×
08.07.2018
218.016.6e98

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ГЕТЕРОСТРУКТУРЫ InGaAsP/InP ФОТОПРЕОБРАЗОВАТЕЛЯ

Вид РИД

Изобретение

Аннотация: Способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений на подложке InP в потоке очищенного водорода при пониженном давлении при температуре эпитаксии буферного слоя InP из триметилиндия и фосфина и слоя InGaAsP, где 0,59<х<0,80 и 0,55<у<0,92, из триметилиндия, триэтилгаллия, арсина и фосфина путем последовательного выращивания субслоев InGaAsP толщиной не более 100 нм. При этом после выращивания каждого субслоя InGaAsP прекращают подачу триметилиндия, триэтилгаллия, арсина и фосфина на (5-30) с. Изобретение обеспечивает повышение качества контроля стыковки кристаллов. 2 з.п. ф-лы.

Изобретение относится к электронной технике, а более конкретно к способам изготовления фотопреобразователей на основе гетероструктуры InGaAsP/InP.

Твердые растворы соединений А3В5 находят широкое применение в различных областях оптоэлектроники, в частности в лазерах и фотодетекторах, работающих при комнатной температуре в спектральном ИК-диапазоне. Основным недостатком твердых растворов InxGa1-xAsyP1-y, ограничивающих их применение, является наличие достаточно протяженных областей несмешиваемости и неустойчивости (область спинодального распада 0,59<x<0,8, 0,55<у<0,92). Распад определяется внутренними напряжениями и сильно зависит от толщины материала, так как при малых толщинах внутренние напряжения компенсируются пластической деформацией. Применительно к фотопреобразователям необходимы толщины активных слоев не менее длины волны поглощения (не менее 1 мкм), что невозможно изготовить известными способами, так как характеристики слоя деградируют вследствие распада. Выращивание твердых растворов А3В5 во всем диапазоне составов позволит существенно расширить спектральный диапазон фотопреобразователей.

Известен способ изготовления полупроводникового фоточувствительного прибора методом газофазной эпитаксии из металлоорганических соединений (см. заявка US 2001048118, МПК С23С 16/30, H01L 21/205, H01L 31/0304, опубликована 29.09.2005), заключающийся в выращивании на подложке InP повторяющихся слоев InGaAs: стресс-компенсирующего слоя с накоплением в нем сжимающих напряжений, имеющего состав, который постепенно изменяется по толщине в направлении роста, и фоточувствительного слоя. Фоточувствительный слой выращивают толщиной, большей толщины стресс-компенсирующего слоя.

В известном способе при выращивании слоев с составами в области спинодального распада возникающие напряжения будут быстро накапливаться и приводить к распаду фоточувствительных слоев.

Известен способ изготовления полупроводникового фотодетектора (см. заявка JP 05283730, МПК H01L 21/20, H01L 31/10, опубликована 29.10.1993), путем выращивания на подложке InP пяти фоточувствительных слоев GaInAs (с краем собственного поглощения 1,75 мкм), не согласованных по постоянной кристаллической решетки с подложкой InP, при этом между фоточувствительными слоями выращивают четыре сверхрешетки для снятия накапливающихся упругих напряжений.

В известном способе выращивание рассогласованных фоточувствительных слоев и сверхрешеток усложняет конструкцию фотодетектора. Кроме того, отсутствует возможность выращивания полупроводниковых слоев, попадающих в область спинодального распада.

Известен способ изготовления фотоэлектрического детектора (патент CN 103646997, МПК H01L 31/18, опубликован 11.11.2015). Способ заключается в последовательном выращивании слоев: буферного слоя InP, десяти пар слоев InP/InGaAsP, обеспечивающих оптическую фильтрацию (оптический фильтр), двух светосогласующих слоев InGaAsP и трех светопоглощающих гетероструктур из InGaAs.

Недостатком известного способа является использование материалов, находящихся вне области спинодального распада и не обеспечивающих необходимый диапазон ширин запрещенной зоны.

Известен способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя (S. Ritchie, Р.С. Spurdens, N.P. Hewett, and М.R. Aylett, «Interference filters using indium phosphide - based epitaxial layers grown by metalorganic vapor phase epitaxy», Appl. Phys. Lett. 55 (17) 1989, pp. 1713-1714). Известный способ включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений (МОСГФЭ) на подложке InP в потоке очищенного водорода гетероструктуры из 81 чередующихся слоев In0,58Ga0,42As0,93P0,07 (Eg~0,8 эВ) и InP. Толщина каждого слоя составляла порядка 100 нм, а вся структура в целом имела толщину 10 мкм.

Известным способом выращивали слои InGaAsP, лежащие вне области спинодального распада (не имевшие необходимый спектральный диапазон чувствительности), при этом толщина барьерных слоев InP составляла более 100 нм, что не обеспечивает туннельную связь слоев твердых растворов, а в целом гетероструктура представляла набор не связанных между собой квантовых ям.

Наиболее близким по технической сущности и по совокупности существенных признаков к настоящему техническому решению является способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя, принятый в качестве прототипа (Р.В. Левин, А.Е. Маричев, Е.П. Марухина, М.З. Шварц, Б.В. Пушный, В.П. Хвостиков, М.Н. Мизеров, В.М. Андреев «Фотоэлектрические преобразователи концентрированного солнечного излучения на основе InGaAsP (1,0 эВ)/InP гетероструктур», ФТП, т. 49, в. 5, стр. 715-718, 2015) выращивания методом газофазной эпитаксии из металлорганических соединений при пониженном давлении твердых растворов In0.8Ga0.2As0.46P0.54 толщиной 0,5-1,5 мкм на подложках InP. Эпитаксиальная структура была выращена при давлении 100 мбар и температуре 600°C.

Способом-прототипом выращивали гетероструктуру из слоев твердых растворов In0.8Ga0.2As0,46P0.54, лежащих вне области спинодального распада, не обеспечивающих необходимый диапазон ширин запрещенной зоны (фоточувствительность фотопреобразователя в диапазоне длин волн 0,90-1,25 мкм).

Задачей настоящего изобретения являлась разработка способа изготовления гетероструктуры InGaAsP/InP фотопреобразователя, который бы позволял выращивать достаточно толстый стабильный фоточувствительный слой в области спинодального распада четырехкомпонентного твердого раствора InGaAsP, что обеспечивает фоточувствительность фотопреобразователя в диапазоне длин волн 1,25-1,55 мкм.

Поставленная задача решается тем, что способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений на подложке InP в потоке очищенного водорода при пониженном давлении и при температуре эпитаксии буферного слоя InP из триметилиндия (TMIn) и фосфина (РН3) и слоя InGaAsP, из триметилиндия (TMIn), триэтилгаллия (TEGa), арсина (AsH3) и фосфина (РН3). Новым в способе является то, что выращивают слой InxGa1-xAsyP1-y, где 0,59<х<0,80 и 0,55<у<0,92, при соотношении молярных потоков F: (FAsH3+FPH3)/(FTEGa+FTMIn)=80-130, FTEGa/(FTEGa/FTMIn)=0,15-0,39 и FAsH3/(FAsH3+FPH3)=0,018-0,111) путем последовательного выращивания субслоев InxGa1-xAsyP1-y толщиной не более 100 нм, при этом после выращивания каждого субслоя InxGa1-xAsyP1-y прекращают подачу триметилиндия, триэтилгаллия, арсина и фосфина на (5-30) с.

Буферный слой InP может быть выращен при температуре (600-650)°C при соотношении молярных потоков РН3/TMIn=200-300 в течение (20-60) мин.

Слой InxGa1-xAsyP1-y предпочтительно выращивают суммарной толщиной более 1 мкм.

Настоящий способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя осуществляют следующим образом. Последовательно выращивают методом газофазной эпитаксии из металлоорганических соединений на предварительно протравленной подложке InP в травителе HBr : K2Cr2O7 : H2O в течение 5 мин, либо на так называемой "epi-ready" (без обработки) подложке n-InP в потоке очищенного водорода при пониженном давлении при температуре эпитаксии в диапазоне 600-650°C буферного слоя InP из триметилиндия (TMIn) и фосфина (РН3) при соотношении молярных потоков FPH3/FTMIn=200-300 в течение (20-60) мин. Использование при выращивании пониженного давления обусловило улучшение однородности по толщине растущих слоев за счет увеличения скорости движения газов без изменения потока массы, подаваемой в реактор смеси газов. Температурный диапазон 600-650°C обусловлен более эффективным (близким к 100%) разложением используемых гидридов: арсина (AsH3) и фосфина (РН3). Применяемый диапазон соотношений молярных потоков FPH3/FTMIn, равный 200-300, объясняется высокими структурными и электрофизическими свойствами выращиваемых слоев InP. Использование временного диапазона выращивания буферного слоя InP в течение 20-60 мин обусловлено скоростью роста и необходимостью обеспечения толщины слоя InP в диапазоне 0,5-1.5 мкм. Затем на буферном слое InP выращивают слой InxGa1-xAsyP1-y, где 0,59<х<0,80 и 0,55<у<0,92. Используемый диапазон составов объясняется спектральной чувствительностью фотопреобразователей с краем собственного поглощения в диапазоне 1,25-1,55 мкм, важном как для волоконных линий связи, так и для беспроводной передачи энергии на расстоянии из-за наличия окон прозрачности земной атмосферы. Слой InxGa1-xAsyP1-y формируют путем последовательного выращивания субслоев InxGa1-xAsyP1-y из триметилиндия, триэтилгаллия (TEGa), арсина (AsH3) и фосфина при соотношении молярных потоков (FAsH3+FPH3)/(FTEGa+FTMIn)=80-130, FTEGa/(FTEGa+FTMIn)=0,15-0,39 и FAsH3/(FAsH3+FPH3)=0,018-0,111 толщиной не более 100 нм, при этом после выращивания каждого субслоя InxGa1-xAsyP1-y прекращают подачу триметилиндия, триэтилгаллия, арсина и фосфина на (5-30) с. Диапазон соотношения молярных потоков F: (FAsH3+FPH3)/(FTEGa+FTMIn)=80-130 обусловлен высокими структурными и электрофизическими свойствами выращиваемых в этом диапазоне слоев твердых растворов InxGa1-xAsyP1-y с составами (0,59<х<0,80 и 0,08<у<0,55). Использование соотношений молярных потоков FTEGa/(FTEGa+FTMIn)=0,15-0,39 и FAsH3/(FAsH3+FPH3)=0,018-0,111 объясняется необходимостью получения слоев InxGa1-xAsyP1-y в необходимом диапазоне составов (0,59<х<0,80 и 0,55<у<0,92), при этом толщина этих слоев (не более 100 нм) обусловлена предельной толщиной слоев InxGa1-xAsyP1-y, при которой они остаются стабильными и не распадаются на равновесные составы. Использование границ временного интервала (5-30 с) пауз между ростом отдельных субслоев объясняется геометрией применяемого реактора и скоростью потока газов, необходимой для полной смены газовой смеси в зоне роста.

Пример 1. Гетероструктура InGaAsP/InP фотопреобразователя была выращена на подложке n-InP (001), которая во время роста вращалась со скоростью 100 об/мин, методом МОСГФЭ на установке AIXTRON-200 с реактором горизонтального типа при давлении в реакторе 100 мбар, в суммарном потоке через реактор 5,5 л/мин газа-носителя (водорода) с точкой росы не хуже 100°C из источников элементов: триметилиндия, триэтилгаллия, фосфина и арсина при температуре роста 600°C. Вначале был выращен буферный слой InP толщиной 500 нм из триметилиндия (TMIn) и фосфина (РН3) при соотношении молярных потоков FPH3/FTMIn=300 в течение 20 минут. На буферном слое InP последовательно выращивали двенадцать слоев InxGa1-xAsyP1-y, где х=0,8 и у=0,55, из триметилиндия, триэтилгаллия, арсина и фосфина при соотношении молярных потоков (FAsH3+FPH3)/(FTEGa+FTMIn)=130, FTEGa/(FTEGa+FTMIn)=0,15 и FAsH3/(FAsH3+FPH3)=0,018 толщиной 85 нм. Структуры преднамеренно не легировались. После выращивания каждого из слоев InGaAsP прекращали подачу в зону роста реагентов на время, равное 30 с, в реактор подавали только водород, а затем вновь возобновляли подачу реагентов для выращивания следующего слоя InGaAsP.

Пример 2. Гетероструктура InGaAsP/InP фотопреобразователя была выращена на подложке n-InP (001), которая во время роста вращалась со скоростью 100 об/мин, методом МОСГФЭ на установке AIXTRON-200 с реактором горизонтального типа при давлении в реакторе 100 мбар, в суммарном потоке через реактор 5,5 л/мин газа-носителя (водорода) с точкой росы не хуже 100°C из источников элементов: триметилиндия, триэтилгаллия, фосфина и арсина при температуре роста 650°C. Вначале был выращен буферный слой InP толщиной 1 мкм из триметилиндия и фосфина при соотношении молярных потоков FPH3/FTMIn=200 в течение 60 мин. На буферном слое InP последовательно выращивали пятнадцать слоев InxGa1-xAsyP1-y, где х=0,59, у=0,92, из триметилиндия, триэтилгаллия, арсина (и фосфина при соотношении молярных потоков (FAsH3+FPH3)/(FTEGa+FTMIn)=80, FTEGa/(FTEGa+FTMIn)=0,39 и FAsH3/(FAsH3+FPH3)=0,111 толщиной 70 нм. Структуры преднамеренно не легировались. После выращивания каждого из слоев InGaAsP прекращали подачу в зону роста реагентов на время, равное 5 с, в реактор подавали только водород, а затем вновь возобновляли подачу реагентов для выращивания следующего слоя InGaAsP.

Изготовленные гетероструктуры InGaAsP/InP фотопреобразователя имели стабильный фоточувствительный слой в области спинодального распада четырехкомпонентного твердого раствора InGaAsP. Фоточувствительность фотопреобразователя на основе гетероструктуры, изготовленной в примере 1, имела чувствительность в диапазоне длин волн 0,95-1,30 мкм, а фоточувствительность фотопреобразователя на основе гетероструктуры, изготовленной в примере 2, имела чувствительность в диапазоне длин волн 0,95-1,55 мкм.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 114.
20.10.2013
№216.012.773e

Топливный элемент и батарея топливных элементов

Изобретение относится к области электрохимической энергетики. Топливный элемент (1) включает мембранно-электродную сборку (2), к аноду которой примыкает упругая пластинчатая диэлектрическая прокладка из химически инертного материала (12), первая и вторая герметизирующие прокладки (5), (8). В...
Тип: Изобретение
Номер охранного документа: 0002496186
Дата охранного документа: 20.10.2013
27.01.2014
№216.012.9cf6

Способ получения слоя прозрачного проводящего оксида на стеклянной подложке

Изобретение относится к технологии тонкопленочных фотоэлектрических преобразователей с текстурированным слоем прозрачного проводящего оксида. Способ получения слоя прозрачного проводящего оксида на стеклянной подложке включает нанесение на стеклянную подложку слоя оксида цинка ZnO химическим...
Тип: Изобретение
Номер охранного документа: 0002505888
Дата охранного документа: 27.01.2014
10.05.2014
№216.012.c135

Концентраторный каскадный фотопреобразователь

Изобретение относится к полупроводниковым фотопреобразователям, в частности к концентраторным каскадным солнечным фотоэлементам, которые преобразуют концентрированное солнечное излучение в электроэнергию. Концентраторный каскадный фотопреобразователь содержит подложку (1) p-Ge, в которой создан...
Тип: Изобретение
Номер охранного документа: 0002515210
Дата охранного документа: 10.05.2014
20.07.2014
№216.012.dfe7

Способ отбраковки мощных светодиодов на основе ingan/gan

Изобретение относится к полупроводниковой технике. Способ включает измерение значения спектральной плотности низкочастотного шума каждого светодиода при подаче напряжения в прямом направлении и плотности тока из диапазона 0.1
Тип: Изобретение
Номер охранного документа: 0002523105
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e266

Активный материал для мазера с оптической накачкой и мазер с оптической накачкой

Изобретение относится к квантовой электронике. Активный материал для мазера с оптической накачкой содержит кристалл карбида кремния, содержащего парамагнитные вакансионные дефекты. Мазер с оптической накачкой включает генератор (1) сверхвысокой частоты (СВЧ), циркулятор (2), магнит (3), между...
Тип: Изобретение
Номер охранного документа: 0002523744
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f3f6

Способ изготовления каскадных солнечных элементов на основе полупроводниковой структуры galnp/galnas/ge

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста....
Тип: Изобретение
Номер охранного документа: 0002528277
Дата охранного документа: 10.09.2014
10.01.2015
№216.013.1d6b

Способ получения платинусодержащих катализаторов на наноуглеродных носителях

Изобретение относится к области водородной энергетики, а именно к разработке катализаторов для воздушно-водородных топливных элементов (ВВТЭ), в которых в качестве катализаторов можно использовать платинированные углеродные материалы. Способ получения платинусодержащих катализаторов на...
Тип: Изобретение
Номер охранного документа: 0002538959
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.224c

Инжекционный лазер с многоволновым модулированным излучением

Использование: для управления лазерным излучением. Сущность изобретения заключается в том, что инжекционный лазер с многоволновым модулированным излучением на основе гетероструктуры содержит первый оптический Фабри-Перо резонатор, ограниченный с одной стороны первым отражателем, с другой...
Тип: Изобретение
Номер охранного документа: 0002540233
Дата охранного документа: 10.02.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
Показаны записи 11-20 из 60.
10.09.2014
№216.012.f3f6

Способ изготовления каскадных солнечных элементов на основе полупроводниковой структуры galnp/galnas/ge

Способ изготовления каскадных солнечных элементов включает последовательное нанесение на фронтальную поверхность фоточувствительной полупроводниковой структуры GaInP/GaInAs/Ge пассивирующего слоя и контактного слоя GaAs, локальное удаление контактного слоя травлением через маску фоторезиста....
Тип: Изобретение
Номер охранного документа: 0002528277
Дата охранного документа: 10.09.2014
10.01.2015
№216.013.1dfa

Многопереходный солнечный элемент

Многопереходный солнечный элемент содержит подложку p-Ge (1), в которой создан нижний p-n переход (2), и последовательно выращенные на подложке нуклеационный слой (3) n-GaInP, буферный слой (4) n-GaInAs, нижний туннельный диод (5), средний p-n переход (6), содержащий слой тыльного...
Тип: Изобретение
Номер охранного документа: 0002539102
Дата охранного документа: 10.01.2015
10.04.2015
№216.013.3c9c

Способ изготовления фотопреобразователя на основе gaas

Изобретение относится к области изготовления фоточувствительных полупроводниковых приборов на основе GaAs, позволяющих преобразовывать мощное узкополосное излучение в электрическую энергию для энергоснабжения наземных и космических объектов. Способ изготовления фотопреобразователя на основе...
Тип: Изобретение
Номер охранного документа: 0002547004
Дата охранного документа: 10.04.2015
27.03.2016
№216.014.c751

Концентраторный солнечный фотоэлектрический модуль

Изобретение относится к области солнечной энергетики. Фотоэлектрический модуль (1) содержит боковые стенки (2), фронтальную панель (3) с линзами Френеля (4) на ее внутренней стороне, светопрозрачную тыльную панель (5), солнечные фотоэлементы (б) с байпасными диодами, планки (11), выполненные из...
Тип: Изобретение
Номер охранного документа: 0002578735
Дата охранного документа: 27.03.2016
27.02.2016
№216.014.ce4c

Способ изготовления фотопреобразователя на основе gasb

При изготовлении фотопреобразователя согласно изобретению на тыльной стороне подложки GaSb n-типа проводимости выращивают методом эпитаксии высоколегированный контактный слой n-GaSb, а на лицевой стороне подложки - буферный слой n-GaSb. Наносят на лицевую поверхность подложки диэлектрическую...
Тип: Изобретение
Номер охранного документа: 0002575972
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.ce65

Способ изготовления гетероструктурного солнечного элемента

Способ изготовления гетероструктурного солнечного элемента включает выращивание полупроводниковой гетероструктуры на германиевой подложке, создание омических контактов со стороны тыльной поверхности германиевой подложки и со стороны фронтальной поверхности гетероструктуры, нанесение...
Тип: Изобретение
Номер охранного документа: 0002575974
Дата охранного документа: 27.02.2016
27.02.2016
№216.014.cf0a

Способ формирования многослойного омического контакта к прибору на основе арсенида галлия

Изобретение относится к технологии полупроводниковых приборов. Способ формирования многослойного омического контакта включает предварительное формирование фотолитографией маски из фоторезиста на поверхности арсенида галлия электронной проводимости, очистку свободной от маски поверхности...
Тип: Изобретение
Номер охранного документа: 0002575977
Дата охранного документа: 27.02.2016
10.04.2016
№216.015.2ccb

Система позиционирования и слежения за солнцем концентраторной фотоэнергоустановки

Система позиционирования и слежения за Солнцем концентраторнойфотоэнергоустановки, содержащая платформу с концентраторными каскадными модулями, подсистему азимутального вращения, подсистему зенитального вращения, силовой блок, блок управления положением платформы с блоком памяти, содержащий...
Тип: Изобретение
Номер охранного документа: 0002579169
Дата охранного документа: 10.04.2016
12.01.2017
№217.015.648e

Способ изготовления многопереходного солнечного элемента

Изобретение относится к солнечной энергетике и может быть использовано в электронной промышленности для преобразования световой энергии в электрическую. Способ изготовления многопереходного солнечного элемента согласно изобретению включает последовательное формирование субэлемента из Ge с p-n...
Тип: Изобретение
Номер охранного документа: 0002589464
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.919e

Фотоэлектрический преобразователь

Изобретение относится к электронной технике, а именно к фотоэлектрическим преобразователям солнечной энергии. Фотоэлектрический преобразователь на основе изотипной варизонной гетероструктуры из полупроводниковых соединений A3B5 и/или A2B6 содержит полупроводниковую подложку и изотипный с...
Тип: Изобретение
Номер охранного документа: 0002605839
Дата охранного документа: 27.12.2016
+ добавить свой РИД