство для измерения направленного коэффициента инфракрасного излучения материала

Вид РИД

Изобретение

Аннотация: Изобретение относится к области оптических измерений и касается способа измерения направленного коэффициента инфракрасного излучения материала при различных температурах. Способ включает в себя размещение образца и эталонного излучателя в вакуумной термокамере, их нагрев, дискретный поворот и измерение яркости их инфракрасного излучения с помощью двух приемников излучения. Образец и эталонный излучатель нагревают одновременно с помощью контактного и радиационного нагревателей. Радиационный нагреватель после нагрева образца и эталонного излучателя до требуемой температуры выводят из сектора измерений. Приемники излучения располагают под прямым углом друг к другу. В точке пересечения оптических осей устанавливают разделитель потока. Яркость инфракрасного излучения образца материала и эталонного излучателя измеряют одновременно в спектральном и спектрозональном представлении. Технический результат заключается в обеспечении большей равномерности нагрева образца и эталонного излучателя, повышении точности измерений и увеличении количества одновременно измеряемых характеристик. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к области экспериментальной стендовой базы измерений направленного коэффициента инфракрасного (ИК) излучения исследуемого материала при высоких температурах, данные о котором необходимы при решении задач, связанных с определением полей яркости ИК излучения нагретых тел сложной формы. Направленный коэффициент излучения характеризует излучательную способность материала в определенном направлении и определяется, в частности, как отношение яркости данного материала к яркости эталонного излучателя при их одинаковой температуре и в одном направлении наблюдения. На Фиг. 1 представлена оптическая схема, поясняющая определение направленного коэффициента излучения, где O,X,Y,Z - прямоугольная система координат, dS - элемент поверхности материала или эталонного излучателя, dФ - поток излучения от элемента dS в телесном угле dω в направлении, характеризуемом углами θ, ϕ. Яркость материала или эталонного излучателя определяется как отношение потока dS к произведению величин dS и dω.

Моделирование полей яркости или термограмм ИК излучения протяженного объекта осуществляется, как правило, в ИК поддиапазонах длин волн, соответствующих рабочим спектрам приемников излучения оптико-электронных средств (ОЭС). Для этого традиционно используются спектральные характеристики ИК излучения материалов с последующим интегрированием яркости по длине волны в рамках рассматриваемого рабочего поддиапазона ОЭС. На практике применим и другой путь создания термограммы объекта с использованием спектрозонального направленного коэффициента ИК излучения материала, измеренного в том же поддиапазоне длин волн, в котором осуществляется формирование картины полей яркости излучения объекта. В этом случае практически полностью учитываются особенности восприятия ИК излучения объекта ОЭС с конкретным приемником ИК излучения.

Измерение спектральных и спектрозональных характеристик направленного коэффициента ИК излучения материала связано с непосредственным сравнением яркости излучения при одинаковых температурах нагрева образца материала и эталонного излучателя, причем в качестве эталонного излучателя применяют модель абсолютно черного тела (АЧТ) или образец материала с известным коэффициентом излучения. При этом необходимо уделять пристальное внимание процедуре нагрева образца материала и эталонного излучателя и обеспечению стабильности их рабочей температуры. В случае высокотемпературных измерений нагрев образца материала и эталонного излучателя должен осуществляться внутри вакуумной камеры или камеры с инертными газами для исключения окисления их поверхностей и изменения их оптических свойств.

Известен способ измерения, когда образец материала и эталонный излучатель последовательно нагревают в одной и той же термокамере после их замены на оптическом столике (Шейндлин А.Е. Излучательные свойства твердых материалов. - М.: Энергия, 1974. - 472 с.). Примером реализации данного способа является устройство для измерения угловых зависимостей спектральных коэффициентов инфракрасного излучения материалов (Потапов Ю.Ф., Витковский В.В., Горшенев В.Г., Патент №2339921, приоритет от 16.05.2007 г. «Устройство для измерения угловых зависимостей спектральных коэффициентов инфракрасного излучения материалов»). Недостатком данного способа является большая трудоемкость измерений и сложность обеспечения полного совпадения условий измерений, обусловленные необходимостью отключения термокамеры для замены образца материала на эталонный излучатель с последующим обеспечением тех же температурных и угловых условий измерений.

Из известных способов для измерений направленного коэффициента ИК излучения материалов наиболее близким по технической сути к предлагаемому и принятым за прототип является способ, при котором образец материала и эталонный излучатель размещены в одной термокамере, а нагрев осуществляется одновременно (Шейндлин А.Е. Излучательные свойства твердых материалов. - М.: Энергия, 1974. - 472 с.). Реализация данного способа осуществлена в устройстве (G.W. Autio, E. Skala Normal Spectral Emissivity of Isotropic and Anisotropic Materials «Ракетная техника и космонавтика» (русский перевод), 1965, №4, с. 206-208).

Основными недостатками этого способа и соответствующего устройства являются:

- сложность конструктивного обеспечения равномерного прогрева образца материала и эталонного излучателя, обусловливающая использование средств одностороннего их нагрева с присущей им неравномерностью температурного поля;

- узкий угловой диапазон измерений, что связано с отсутствием учета соотношения угловых размеров поля зрения приемника и площади проекции образца в плоскости, перпендикулярной оптической оси приемника, приводящего на больших углах наблюдения к проявлению граничных эффектов;

- отсутствие возможности одновременного измерения спектральных и спектрозональных характеристик направленного коэффициента излучения материалов.

Задача, на решение которой направлено настоящее изобретение, заключается в обеспечении при измерении направленного коэффициента излучения материала равномерности прогрева образца материала и эталонного излучателя, расширении углового диапазона измерений и увеличении количества одновременно измеряемых характеристик.

В соответствии с этим одним из аспектов изобретения для решения поставленой задачи является предлагаемый способ определения угловой зависимости направленного коэффициента ИК излучения образца материала в широком диапазоне температур, включающий совместный нагрев и дискретный поворот находящихся в одной вакуумной термокамере образца материала и эталонного излучателя и измерение их яркости излучения, в рамках которого нагрев образца материала и эталонного излучателя, имеющих форму пластин, осуществляют со стороны внутренних и внешних их поверхностей плоскими нагревателями за счет контактного и радиационного способов нагрева соответственно, радиационный нагреватель после окончания нагрева выводят из зоны измерений, оставляя его в пределах термокамеры, диапазон углов измерений расширяют, придавая образцу материала и эталонному излучателю одинаковую форму, удлиненную в направлении нормали к оси поворота, измерения проводят одновременно в спектральном и спектрозональном представлении с использованием разделителя потока.

Таким образом, способ позволит обеспечить равномерный прогрев образца материала и эталонного излучателя, повысить точность измерений, увеличить угловой диапазон измерить и расширить информационность об оптических свойствах материала.

В соответствии с другим аспектом изобретения для решения поставленной задачи предлагается устройство для измерения угловой зависимости направленного коэффициента ИК излучения образца материала, содержащее вакуумную термокамеру, поворотный оптический столик для размещения образца материала и эталонного излучателя и систему измерений их яркости излучения, в котором содержится дополнительно набор из, как минимум, двух плоских нагревателей, один из которых для контактного нагрева образца материала и эталонного излучателя, а другой - для их радиационного нагрева, радиационный нагреватель состоит из двух плоских нагревателей в виде «вилки», между которыми размещаются образец материала и эталонный излучатель при нагреве, а система измерений состоит из спектрометра и тепловизора, расположенных под прямым углом друг к другу с установкой разделителя потока в точке пересечения их оптических осей.

Устройство для измерений направленного коэффициента ИК излучения материалов поясняется фиг. 2, на которой представлена схема предлагаемого измерительного устройства, и фиг. 3, на которой показано сечение А-А вакуумной термокамеры. В процессе разработки устройства было учтено, что при высокотемпературных измерениях в термокамере необходимо обеспечить отсутствие атмосферных газов, приводящих к окислению поверхности образца и изменению его оптических свойств. Это было достигнуто за счет вакуумирования объема термокамеры.

Устройство для измерений направленного коэффициента ИК излучения материалов при высоких температурах состоит из вакуумной термокамеры, поворотного оптического столика и приемника излучения. Основными конструктивными элементами предлагаемого устройства являются: вакуумная термокамера 1 с двойными стенками корпуса 2, герметичный люк термокамеры 3, поворотный оптический столик 4, двухсторонний плоский контактный нагреватель 5, образец материала в виде пластины 6, эталонный излучатель 7, вал 8 механизма поворота оптического столика, вакуумный ввод 9 для вала 8, свободная зона вакуумной камеры 10, два плоских радиационных нагревателя 11, шток 12 для перемещения нагревателей 11, вакуумный ввод 13 для штока 12, оптическое окно 14, корпус измерительной системы 15, разделитель потока 16, спектрометр 17, тепловизор 18, блок автоматического управления 19, вакуумный насос 20, мелкодискретный привод вращения 21.

Вакуумная термокамера 1 предлагаемого устройства конструктивно выполнена с двойными стенками 2 для прокачки охлаждающей жидкости (воды), что позволяет снизить и стабилизировать температуру внутренних поверхностей камеры, уменьшая тем самым их влияние на результат измерений.

В корпусе камеры предусмотрен герметичный люк 3, через который осуществляется установка образца материала и эталонного излучателя. Внутри камеры размещается оптический столик 4, конструкция которого обеспечивает крепление образца материала 6 и эталонного излучателя 7, их нагрев и поворот при измерениях. Для нагрева образца материала и эталонного излучателя предусмотрен двухсторонний плоский контактный нагреватель 5, обеспечивающий их нагрев за счет теплопроводности. При этом на одной стороне нагревателя плотно закрепляется образец материала в виде удлиненной пластины 6, на другой стороне - таких же размеров эталонный излучатель 7. Дистанционный контроль и регулирование рабочей температуры нагревателя в широком диапазоне осуществляются при помощи блока автоматического управления 19.

При измерениях предусмотрен дополнительный нагрев визируемых поверхностей образца материала и эталонного излучателя с помощью двух плоских радиационных нагревателей 11 в виде «вилки», выдвигаемой из свободной зоны камеры 10 за счет линейного движения штока 12 через вакуумный ввод 13 для размещения внутри нее образца материала и эталонного излучателя. При этом их нагрев осуществляется в отличие от контактного нагревателя за счет теплового излучения радиационных нагревателей также с контролем и регулировкой рабочей температуры, как и в первом случае, при помощи блока автоматического управления 19. После достижения установившегося температурного режима образца материала и эталонного излучателя радиационные нагреватели 11 выводятся из сектора измерений обратно в свободную зону 10 вакуумной термокамеры.

Предусмотренное в конструкции оптического столика одновременное размещение образца материала и эталонного излучателя значительно упрощает процесс измерений и обеспечивает полное совпадение температурных и пространственных условий измерений без выключения вакуумной термокамеры для замены образца на эталонный излучатель. Это повышает точность результатов и существенно снижает трудоемкость измерений.

Использование образца материала с удлиненной геометрией расширяет угловой диапазон измерений и повышает точность измерений при больших углах наблюдения, поскольку необходимое соотношение угловых размеров поля зрения приемника и площади проекции образца в плоскости, перпендикулярной оптической оси приемника, соблюдается в более широком диапазоне углов наблюдения. Следовательно, проявление граничных эффектов сдвигается в сторону больших углов наблюдения, расширяя угловой диапазон измерений.

Применение на внутренних стенках вакуумной термокамеры антибликового покрытия позволяет исключить влияние переотражений ИК излучения на величину измеряемого потока излучения от образца материала, что повышает точность измерений.

В боковой стенке вакуумной термокамеры установлено окно из оптически прозрачного материала 14, предназначенное для визирования образца материала и эталонного излучателя с помощью измерительных приборов. Для распределения измеряемого потока излучения на спектрометр 17 и тепловизор 18 установлен разделитель потока 16 на пересечении их оптических осей. Измерительные приборы с разделителем потока установлены в корпусе 15, соединенном с внешней поверхностью вакуумной термокамеры 1. На внутренние стенки корпуса 15 измерительной системы также нанесено антибликовое покрытие.

При измерениях с помощью предлагаемого устройства (Фиг. 2) используется относительный метод определения коэффициента ИК излучения как результата последовательных измерений значений яркости ИК излучения образца материала и эталонного излучателя, нагретых до заданной температуры одной и той же системой нагревателей и находящихся в одних и тех же условиях наблюдения в вакуумной термокамере с охлаждаемыми стенками и антибликовым внутренним покрытием, с учетом известного значения коэффициента ИК излучения эталонного излучателя.

Для этого процедура измерений осуществляется следующим образом. При открытом люке вакуумной камеры на оптический столик устанавливаются образец материала и эталонный излучатель. После герметизации камеры включается ее жидкостное охлаждение и с помощью вакуумного насоса 20 производится откачка воздуха. При достижении внутреннего рабочего давления включаются контактный и радиационные нагреватели образца материала и эталонного излучателя. После достижения и стабилизации заданной рабочей температуры радиационные нагреватели выводятся из зоны измерений в свободную зону вакуумной термокамеры, а контактный нагреватель с закрепленными на нем образцом материала и эталонным излучателем дистанционно с помощью мелкодискретного привода вращения 21 и вала 8 механизма поворота через вакуумный ввод 9 поворачивается на ± 360° с дискретным шагом. В процессе поворота при различных углах наблюдения проводятся измерения яркости излучения образца материала и эталонного излучателя с помощью спектрометра и тепловизора, объективы которых сфокусированы на поверхность образца или эталона. Искомый коэффициент ИК излучения материала определяется по отношению соответствующих значений яркости образца и эталонного излучателя с учетом известного значения коэффициента излучения эталона.

Предлагаемое устройство обеспечивает получение информации об угловых зависимостях коэффициентов ИК излучения металлических, диэлектрических и композитных материалов при высоких температурах с любыми направленными оптическими свойствами.


Способ и устройство для измерения направленного коэффициента инфракрасного излучения материала
Способ и устройство для измерения направленного коэффициента инфракрасного излучения материала
Способ и устройство для измерения направленного коэффициента инфракрасного излучения материала
Источник поступления информации: Роспатент

Показаны записи 121-130 из 255.
25.08.2017
№217.015.b78f

Мотогондола двигателя на крыле летательного аппарата

Предлагаемое изобретение относится к авиационной технике. Мотогондола (1) на крыле (3) летательного аппарата установлена так, что координата по оси X составляет 0.7÷0.8 средней аэродинамической хорды крыла, отложенной от передней кромки крыла (6) до среза сопла мотогондолы (5), по оси Y...
Тип: Изобретение
Номер охранного документа: 0002614870
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b84a

Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем

Изобретение относится к области летательных аппаратов околозвуковых скоростей. Способ ослабления волнового отрыва при взаимодействии скачка уплотнения с пограничным слоем на обтекаемой поверхности включает выполнение выдува струй округлой поперечной формы из обтекаемой поверхности перед скачком...
Тип: Изобретение
Номер охранного документа: 0002615251
Дата охранного документа: 04.04.2017
25.08.2017
№217.015.cc1d

Осесимметричная носовая часть фюзеляжа летательного аппарата

Изобретение относится к области авиационной техники. Осесимметричная носовая часть фюзеляжа затуплена по торцу и ее боковая поверхность имеет образующую, которая составлена из двух дуг окружностей и элемента, задаваемого степенной зависимостью радиуса от продольной координаты. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002620455
Дата охранного документа: 25.05.2017
25.08.2017
№217.015.cffe

Имитатор сигналов мостовых тензорезисторных датчиков

Изобретение относится к измерительной технике и предназначено для имитации сигналов мостовых тензорезисторных датчиков при проведении метрологических исследований и калибровке быстродействующих измерительных систем в автоматическом режиме. Имитатор сигналов мостовых тензорезисторных датчиков...
Тип: Изобретение
Номер охранного документа: 0002620895
Дата охранного документа: 30.05.2017
26.08.2017
№217.015.e18f

Способ теплопрочностных испытаний обтекателей гиперзвуковых летательных аппаратов и установка для его реализации

Изобретение относится к методике теплопрочностных испытаний носовых обтекателей и передних кромок воздухозаборника гиперзвуковых летательных аппаратов (далее ГЛА) с помощью инфракрасных нагревателей по программе гиперзвукового полета и касается способа создания большой величины плотности...
Тип: Изобретение
Номер охранного документа: 0002625637
Дата охранного документа: 17.07.2017
29.12.2017
№217.015.f2fc

Законцовка крыла летательного аппарата

Изобретение относится к авиационной технике. Законцовка крыла самолета серповидной формы имеет переднюю и заднюю кромки, выполненные нелинейной формы, выпуклой по всей длине, состоит из профилей с увеличенной относительно концевого сечения крыла кривизной (f=0.005-0.02), меньшей относительной...
Тип: Изобретение
Номер охранного документа: 0002637233
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f3ac

Импульсный плазменный тепловой актуатор эжекторного типа

Изобретение относится к системам управления обтеканием летательного аппарата при дозвуковых и околозвуковых скоростях полета. Импульсный плазменный тепловой актуатор эжекторного типа содержит подводной канал с обратным клапаном, разрядную камеру со встроенными игольчатыми электродами, сопло...
Тип: Изобретение
Номер охранного документа: 0002637235
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f409

Гибридная композитная панель для авиаконструкций

Изобретение относится к области разработки многослойных композитных авиационных конструкций с повышенной ударной прочностью и высокими деформационно-прочностными характеристиками. В гибридной композитной панели для авиаконструкции, например панели фюзеляжа летательного аппарата, слои, состоящие...
Тип: Изобретение
Номер охранного документа: 0002637001
Дата охранного документа: 29.11.2017
29.12.2017
№217.015.f45a

Спироидный винглет

Группа изобретений относится к области летательных аппаратов. Спироидный винглет представляет продолжение конца крыла в виде расположенной над ним несущей поверхности замкнутой формы. Несущая поверхность винглета выполнена постоянно сужающейся, с хордой на конце ее горизонтального участка,...
Тип: Изобретение
Номер охранного документа: 0002637149
Дата охранного документа: 30.11.2017
29.12.2017
№217.015.f633

Крыло летательного аппарата с убирающимся воздушным винтом

Группа изобретений относится к авиационной технике. Крыло летательного аппарата с убирающимся воздушным винтом включает передний и задний лонжерон, предкрылок, двигатель, воздушный винт, лопасти воздушного винта. В первом варианте двигатель воздушного винта установлен на переднем лонжероне...
Тип: Изобретение
Номер охранного документа: 0002637277
Дата охранного документа: 01.12.2017
Показаны записи 1-2 из 2.
25.08.2017
№217.015.ab8d

Способ лечения заболеваний грудного отдела пищевода

Изобретение относится к области медицины, хирургии. При эзофагогастропластике изоперистальтическим желудочным стеблем формируют анастомоз на шее. При мобилизации желудка сохраняют прядь большого сальника на ножке из сосудов желудочно-ободочной связки. Изоперистальтический трубчатый желудочный...
Тип: Изобретение
Номер охранного документа: 0002612098
Дата охранного документа: 02.03.2017
24.05.2019
№219.017.5dda

Устройство для измерения двунаправленного коэффициента яркости инфракрасного излучения материалов

Изобретение относится к области экспериментальной стендовой базы измерения характеристики отражения материалов - двунаправленной коэффициента яркости, необходимого при решении задач определения полей яркости инфракрасного излучения тел сложной формы. Устройство для измерения двунаправленного...
Тип: Изобретение
Номер охранного документа: 0002688961
Дата охранного документа: 23.05.2019
+ добавить свой РИД