×
12.07.2018
218.016.703b

Результат интеллектуальной деятельности: Способ подготовки графитовых радиоактивных отходов к захоронению

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии уничтожения твердых отходов или их переработки. Способ подготовки графитовых радиоактивных отходов к захоронению включает размещение облученного графита в термической камере, проведение термической деструкции путем продувания через термическую камеру газообразной инертной среды, вывод газовых продуктов деструкции в инертную среду. Ядерный графит без измельчения предварительно помещают в раствор, содержащий 6-7,5 М сильной кислоты с добавлением модифицирующего реагента, и выдерживают в течение 10-15 часов при температуре 95±3°C, термическую деструкцию проводят в течение 75-90 минут при температуре 850±15°C. После завершения процесса термической деструкции термическую камеру с размещенным в ней графитом расхолаживают при непрерывной прокачке инертного газа до температуры менее 600°C. Обработанный графит извлекают из термической камеры и размещают в упаковочном контейнере с глиносодержащим барьерным материалом для отправки на захоронение. Изобретение сократить время термической обработки облученного графита и количество образующихся вторичных радиоактивных отходов. 5 з.п. ф-лы, 4 ил., 1 пр.

Изобретение относится к технологии разделения различных материалов, а именно к технологии уничтожения твердых отходов или переработки их в нечто полезное или безвредное, и может быть использовано для подготовки облученного графита уран-графитовых ядерных реакторов к захоронению.

Известен способ термической обработки углеродосодержащих отходов [US 8921639, опубл. 30.12.2014], выбранный в качестве аналога. По указанному способу в реактор, в котором находятся радиоактивные углеродсодержащие материалы, вводят водяной пар с добавлением газообразного флюидизированного агента. Проводят первый термический обжиг графитовых отходов в диапазоне температур от 1200°С до 1500°С. Затем в реактор вводят газообразный оксид углерода, содержащий диоксид углерода, монооксид углерода и инертный газ. Проводят вторичный термический обжиг при температуре от 900°С до 1100°С. Повышают содержание инертного газа от 75% до 90% в конце второго термического отжига. Осуществляют обжиг графита при температуре от 1500°С до 1600°С.

Недостатки указанного способа:

- необходимость ступенчатого ведения процесса приводит к увеличению времени термической обработки углеродсодержащих отходов;

- использование водяного пара с добавлением газообразного флюидизированного агента приводит к увеличению количества образующихся вторичных радиоактивных отходов.

Известен способ обработки радиоактивного графита [RU 2239899, МПК G21F 9/30, опубл. 10.11.2004], выбранный в качестве аналога. Куски радиоактивного графита окисляют перегретым паром или газами, содержащими водяной пар, при температуре в интервале 250-900°С. Полученные водород и монооксид углерода окисляют кислородом для образования воды и диоксида углерода. Образованный диоксид углерода концентрируют и превращают в твердый карбонат.

Указанный способ имеет недостатки:

- необходимость включения дополнительной ступени окисления, что увеличивает общее время ведения процесса и количество образующихся вторичных радиоактивных отходов;

- необходимость измельчения образцов усложняет процесс и накладывает дополнительные ограничения на гранулометрический состав графита.

Известен способ обработки облученного реакторного графита [RU 2546981 С1, МПК G21F 9/00 (2006.01), опубл. 10.04.2015], выбранный в качестве прототипа, при котором графит помещают в термическую камеру. Проводят термическую деструкцию путем продувания через термическую камеру газообразной инертной среды, нагретой до температуры от 700°С до 1100°С. Газовые радиоактивные продукты деструкции выводят в инертную среду. Газообразную инертную среду с продуктами деструкции выводят из термической камеры и подвергают обработке. При этом выделяют и утилизируют радиоактивные соединения трития и хлора-36. Через термическую камеру продувают газообразную кислородсодержащую среду с выведением газовых радиоактивных продуктов реакции в кислородсодержащую среду. Температуру газообразной кислородсодержащей среды поддерживают выше 500°С, но ниже максимальной температуры газообразной инертной среды на этапе термической деструкции. Газообразную кислородсодержащую среду с радиоактивными продуктами реакции выводят из термической камеры и подвергают обработке. При этом выделяют и утилизируют радиоактивные соединения углерода-14. Графит извлекают из термической камеры для последующей утилизации.

Этот способ имеет следующие недостатки:

- образование вторичных радиоактивных отходов и увеличение объема отходов при очистке отходящих газов в скруббере;

- необходимость осуществления изобретения в два этапа, включающие в себя обработку облученного графита при температуре от 700°С до 1100°С в инертной среде и при температуре выше 500°С в кислородной среде, что увеличивает время ведения процесса;

- не предусмотрена возможность удаления продуктов деления, активации и просыпей ядерного топлива, находящихся в облученном графите, что также не позволяет после обработки отнести его ко второму классу радиоактивных отходов.

Техническим результатом изобретения является сокращение времени термической обработки облученного графита и количества образующихся вторичных радиоактивных отходов, а также перевод его в форму, приемлемую для глубинного и приповерхностного захоронения.

Технический результат достигают за счет того, что в способе подготовки графитовых радиоактивных отходов к захоронению, включающем размещение облученного графита в термической камере, проведение термической деструкции путем продувания через термическую камеру газообразной инертной среды, вывод газовых продуктов деструкции в инертную среду, облученный ядерный графит, извлеченный из кладки уран-графитового реактора без фрагментирования, предварительно помещают в раствор, содержащий 6-7,5 М сильной кислоты (соляной, азотной, серной) с добавлением модифицирующего реагента (0,1-0,2 моль/л фторид-ионов или перманганата калия), и выдерживают в течение 10-15 часов при температуре 95±3°С, термическую деструкцию проводят в течение 75-90 минут при температуре 850±15°С, после завершения процесса термической деструкции термическую камеру с размешенным в ней графитом расхолаживают при непрерывной прокачке инертного газа до температуры менее 600°С, а затем обработанный графит извлекают из термической камеры и размещают в упаковочном контейнере с глиносодержащим барьерным материалом для отправки на захоронение.

На фиг. 1 представлена зависимость степени извлечения радионуклидов (%) из облученного графита от условий жидкостной дезактивации.

На фиг. 2 показана принципиальная схема термической обработки облученных графитовых элементов.

На фиг. 3 представлена динамика выщелачивания 14С из облученного графита до и после его обработки.

На фиг. 4 изображена схема захоронения обработанных графитовых радиоактивных отходов.

Способ осуществляют следующим образом.

Облученный графитовый элемент извлекают без фрагментирования из графитовой кладки уран-графитового реактора и помещают в раствор, содержащий 6-7,5 М сильной кислоты (соляной, азотной, серной) с добавлением модифицирующего реагента (0,1-0,2 моль/л фторид-ионов или перманганата калия), и выдерживают в течение 10-15 часов при температуре 95±3°С. Степень дезактивации радионуклидов (%) из облученного графита в зависимости от состава дезактивирующего раствора представлена на фиг. 1.

После жидкостной дезактивации графитовый элемент 1 (фиг. 2) помещают в стальную капсулу 2, которую размещают в термической камере 3. Стальную капсулу 2 герметично соединяют с линией подачи и сброса газа 4, которая служит для прокачки инертного теплоносителя. В объем стальной капсулы 2 герметично заведен рабочий спай термопары 5 для контроля температуры и поддержания температурного режима. Линия подачи и сброса газа 4 соединена с проточным водяным теплообменником 6, который служит для охлаждения выходящего газа. Линия подачи и сброса газа 4, расположенная перед стальной капсулой 2, соединена с понижающим редуктором газового баллона (на фиг. не показан). В стальную капсулу 2 через линию подачи и сброса газа 4 напускают инертный газ и вытесняют атмосферный воздух, который является термическим окислителем. Процесс проводят до полного вытеснения атмосферного воздуха из всей системы. Расход газа, проходящего по системе, контролируют с помощью ротаметра 7.

При непрерывной прокачке инертного газа после вытеснения атмосферного воздуха постепенно повышают температуру внутри термической камеры 3 до 850±15°С в течение 75-90 минут. Температурный режим ведения процесса внутри стальной капсулы 2 контролируют с помощью термопары 5, которая соприкасается с поверхностью облученного графитового элемента 1. Обрабатывают облученный графитовый элемент 1 в среде инертного газа при давлении, близком к атмосферному.

Выходящие из стальной капсулы 2 газообразные продукты, содержащие активационные радионуклиды, поступают на теплообменник 6, где их охлаждают проточной водой. За счет предварительной жидкостной дезактивации облученного графита и использования только инертного теплоносителя при термической дезактивации количество образующихся вторичных радиоактивных отходов сокращается в 2-2,5 раза.

После окончания процесса термической дезактивации облученного графитового элемента 1 термическую камеру 3 постепенно (со скоростью не более 4°С/мин) расхолаживают до температуры менее 600°С с постоянной прокачкой инертного газа.

Пример осуществления способа приведен ниже.

Из графитовой кладки одного из промышленных уран-графитовых ядерных реакторов извлекали облученную втулку, являющуюся сменным графитовым элементом. По всей длине и толщине облученной графитовой втулки отбирали графитовые керны массой не более 5 г. Проводили контрольный спектрометрический анализ отобранных графитовых кернов с целью определения содержания следующих радионуклидов: 137Cs, 60Со,241Am, 239Pu, 238U, 36Cl, 14C.

Выбранную облученную графитовую втулку помещали в раствор, содержащий 7,5 М азотной кислоты. Дополнительно в раствор вводили 0,1-0.2 моль/л фторид-ионов в виде бифторида аммония (NH4)2F2 для интенсификации процесса жидкостной дезактивации путем расщепления решетки графита и увеличения скорости выщелачивания радионуклида 14С и 36Cl. Облученную графитовую втулку выдерживали в таком растворе в течение 12 часов при температуре 95±3°С. Степень дезактивации радионуклидов (%) из облученного графита представлена на фиг. 1.

После проведения процесса жидкостной дезактивации облученную графитовую втулку извлекали из раствора и помещали в стальную капсулу 2 (фиг. 2). Стальную капсулу 2 с графитовой втулкой 1 размещали в рабочей (термической) камере 3 муфельной печи типа СНОЛ-4.5. Для контроля температуры в объем стальной капсулы 2 герметично заводили рабочий спай хромель-алюмелевой термопары 5. Стальную капсулу 2 герметично соединяли с линией подачи и сброса газов 4.

В стальную капсулу 2 с графитовой втулкой через линию подачи и сброса газа 4 из баллона через понижающий редуктор напускали аргон и вытесняли атмосферный воздух, который является термическим окислителем. Расход аргона, проходящего через систему, контролировали с помощью поплавкового ротаметра 7 и поддерживали на уровне 1±0,5 л/мин. При этом избыточное давление в стальной капсуле 2 составляло не более 10 мм рт.ст. Процесс проводили до полного вытеснения атмосферного воздуха из всей системы в течение не менее 5 мин.

При непрерывной подаче аргона после вытеснения атмосферного воздуха постепенно повышали температуру внутри рабочей камеры 3 муфельной печи до 850°С в течение 75 минут. Выходящие из стальной капсулы 2 газообразные продукты, содержащие радионуклиды, поступали на теплообменник 6, где их охлаждали проточной водой.

С целью исключения попадания смеси аргона с различными радионуклидами в воздух в непосредственной близости (~1 м) от муфельной печи СНОЛ-4.5 был установлен воздушный пылеуловитель типа Фолтер, обеспечивающий воздушную вытяжку на случай нештатной разгерметизации газового контура в месте проведения работ.

После окончания процесса термической обработки облученной графитовой втулки рабочую камеру 3 муфельной печи постепенно расхолаживали со скоростью не более 4°С/мин при постоянной прокачке аргона до температуры менее 600°С. Стальную капсулу 2 вскрывали и извлекали обработанную графитовую втулку.

По всей длине и толщине обработанной графитовой втулки рядом с местом отбора контрольных образцов выбуривали графитовые керны массой не более 5 г. Проводили спектрометрический анализ отобранных графитовых кернов. Определяли скорость выщелачивания радионуклидов из образцов графитовых кернов. На фиг. 3 представлена динамика выщелачивания 14С из облученного графита до и после его обработки.

Результаты спектрометрического анализа и определения скорости выщелачивания использовали для обоснования способа захоронения и выбора типа контейнера.

При отнесении облученного графита к третьему классу РАО его помещали в упаковочный контейнер и засыпали глиносодержащим барьерным материалом. В качестве барьерного материала использовали сухие смеси на основе глинистых пород после предварительного измельчения. Упаковочный контейнер 8 (фиг. 4) вместе с графитовыми радиоактивными отходами размещали в пункте захоронения РАО 9 в геологических формациях 10. Пункт захоронения РАО 9 защищен от атмосферного воздействия экраном из природных материалов 11.

Облученный графит относится по уровню активности ко второму классу РАО. Если в результате обработки не удавалось отнести графитовые радиоактивные отходы к третьему классу за счет снижения активности графита по долгоживущим радионуклидам ниже уровня 104 Бк/г, то факт существенного снижения скорости выщелачивания позволял обосновать использование более дешевых невозвратных контейнеров при глубинном захоронении,

В случае если уровень активности графита после обработки снижался до третьего класса РАО, то это позволяло осуществить приповерхностное захоронение такого графита и значительно уменьшить стоимость захоронения.

В целом реализация настоящего способа позволяет снизить воздействие графитовых радиоактивных отходов на окружающую среду в результате снижения основных характеристик, определяющих потенциальную опасность радиоактивных отходов, а именно:

- активности захораниваемых графитовых отходов;

- интенсивности выхода радионуклидов в окружающую среду за счет снижения их скорости выщелачивания из элементов графитовой кладки.

Предлагаемый способ обеспечивает сокращение времени термической обработки облученного графита и количества образующихся вторичных радиоактивных отходов в 2-2,5 раза за счет предварительной жидкостной дезактивации облученного графита и использования только инертного теплоносителя при термической дезактивации. Реализация настоящего изобретения позволяет либо осуществить приповерхностное захоронение облученного графита за счет снижения класса радиоактивных отходов, либо дает возможность использовать более дешевые невозвратные контейнеры при глубинном захоронении.


Способ подготовки графитовых радиоактивных отходов к захоронению
Способ подготовки графитовых радиоактивных отходов к захоронению
Способ подготовки графитовых радиоактивных отходов к захоронению
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
10.05.2018
№218.016.445d

Способ обнаружения и определения параметров фрагментов ядерного топлива в кладке остановленного уран-графитового реактора

Изобретение относится к способу обнаружения и определения параметров фрагментов ядерного топлива в кладке остановленного уран-графитового реактора. Поиск скважин выполняют путем измерения потоков тепловых нейтронов в ячейках графитовой кладки остановленного уран-графитового реактора в...
Тип: Изобретение
Номер охранного документа: 0002649656
Дата охранного документа: 05.04.2018
07.09.2018
№218.016.846b

Способ очистки транспортно-технологических емкостей ядерного реактора от длинномерных радиоактивных элементов технологического оборудования

Изобретение относится к области ядерных технологий. Способ очистки транспортно-технологических емкостей ядерного реактора от длинномерных радиоактивных элементов технологического оборудования включает фрагментацию высокоактивных элементов, находящихся под водой, с использованием дистанционно...
Тип: Изобретение
Номер охранного документа: 0002666152
Дата охранного документа: 06.09.2018
17.02.2019
№219.016.bbfb

Способ демонтажа графитовой кладки ядерного реактора

Изобретение относится к ядерной технике, а именно к технологиям обработки, манипулирования или облегчения манипулирования топливными или другими материалами внутри реактора, и может быть использовано для демонтажа графитовой кладки при выводе из эксплуатации уран-графитового ядерного реактора....
Тип: Изобретение
Номер охранного документа: 0002679827
Дата охранного документа: 13.02.2019
09.05.2019
№219.017.4991

Способ разделки на фрагменты длинномерных элементов ядерного реактора и устройство для его осуществления

Группа изобретений относится к области ядерных технологий. Способ разделки на фрагменты длинномерных элементов ядерного реактора включает размещение длинномерных элементов внутри контейнера и их последующую резку. Длинномерный элемент опускают в контейнер на всю его высоту. Осуществляют резку...
Тип: Изобретение
Номер охранного документа: 0002687048
Дата охранного документа: 07.05.2019
23.07.2019
№219.017.b6c7

Способ выполнения технологического проема для осуществления демонтажа графитовой кладки остановленного уран-графитового реактора

Изобретение относится к ядерной технике и может быть применено для демонтажа графитовой кладки при выводе из эксплуатации ядерного реактора. Способ выполнения технологического проема для осуществления демонтажа графитовой кладки остановленного уран-графитового реактора включает вырезку...
Тип: Изобретение
Номер охранного документа: 0002695107
Дата охранного документа: 19.07.2019
01.06.2023
№223.018.7497

Способ получения барьерного материала

Изобретение относится к производству глинопорошков для барьерных материалов, буровых растворов, формовочных смесей и железорудных окатышей. В способе получения барьерного материала, включающем одновременное измельчение и сушку дробленого глинистого материала до получения заданной влажности...
Тип: Изобретение
Номер охранного документа: 0002730859
Дата охранного документа: 26.08.2020
Показаны записи 21-29 из 29.
19.07.2019
№219.017.b675

Способ восстановления барьеров безопасности в пункте размещения радиоактивных отходов

Изобретение относится к технологии улучшения или упрочнения грунта с помощью термических, электрических или электрохимических средств. Способ восстановления барьеров безопасности в пункте размещения радиоактивных отходов включает погружение электродов в область образования трещин и полостей в...
Тип: Изобретение
Номер охранного документа: 0002694816
Дата охранного документа: 17.07.2019
30.10.2019
№219.017.dbe5

Способ радиационного обследования искусственных водоёмов

Изобретение относится к области радиометрии. Способ радиационного обследования искусственных водоемов содержит этапы, на которых выбирают малоразмерный беспилотный летательный аппарат, содержащий устройство детектирования мощности дозы гамма-излучения, с помощью которого сканируют выбранный...
Тип: Изобретение
Номер охранного документа: 0002704329
Дата охранного документа: 28.10.2019
13.12.2019
№219.017.ed65

Способ контроля уплотнения сыпучего материала при создании барьеров безопасности в пункте размещения радиоактивных отходов

Изобретение относится к технологии исследования прочностных свойств твердых материалов путем приложения повторяющихся или пульсирующих усилий и может быть использовано для определения областей образования пустот и величины плотности глиносодержащего барьерного материала при создании барьеров...
Тип: Изобретение
Номер охранного документа: 0002708702
Дата охранного документа: 11.12.2019
21.01.2020
№220.017.f7a6

Устройство для дистанционной резки металлоконструкций выводимых из эксплуатации ядерных реакторов

Изобретение относится к устройству для дистанционной резки металлоконструкций выводимых из эксплуатации ядерных реакторов. Техническим результатом изобретения является возможность эффективного создания проходок в удаленных друг от друга радиационно загрязненных металлоконструкциях ядерного...
Тип: Изобретение
Номер охранного документа: 0002711285
Дата охранного документа: 16.01.2020
09.02.2020
№220.018.011f

Способ бесполостного заполнения реакторных пространств при выводе из эксплуатации уран-графитовых ядерных реакторов

Изобретение относится к технологии вывода из эксплуатации уран-графитовых ядерных реакторов, а именно к технологии создания барьеров безопасности в пунктах захоронения радиоактивных отходов. Cпособ бесполостного заполнения реакторных пространств при выводе из эксплуатации уран-графитовых...
Тип: Изобретение
Номер охранного документа: 0002713742
Дата охранного документа: 07.02.2020
09.02.2020
№220.018.0125

Способ кондиционирования иловых отложений бассейнов выдержки

Изобретение относится к технологии обработки материалов с радиоактивным заражением. Способ кондиционирования иловых отложений бассейнов выдержки включает дозирование порций компонентов цементного компаунда в контейнер, перемешивание цементного компаунда с помощью мешалки, которая приводится во...
Тип: Изобретение
Номер охранного документа: 0002713734
Дата охранного документа: 07.02.2020
09.02.2020
№220.018.014d

Способ дезактивации графитовых радиоактивных отходов

Изобретение относится к технологии обработки материалов с радиоактивным загрязнением. Способ дезактивации графитовых радиоактивных отходов включает размещение дезактивируемого элемента в герметичной камере, соединение электропроводящего материала с различными полюсами источника тока,...
Тип: Изобретение
Номер охранного документа: 0002713733
Дата охранного документа: 07.02.2020
07.03.2020
№220.018.0a12

Устройство радиационного и температурного контроля выведенного из эксплуатации уран-графитового реактора

Изобретение относится к технологии мониторинга и проверки. Устройство радиационного и температурного контроля выведенного из эксплуатации уран-графитового реактора содержит герметичный корпус с фланцем и герметичную проходку, в которой расположены детекторы нейтронов прямого заряда и...
Тип: Изобретение
Номер охранного документа: 0002716002
Дата охранного документа: 05.03.2020
01.06.2023
№223.018.7497

Способ получения барьерного материала

Изобретение относится к производству глинопорошков для барьерных материалов, буровых растворов, формовочных смесей и железорудных окатышей. В способе получения барьерного материала, включающем одновременное измельчение и сушку дробленого глинистого материала до получения заданной влажности...
Тип: Изобретение
Номер охранного документа: 0002730859
Дата охранного документа: 26.08.2020
+ добавить свой РИД