×
12.07.2018
218.016.6fbf

Результат интеллектуальной деятельности: Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного давления в топливном баке. Дополнительно обеспечивается заданное термодинамическое состояние ПГ, исключающее переход криогенного КТ из состояния газовой фазы в жидкую и твердую при движении в дренажной системе при сбросе ПГ из топливного бака. Газы, подаваемые, в топливный бак, получают в автономном газогенераторе (АГГ), при этом твердотопливные газогенерирующие составы (ТГС) выбирают из условий химической нейтральности между продуктами сгорания ТГС и газифицируемым КТ. Устройство для реализации способа включает в свой состав топливный бак, АГГ для получения горячих газов (теплоносителя), магистрали ввода теплоносителя, дренажную систему и тепловой мост, который дополнительно вводят между АГГ и дренажной системой. Расположение АГГ выбирают в непосредственной близости от дренажной системы. Техническим результатом группы изобретений является обеспечение взрывобезопасности отработавших ступеней РН и безаварийной работы топливного бака. 2 н.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для обеспечения взрывобезопасности отработавших орбитальных ступеней ракет-носителей (РН) с остатками компонентов ракетного топлива (КРТ) в топливных баках.

Необходимость обеспечения взрывобезопасности отработавших орбитальных ступеней РН с маршевыми жидкостными ракетными двигателями (ЖРД), как средство снижения космического мусора в околоземном космическом пространстве, рекомендована международными организациями, такими как Технический подкомитет ООН по мирному использованию космоса (Доклад секретариата. Меры, принимаемые космическими агентствами для снижения темпов образования космического мусора или его потенциальной опасности. Комитет по использованию космического пространства в мирных целях, 13.12.1996. [Электронный ресурс]: http://www.unoosa.org/pdf/reports/ac105/AC105_663R.pdf. - (Дата обращения: 22.08.2016) [1]), Межагентский координационный комитет по космическому мусору (Update of the IADC space debris mitigation guidelines. IADC-11-02. Beijing, May 2014 [2]).

Взрывобезопасность отработавших ступеней РН с маршевыми ЖРД предлагается обеспечивать вентилированием топливных баков, т.е. превращением в газовую фазу жидких остатков КРТ и их выброс через дренажные клапаны и дренажные магистрали, т.к. элементарное открытие дренажных клапанов не приводит к желаемому результату.

Известно техническое решение, основанное на газификации самовоспламеняющихся компонентов топлива в баках РН после выключения маршевого ЖРД, например, патент RU 2359876, МПК B64D 37/28. Способ очистки отделяющейся части ракеты от жидких токсичных остатков КРТ и устройство для его осуществления.

Прототипом предлагаемого способа является техническое решение по патенту RU 2522536 B64G 1/00, предусматривающее подачу горячих газов (теплоносителя) в топливный бак и сброс продуктов газификации (ПГ) по достижении заданного давления, например, в газовый ракетный двигатель.

Применение указанного технического решения для обеспечения взрывобезопасности отработавшей орбитальной ступени РН затруднено по следующим основным причинам:

- сброс ПГ необходимо осуществлять через дренажную систему, а не через газовый ракетный двигатель, путем сжигания, т.к. это требует существенной модернизации;

- при истечении ПГ из топливного бака в окружающее космическое пространство через дренажный клапан и дренажную магистраль вследствие резкого падения давления и температуры смесь паров КРТ и теплоносителя могут выпадать в конденсат с последующим замерзанием во внутренней полости дренажной магистрали. Периодические сбросы ПГ приведут к полной «закупорке» дренажной магистрали, что может привести к взрыву топливного бака из-за повышения давления внутри бака до величины, превышающей критическое давление, при котором происходит его разрушение; в настоящее время на орбитах в околоземном космическом пространстве по данным отдела NASA по слежению за искусственными космическими объектами количество взорвавшихся отработанных ступеней с маршевыми ЖРД достигло свыше 200 шт.;

- теплота, остающаяся в автономном газогенераторе, не утилизируется; к примеру, использование твердотопливных газогенерирующих составов, оставляет в шлаке до 60% теплоты от фактической, реализуемой при полном сгорании газогенерирующего состава.

Целью предлагаемого технического решения является повышение взрывобезопасности топливного бака орбитальной ступени РН после выключения маршевого ЖРД за счет газификации остатков КРТ, исключающей переход КРТ из состояния газовой фазы в жидкую и твердую фазу при движении в дренажной системе при сбросе ПГ из топливного бака.

Указанный технический результат достигается за счет того, что твердотопливные газогенерирующие составы (ТГС) выбирают из условий химической нейтральности между продуктами сгорания ТГС и газифицируемым компонентом топлива, а состав продуктов сгорания ТГС не содержит веществ, превращающихся в твердую или жидкую фазу, при температуре кипения компонента топлива, а твердая фаза продуктов сгорания ТГС содержит минимальное количество остаточного тепла и массы шлака и остается в автономном газогенераторе (АГГ).

Реализация предлагаемого технического решения поясняется фиг. 1-3, где:

на фиг. 1 приведена дренажная система, состоящая из дренажного клапана (ДК) и дренажной магистрали (ДМ);

на фиг. 2 приведено изменение фазового состояния ПГ при их сбросе из бака в координатах давления р и температуры Т;

на фиг. 3 приведен элемент топливного бака с дренажной системой, состоящей из дренажного клапана и дренажной магистрали, теплового моста, соединяющего автономный газогенератор и дренажную систему.

Выбор газогенерирующих составов

К ТГС предъявляются следующие требования:

- продукты сгорания ТГС не должны вступать в химические реакции с газифицируемым КРТ (Шишков А.А., Румянцев Б.В. Газогенераторы ракетных систем. М.: Машиностроение. - 1981. - 152 С. [3]);

- продукты сгорания ТГС не должен иметь в своем составе веществ, превращающихся в твердую или жидкую фазу, при температуре кипения КРТ, например, кислорода (90-120 K, в зависимости от давления в баке);

- в результате сгорания ТГС твердая фаза продуктов сгорания (шлаки) в газогенераторе должна содержать минимальное количество остаточной теплоты и массы шлака, и оставаться в автономном газогенераторе (АГГ);

- скорость горения ТГС на установившемся режиме выбирается из условия сохранения фиксированного давления в топливном баке, определяемом его прочностью, при открытой дренажной системе.

В табл. 1 приведены результаты расчетов температуры и состава продуктов сгорания для различных вариантов ТГС. В качестве газифицируемого КРТ для примера взят жидкий кислород. Расчеты проводились с использованием программного комплекса Терра (Trusov В. G. // The XIV Int. Symp. on Chemical Thermodynamics, St. Petersburg, Russia, 2-5 July 2002 [4]).

Как следует из приведенных результатов (табл. 1) для рассматриваемых ТГС с №1-4 состав продуктов сгорания следующий: газовая фаза - азот 32-43%, твердая фаза - шлак 57-68%; для №5-8 состав продуктов сгорания: газовая фаза - кислород 28-42%, твердая фаза - шлак 58-78%.

В табл. 2 приведены общие термодинамические характеристики при сжигании рассмотренных ТГС.

В последнем столбце показаны оценки остаточной теплоты в твердой фазе ТГС, из которых следует, что наибольшие потери соответствуют варианту №8, именно в его продуктах сгорания наибольшая доля тепла, оставшаяся в твердом шлаке после сгорания ТГС.

Количество теплоты, подводимое к дренажной системе, позволяет поднять ее температуру до величины, обеспечивающей исключение выпадение жидкой фазы из ПГ, ее замерзание на внутренней поверхности дренажной системы (дренажный клапан + дренажная магистраль), что:

- повышает вероятность незамерзания дренажной магистрали;

- снижает затраты на потребное количество ТГС для обеспечения пребывания текущего фазового состояния ПГ в зоне требуемого фазового состояния, т.е. газа.

В табл. 3 приведены результаты расчетов (расчеты проводились с использованием программного комплекса Терра, [5]) передачи остаточной теплоты от твердой фазы ТГС, находящейся в АГГ, к дренажной магистрали через тепловой мост (потери тепла не учитывались). В расчетах использовались среднестатистические данные дренажной системы: масса дренажной системы - 2 кг, материал - сплав АМг6. Для расчета теплового моста выбран материал - АМг6, геометрические размеры взяты по сортаменту Профиль ГОСТ 8617-81.

Как следует из результатов, приведенных в табл. 3, использование теплового моста приводит к повышению температуры системы «тепловой мост-дренажная система» на значительные величины от 85 до 206 градусов, что приведет к испарению выпавшего твердого осадка КРТ и, соответственно, открытию проходного сечения дренажной магистрали.

Для примера реализуемости предлагаемого способа взяты параметры топливного бака окислителя (жидкий кислород) второй ступени РН "Зенит". Рассматриваемый топливный бак был выбран исключительно из-за большого количества имеющейся информации в открытых источниках о его взрывах на орбите [1] в результате замерзания дренажной магистрали конденсированными парами жидкого кислорода.

Оценка фазового состояния паров кислорода проводилась при следующих начальных условиях: давление - 2,5 атм; температура газовой фазы - 90 К; объемная доля гелия / кислорода - 0,8 / 0,2.

На начало процесса сброса продуктов газификации из бака отработавшей ступени РН рассматривается термодинамическая система, соответствующая 2 состояниям:

- для исходного, когда происходит тепло- и массообмен в топливном баке, вызванный тепловым нагружением конструкции топливного бака отработанной ступени РН излучением от Солнца и Земли при орбитальном движении. Повышение внутреннего давления в баке обусловлено ростом температуры парогазовой смеси (пары жидкого кислорода + газ наддува гелий) и интенсивностью испарения жидкого кислорода.

На фиг. 2 кривая 1 показывает линию равновесия в координатах давление р - температура Т между жидкой и газообразной фазой кислорода, кривая 2 показывает линию равновесия в координатах давление р - температура Т между твердой и жидкой фазами кислорода.

Как следует из результатов, приведенных на фиг. 2, при давлениях и температурах, соответствующих выше кривой 1, пары кислорода, находящиеся в продуктах газификации, при дренаже будут конденсироваться, а при давлении и температуре, находящихся левее кривой 2, пары кислорода будут кристаллизоваться и, соответственно, возникает возможность замерзания дренажной системы с последующим взрывом топливного бака.

Кривая 3 показывает изменение парциального давления кислорода в результате теплового нагружения топливного бака излучением от Солнца и Земли при орбитальном движении, повышение парциального давления кислорода в баке обусловлено ростом температуры парогазовой смеси (паров кислорода + газ наддува гелия).

После выключения маршевого ЖРД запускается АГГ с ТГС, в результате сгорания ТГС в топливный бак подается азот со средней температурой 1500 K. Рост внутреннего давления происходит в результате смешивания смеси паров кислорода и гелия с продуктами сгорания ТГС и испарения жидкого кислорода. На фиг. 2 кривая 4 показывает изменение парциального давления кислорода в результате подачи продуктов сгорания ТГС в топливный бак, по мере прогрева (увеличения температуры) парогазовой смеси происходит рост парциального давления кислорода.

Процесс сброса продуктов газификации из бака кислорода (испарившийся кислород + остатки газа наддува гелия + продукты сгорания ТГС) представлен 2 состояниями:

- при сбросе паров кислорода + газ наддува гелия (парогазовой смеси), фазовое состояние паров кислорода таково, что оно соответствует появлению жидкой фазы. На фазовой диаграмме кислорода (фиг. 2, кривая 5) это соответствует положению точек, соответственно, начальное положение сброса газа - G2 и конечное положение - L1, при изменении величин температуры и парциального давления выше значений описанных кривой 1 на фиг. 2 происходит изменение фазового состояния кислорода;

- для случая сброса продуктов газификации, видно, что фазовое состояние паров кислорода соответствует газовой фазе (фиг. 2, кривая 6), соответственно, начально сброса - точка G3 и конец сброса - точка G4.

Из приведенных на фиг. 2 результатов следует, что существует принципиальная возможность подбора ТГС, которые при сжигании и подачи в бак позволяют обеспечить сброс паров кислорода без замерзания дренажной магистрали.

Устройство для реализации способа

В качестве прототипа рассматривается устройство по патенту РФ №2522536 B64G 1/00, включающее в свой состав топливные баки окислителя и горючего, систему наддува баков, систему газификации, магистрали подачи теплоносителя, систему сброса продуктов газификации.

К недостаткам этого устройства относится возможность замерзания дренажной системы при сбросе газифицированных продуктов и, соответственно, взрыв топливного бака.

Целью предлагаемого технического устройства является обеспечение безаварийной работы дренажной системы (вентилирования) топливного бака, которая достигается тем, что в известное устройство, включающее в свой состав топливный бак, АГГ для получения горячих газов (теплоносителя), магистрали ввода теплоносителя, дренажную систему - дополнительно вводят тепловой мост между АГГ и дренажной системой, а расположение АГГ выбирают в непосредственной близости от дренажной системы.

Для реализации заявляемого способа предложено устройство, состоящее из топливного бака 1, АГГ 2 для получения горячих газов (теплоносителя), магистрали ввода теплоносителя 3, дренажную систему 4 в которое дополнительно вводят тепловой мост 5 между АГГ 2 и дренажной системой, а расположение АГГ 2 относительно дренажной системы выбирают из условия минимального расстояния между ними (Фиг. 3).

Работа теплового моста осуществляется следующим образом: теплота выделяющаяся в процессе горения ТГС в АГГ, а также остающийся огарок (шлак) нагревают корпус АГГ 2 до высокой температуры (1000 K и выше) и передается за счет теплопроводности материала теплового моста 5 к дренажной системе 4. По предварительным оценкам (таблица 3) это позволяет повысить температуру корпуса дренажной системы на AT от 85 до 206 градусов.


Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Источник поступления информации: Роспатент

Показаны записи 31-40 из 109.
19.01.2018
№218.016.0aad

Порошковая проволока

Изобретение относится к области металлургии, а именно к порошковой проволоке, которая может быть использована в энергетической, химической и нефтяной отраслях для восстановления и упрочнения посадочных поверхностей валов, запорной и дросселирующей арматуры, торцевых уплотнений контактных пар....
Тип: Изобретение
Номер охранного документа: 0002632311
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0c00

Устройство контроля веществ

Использование: для контроля веществ. Сущность изобретения заключается в том, что устройство содержит последовательно включенные аналого-запоминающий блок, первую и вторую цепи преобразования, каждая из которых содержит последовательно соединенные узлы выборки и хранения, аналого-цифровой...
Тип: Изобретение
Номер охранного документа: 0002632633
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0cfd

Способ получения повышенного выходного напряжения

Использование: в области электротехники. Технический результат - повышение значения наводимой электродвижущей силы в обмотке статора магнитоэлектрической машины. Согласно способу валом двигателя с переменной скоростью вращения приводят во вращение нерегулируемый магнитоэлектрический генератор....
Тип: Изобретение
Номер охранного документа: 0002632817
Дата охранного документа: 10.10.2017
19.01.2018
№218.016.0d31

Способ микроклонального размножения картофеля in vitro сорта картофеля "ермак"

Изобретение относится к области биотехнологии растений. Способ включает культивирование оздоровленных растений картофеля in vitro путем микрочеренкования на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту, аскорбиновую...
Тип: Изобретение
Номер охранного документа: 0002632938
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.17a4

Сырьевая смесь для газобетона

Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток. Сырьевая смесь для газобетона содержит, мас.%: портландцемент 35 - 55,...
Тип: Изобретение
Номер охранного документа: 0002635687
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.1cc2

Способ ремонта вмятин на сосудах

Изобретение относится к области ремонта сосудов, работающих под давлением и содержащих на корпусе дефекты в виде вмятин, и может быть использовано в химической, нефтехимической, нефтеперерабатывающей промышленности. Способ ремонта вмятин на корпусе сосудов включает изготовление заплаты, по...
Тип: Изобретение
Номер охранного документа: 0002640512
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1d4e

Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения

Изобретение относится к энергетическим машинам и может быть использовано при создании высокоэкономичных автономно работающих двухступенчатых компрессоров и гибридных машин - насос-компрессоров с жидкостным охлаждением компрессорных полостей первой и второй ступени. Поршневая двухступенчатая...
Тип: Изобретение
Номер охранного документа: 0002640658
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d80

Поршневой двухцилиндровый компрессор с жидкостным рубашечным охлаждением

Изобретение относится к области энергетических машин и касается поршневых машин и систем их охлаждения, и может быть использовано при создании поршневых компрессоров с повышенной экономичностью за счет организации автономной энергосберегающей системы охлаждения цилиндропоршневой группы....
Тип: Изобретение
Номер охранного документа: 0002640970
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1ddb

Роторно-поршневая гибридная машина объемного действия

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании высокоэффективных источников энергии для одновременного питания пневматического и гидравлического оборудования. Машина состоит и корпуса 1 с цилиндрами 2, 3, с роторами 10, 11 с...
Тип: Изобретение
Номер охранного документа: 0002640886
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1de0

Способ работы поршневого компрессора с автономным жидкостным охлаждением и устройство для его осуществления

Изобретение относится к области энергетики и может быть использовано при создании экономичных поршневых компрессоров малой и средней производительности с автономным жидкостным охлаждением. Способ работы компрессора заключается в том, что величину дополнительного объема, напрямую соединенного с...
Тип: Изобретение
Номер охранного документа: 0002640899
Дата охранного документа: 12.01.2018
Показаны записи 31-40 из 52.
17.02.2018
№218.016.2a00

Способ спуска отделяющейся части ракеты-носителя

Изобретение относится к ракетно-космической технике и касается отделяющихся частей (ОЧ) ступеней ракет-носителей (РН) при их движении по траектории спуска. Спуск ОЧ РН на жидких компонентах топлива в заданный район падения основан на стабилизации ОЧ, ориентации и управляемом движении ОЧ за счет...
Тип: Изобретение
Номер охранного документа: 0002643073
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2a78

Способ проведения лётно-конструкторских испытаний автономного стыковочного модуля для очистки орбит от космического мусора

Изобретение относится к ракетно-космической технике. Способ проведения летно-конструкторских испытаний (ЛКИ) автономного стыковочного модуля (АСМ) для очистки орбит от крупногабаритного космического мусора основан на выборе мишени из имеющихся на орбитах для их увода на орбиты утилизации,...
Тип: Изобретение
Номер охранного документа: 0002643020
Дата охранного документа: 29.01.2018
10.05.2018
№218.016.4b5b

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени ракеты-носителя и устройство для его реализации

Изобретение относится к ракетно-космической технике. Способ и устройство моделирования процесса газификации остатков жидкого компонента ракетного топлива в баках отработавшей ступени (ОС) ракеты-носителя, основанный на введении в экспериментальную модельную установку (ЭМУ) теплоносителя (ТН),...
Тип: Изобретение
Номер охранного документа: 0002651645
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.55b6

Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя и устройство для его реализации

Группа изобретений относится к ракетно-космической технике. Способ газификации невырабатываемых остатков жидкого кислорода и керосина в баках ступени ракеты-носителя после выключения маршевого жидкостного ракетного двигателя основан на подаче теплоты в баки с остатками компонентов топлива в...
Тип: Изобретение
Номер охранного документа: 0002654235
Дата охранного документа: 17.05.2018
21.11.2018
№218.016.9f18

Способ минимизации зон отчуждения отделяемых частей ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано для сокращения районов падения отделяющихся частей ступеней ракет-носителей. Технический результат - снижение площадей зон отчуждения из-за отделяемых частей за счет обеспечения их полного сгорания на атмосферном...
Тип: Изобретение
Номер охранного документа: 0002672683
Дата охранного документа: 19.11.2018
29.12.2018
№218.016.ad23

Способ очистки орбит от объектов космического мусора

Изобретение относится к методам и средствам очистки орбит от космического мусора, главным образом отработанных ступеней (ОС) ракет-носителей. Способ включает выведение в область очистки космического аппарата-буксира (КАБ) (1) и автономного стыковочного модуля (АСМ) (2) на тросе (4). АСМ (2)...
Тип: Изобретение
Номер охранного документа: 0002676368
Дата охранного документа: 28.12.2018
24.01.2019
№219.016.b338

Способ моделирования процесса тепло- и массообмена при испарении жидкости и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении экспериментальных исследований при физическом моделировании процессов испарения остатков жидкого топлива в баках отделяющихся частей ступеней ракет-носителей. Раскрыт способ моделирования...
Тип: Изобретение
Номер охранного документа: 0002677868
Дата охранного документа: 22.01.2019
10.04.2019
№219.017.0744

Способ управления ракетами космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано при расчете энергетически оптимальных программ управления выведением первых ступеней ракет космического назначения (РКН) исходя из снижения влияния ограничений, обусловленных обеспечением падения отделяющихся частей...
Тип: Изобретение
Номер охранного документа: 0002456217
Дата охранного документа: 20.07.2012
29.05.2019
№219.017.69f7

Способ увода космического мусора с орбит полезных нагрузок на основе использования отделившейся части ракеты-носителя, разгонного блока и устройство для его реализации

Изобретение относится к области космической техники и может быть использовано для очистки околоземного космического пространства от прекративших активное существование космических аппаратов, их обломков, отделившихся частей (ОЧ) последних ступеней ракет-носителей (РН) и разгонных блоков (РБ)....
Тип: Изобретение
Номер охранного документа: 0002462399
Дата охранного документа: 27.09.2012
04.06.2019
№219.017.72e2

Способ проведения лётно-конструкторских испытаний бортовой системы испарения остатков жидкого топлива в баке отработавшей ступени ракеты-носителя

Изобретение относится к автономной бортовой системе спуска (АБСС) отработавшей ступени (ОС) ракеты-носителя (РН) с маршевыми ЖРД. Способ включает испытания входящей в состав АБСС системы испарения остатков жидкого топлива в баке ОС в процессе пуска РН, исключая другие элементы АБСС. Перед...
Тип: Изобретение
Номер охранного документа: 0002690304
Дата охранного документа: 31.05.2019
+ добавить свой РИД