×
06.07.2018
218.016.6d48

Результат интеллектуальной деятельности: Способ измерения частотного спектра комплексной диэлектрической проницаемости

Вид РИД

Изобретение

№ охранного документа
0002660284
Дата охранного документа
05.07.2018
Аннотация: Использование: для проведения измерений частотных спектров комплексной диэлектрической проницаемости веществ в диапазоне частот от 0,01 до 15 ГГц. Сущность изобретения заключается в том, что способ измерения частотного спектра комплексной диэлектрической проницаемости в диапазоне частот от 0,01 до 15 ГГц основан на измерении и вычислении частотных спектров каскадно-специфических матриц рассеяния, включает: измерение характеристик коаксиальной измерительной ячейки, заполненной эталонным веществом с известным частотным спектром комплексной диэлектрической проницаемости; нахождение характеристик отрезков ячейки, расположенных слева и справа от отрезка, предназначенного для заполнения исследуемым веществом; измерение характеристик коаксиальной измерительной ячейки, заполненной исследуемым веществом; вычисление характеристик отрезка измерительной ячейки, заполненного исследуемым веществом; вычисление диэлектрической проницаемости заполняющего ячейку диэлектрика, при этом используют коаксиальную измерительную ячейку, обладающую симметричной матрицей рассеяния. Технический результат - обеспечение возможности более точного измерения частотных спектров комплексной диэлектрической проницаемости веществ в диапазоне частот от 0,01 до 15 ГГц. 1 ил.

Изобретение относится к области измерительной техники, а также техники сверхвысоких частот, и предназначено для проведения измерений частотных спектров комплексной диэлектрической проницаемости веществ в диапазоне частот от 0,01 до 15 ГГц, необходимых в дистанционном зондировании Земли из космоса, физико-химическом анализе материалов и во многих других областях науки и техники.

Известно множество методов измерения комплексной диэлектрической проницаемости в диапазоне сверхвысоких частот, среди которых можно выделить резонансные методы, методы открытого конца волновода, методы открытого пространства и коаксиально-волноводные методы. По совокупности таких характеристик, как возможность проведения измерений в широком диапазоне частот, диапазон измерения реальной и мнимой части комплексной диэлектрической проницаемости, точность измерений и стоимость необходимого для проведения измерений оборудования, наилучшим вариантом являются коаксиально-волноводные методы. Суть данных методов заключается в помещении исследуемого вещества в отрезок коаксиального волновода, с последующим измерением параметров рассеяния данного отрезка волновода и вычислением комплексной диэлектрической проницаемости с помощью известных формул, связывающих эти величины. На практике не удается напрямую измерить параметры рассеяния волны на исследуемом веществе, так как в тракте всегда присутствуют кабели и переходные устройства, служащие для соединения отрезка, заполненного исследуемым веществом, с измерительным прибором (например, векторным анализатором цепей). Совокупность переходных устройств и отрезка коаксиальной линии, заполненного исследуемым веществом, называется коаксиальной измерительной ячейкой. Для устранения влияния переходных устройств приходится проводить дополнительную процедуру калибровки.

Известен способ измерения комплексной диэлектрической проницаемости [ K. Bilinear calibration of coaxial transmission/reflection cells for permittivity measurement of low-loss liquids //Measurement Science and Technology. - 1996. - T. 7. - №. 9. - C. 1260], заключающийся в измерении трех эталонных жидкостей с заранее известными значениями комплексной диэлектрической проницаемости, последующем нахождении калибровочных коэффициентов, измерении параметров рассеяния исследуемого вещества и вычислении комплексной диэлектрической проницаемости с использованием полученных ранее калибровочных коэффициентов. Недостатками этого способа является необходимость использования большого числа калибровочных жидкостей, что усложняет проведение эксперимента. При этом данный способ требует, чтобы значения диэлектрической проницаемости эталонных жидкостей были близки к диэлектрической проницаемости исследуемого вещества, что труднодостижимо во многих практически интересных случаях.

Наиболее близким по совокупности существенных признаков способом является способ [Миронов В.Л. и др. Методика измерения частотного спектра комплексной диэлектрической проницаемости почв //Радиотехника и электроника. - 2010. - Т. 55. - №. 12. - С. 1465-1470], заключающийся в измерении параметров рассеяния двух пустых коаксиальных измерительных ячеек идентичной конструкции, но с разными длинами отрезков коаксиальной линии, предназначенных для заполнения исследуемым веществом. С использованием этих данных находятся калибровочные коэффициенты, затем проводится измерение исследуемого образца с использованием одной из ячеек и производится вычисление комплексной диэлектрической проницаемости исследуемого образца с использованием полученных ранее калибровочных коэффициентов. К достоинствам этого метода можно отнести то, что он предоставляет простую методику калибровки измерительной ячейки, не требующую использования эталонных диэлектриков. Недостатком этого метода является то, что он дает серьезные ошибки в окрестностях группы частот, пропорциональных модулю разницы длин измерительных ячеек, использованных для калибровки.

Предлагаемое изобретение направленно на то, чтобы измерения комплексной диэлектрической проницаемости проводились в как можно более широком диапазоне частот, с минимальными погрешностями, затратами реактивов (эталонных диэлектриков) и труда оператора.

Техническим результатом при использовании изобретения является исключение потребности в использовании большого числа эталонных диэлектриков при проведении измерений, а также отсутствие областей с большой ошибкой в измеренном частотном спектре комплексной диэлектрической проницаемости.

Предлагаемый способ измерения частотного спектра комплексной диэлектрической проницаемости предполагает использование коаксиальной измерительной ячейки, обладающей симметричной конструкцией и, соответственно, симметричной матрицей рассеяния. Волновое сопротивление всех участков ячейки, не заполненной калибровочным или исследуемым веществом, равно волновому сопротивлению выходных разъемов измерительного прибора. При этом фидер, соединяющий коаксиальную измерительную ячейку с измерительным прибором, имеет то же значение волнового сопротивления.

Существенные признаки, отличающие предлагаемый способ от прототипа, заключаются в том, что предлагаемый способ предполагает использование измерительной ячейки, обладающей симметричной матрицей рассеяния, что позволяет производить более точную калибровку без внесения значительной ошибки в диапазоне частот от 0,01 до 15 ГГц.

На фиг. 1 представлена предлагаемая коаксиальная измерительная ячейка. Она состоит из области для размещения исследуемого образца поз. 1, трех разъемных поз. 2, 3 и одной сплошной поз. 4 диэлектрических шайб, жилы измерительной поз. 5 и жилы концевой поз. 6, соединяющихся в месте соприкосновения шайбы поз. 3 и рабочего объема поз. 1, капсулы измерительной поз. 7, двух втулок концевых поз. 9, 11, двух втулок промежуточных поз. 8, 10, гаек разъема поз. 12, 13 и одной гайки фиксации поз. 14. Шайбы поз. 2, 3, 4 служат для предотвращения продольных и поперечных смещений жил поз. 5, 6, а также для удержания. Без заполнения образцом, линия передачи, образуемая данной конструкцией, имеет одинаковое волновое сопротивление по всей длине.

Коаксиальную измерительную ячейку можно представить в виде трех последовательно соединенных четырехполюсников. Каскадно-специфическая матрица рассеяния для такой системы имеет вид:

где Т - каскадно-специфическая матрица рассеяния коаксиальной измерительной ячейки; Ts - каскадно-специфическая матрица рассеяния, характеризующая участок волновода, заполненного исследуемым образцом; T1 - каскадно-специфическая матрица рассеяния, характеризующая участок слева от участка, заполненного образцом; Т2 - каскадно-специфическая матрица рассеяния, характеризующая участок справа от участка, заполненного образцом.

Выражая из (1) Ts, получим выражение, связывающие каскадно-специфическую матрицу рассеяния коаксиальной измерительной ячейки, заполненной образцом с каскадно-специфической матрицей рассеяния исследуемого образца:

Ввиду того что предлагаемая коаксиальная измерительная ячейка образует симметричную линию передачи:

При выполнении измерений сначала измеряется частотный спектр каскадно-специфической матрицы рассеяния коаксиальной измерительной ячейки, заполненной эталонным диэлектриком с известным частотным спектром диэлектрической проницаемости.

Затем, решая уравнение (1) с учетом (3) и данных измерений ячейки, заполненной эталонным диэлектриком, можно найти частотные спектры T1 и Т2.

Затем, используя выражение (2), вычисляется частотный спектр каскадно-специфической матрицы рассеяния Ts участка волновода, заполненного исследуемым образцом.

В завершение процесса измерений, используя известные формулы, связывающие каскадно-специфическую матрицу рассеяния исследуемого образца с его диэлектрической проницаемостью, производится вычисление ее частотного спектра.

Таким образом, благодаря всей совокупности признаков заявляемого технического решения обеспечивается измерение комплексной диэлектрической проницаемости в диапазоне частот от 0,01 до 15 ГГц, как и в прототипе, но с меньшей погрешностью.

Способ измерения частотного спектра комплексной диэлектрической проницаемости в диапазоне частот от 0,01 до 15 ГГц, основанный на измерении и вычислении частотных спектров каскадно-специфических матриц рассеяния, включающий: измерение характеристик коаксиальной измерительной ячейки, заполненной эталонным веществом с известным частотным спектром комплексной диэлектрической проницаемости; нахождение характеристик отрезков ячейки, расположенных слева и справа от отрезка, предназначенного для заполнения исследуемым веществом; измерение характеристик коаксиальной измерительной ячейки, заполненной исследуемым веществом; вычисление характеристик отрезка измерительной ячейки, заполненного исследуемым веществом; вычисление диэлектрической проницаемости заполняющего ячейку диэлектрика, отличающийся тем, что используют коаксиальную измерительную ячейку, обладающую симметричной матрицей рассеяния.
Способ измерения частотного спектра комплексной диэлектрической проницаемости
Способ измерения частотного спектра комплексной диэлектрической проницаемости
Источник поступления информации: Роспатент

Показаны записи 11-20 из 78.
10.05.2018
№218.016.48e5

Способ управления способностью растворов солей к нуклеации при кристаллизации

Изобретение относится к технологическим процессам, касающимся выделения из растворов солей в виде кристаллической массы, и предназначено для нереагентного изменения способности кристаллогидратов металлов регулировать инициирование зародышей и таким образом управлять числом зародышей и размерами...
Тип: Изобретение
Номер охранного документа: 0002651006
Дата охранного документа: 18.04.2018
09.06.2018
№218.016.5ca5

Способ получения плитных материалов на основе кавитированного растительного сырья и синтетических связующих

Изобретение относится к деревообрабатывающей промышленности, в частности к получению плитных материалов из пресс-массы в виде растительного сырья. В результате кавитационного воздействия образуется пресс-масса с содержанием легко- и трудногидролизуемых полисахаридов 14-16% и 34-36%...
Тип: Изобретение
Номер охранного документа: 0002656067
Дата охранного документа: 30.05.2018
16.06.2018
№218.016.620d

Средство, обладающее противовоспалительным и анальгезирующим действием

Изобретение относится к фармацевтической промышленности и представляет собой средство, обладающее противовоспалительным и анальгезирующим действием, представляющее собой метиловый эфир 4-(бета-д-глюкопиранозилокси) бензойной кислоты. Изобретение обеспечивает расширение арсенала средств,...
Тип: Изобретение
Номер охранного документа: 0002657803
Дата охранного документа: 15.06.2018
25.06.2018
№218.016.6600

Универсальная оболочечная травматическая пуля для нарезного и гладкоствольного огнестрельного оружия с возможностью модификации в частично раздробляющуюся пулю

Изобретение относится к области огнестрельного оружия, в частности к производству метательных пуль, предназначенных для несмертельного или смертельного механического поражения. Оболочечная травматическая пуля для нарезного и гладкоствольного огнестрельного оружия. Данная задача решается...
Тип: Изобретение
Номер охранного документа: 0002658685
Дата охранного документа: 22.06.2018
24.07.2018
№218.016.73be

Способ пластической деформации алюминия и его сплавов

Изобретение относится к области пластической обработки металлов и может быть использовано в различных областях промышленности и науки для пластической деформации алюминия и сплавов из алюминия. Способ пластической деформации алюминия и его сплавов включает механическое нагружение деформируемого...
Тип: Изобретение
Номер охранного документа: 0002661980
Дата охранного документа: 23.07.2018
24.07.2018
№218.016.7431

Способ рентгенофлуоресцентного определения золота

Использование: для определения золота рентгенофлуоресцентным методом. Сущность изобретения заключается в том, что определение золота проводят размещая исследуемый объект в потоке рентгеновского излучения трубки с анодом из молибдена и измеряя спектр характеристического излучения на...
Тип: Изобретение
Номер охранного документа: 0002662049
Дата охранного документа: 23.07.2018
28.07.2018
№218.016.7708

Набор синтетических олигонуклеотидов для проведения метилчувствительной амплификации днк

Изобретение относится к области биотехнологии, молекулярной генетики и молекулярной биологии. Используется для синтеза, детектирования и последующего секвенирования ДНК с метилированными CpG-динуклеотидами. Создают набор синтетических олигонуклеотидов, включающий последовательности нуклеотидов:...
Тип: Изобретение
Номер охранного документа: 0002662664
Дата охранного документа: 26.07.2018
28.09.2018
№218.016.8c64

Питательная среда для культивирования bacillus subtilis вкпм в-12079

Изобретение относится к биотехнологии и микробиологии. Питательная среда для культивирования бактерий Bacillus subtilis ВКПМ В-12079 содержит пептон ферментативный, дрожжевой экстракт, натрий хлористый, 96%-ный спиртовой экстракт кофе арабика и дистиллированную воду при заданном соотношении...
Тип: Изобретение
Номер охранного документа: 0002668173
Дата охранного документа: 26.09.2018
28.09.2018
№218.016.8c9f

Питательная среда для культивирования bacillus subtilis

Изобретение относится к биотехнологии и микробиологии. Питательная среда для культивирования бактерий Bacillus subtilis содержит пептон ферментативный, дрожжевой экстракт, натрий хлористый, 40%-ный спиртовой экстракт кровохлебки лекарственной (Sanguisorba officinalis L.) и дистиллированную воду...
Тип: Изобретение
Номер охранного документа: 0002668178
Дата охранного документа: 26.09.2018
28.09.2018
№218.016.8cb6

Способ активации спор бактерий bacillus subtilis вкпм в-12079 перед определением количества жизнеспособных клеток

Изобретение относится к области биохимии. Предложен способ активации спор бактерий Bacillus subtilis ВКПМ В-12079 перед определением количества жизнеспособных клеток. Способ включает активацию сухих спор Bacillus subtilis ВКПМ В-12079 ультразвуком в течение 15-20 секунд при температуре 32-34°С,...
Тип: Изобретение
Номер охранного документа: 0002668180
Дата охранного документа: 26.09.2018
Показаны записи 1-1 из 1.
27.05.2023
№223.018.707f

Способ косвенного измерения теплопроводности по данным диэлькометрических измерений

Изобретение относится к измерительной технике и радиотехнике сверхвысоких частот и может использоваться для одновременного измерения теплофизических и диэлектрических параметров образцов. Для определения теплопроводности образец помещают в коаксиальную измерительную ячейку, которую помещают в...
Тип: Изобретение
Номер охранного документа: 0002789020
Дата охранного документа: 27.01.2023
+ добавить свой РИД