×
06.07.2018
218.016.6d27

Результат интеллектуальной деятельности: Способ исследования геометрических параметров каверны подземного хранилища газа

Вид РИД

Изобретение

Аннотация: Изобретение относится к метрологии, в частности к устройствам для контроля формы и размеров подземных хранилищ газа. Способ исследования геометрических параметров каверны подземного хранилища газа с установленной в ней насосно-компрессорной трубой с помощью ультразвукового сканирующего звуколокатора заключается в облучении ультразвуковыми зондирующими импульсами стенок исследуемой каверны в горизонтальных и наклонных плоскостях на различных глубинах каверны, заполненной рабочей жидкостью, и последующем измерении времен распространения зондирующими импульсами двойного расстояния от стенок каверны до приемо-передающего электроакустического преобразователя звуколокатора, по которым определяют геометрические размеры и форму каверны. Лоцирование каверны в горизонтальных плоскостях проводят через насосно-компрессорную трубу, а в наклонных плоскостях - при выходе преобразователя звуколокатора из трубы, при этом при лоцировании каверны в горизонтальных плоскостях длительность зондирующих импульсов задается не превышающей двух периодов несущей частоты F=C/2d, а амплитуда собственных колебаний электроакустического преобразователя - меньшей амплитуды зондирующих импульсов, где С - скорость продольных колебаний в материале трубы, d - толщина стенки трубы. Технический результат – обеспечение возможности исследования каверны через насосно-компрессорные трубы. 4 з.п. ф-лы, 1 ил.

Изобретение относится к подземным хранилищам газа (ПХГ) и может быть применено для определения формы и размеров каверны ПХГ, в том числе с установленной в ней насосно-компрессорной трубой (НКТ), с помощью ультразвукового сканирующего звуколокатора.

Известен способ того же назначения, заключающийся в лоцировании ультразвуковыми зондирующими импульсами стенок исследуемой каверны в горизонтальных и наклонных плоскостях на различных глубинах каверны, заполненной рабочей жидкостью, и последующем измерении времен распространения зондирующими импульсами двойного расстояния от стенок каверны до приемо-передающего электроакустического преобразователя звуколокатора, по которым определяют геометрические размеры и форму каверны /Патент США №5767401, кл. 73/152.54 (Е21В 47/00), 1998; Патент Франции №2723783, кл. G01C 7/06, 1995/.

Любой из известных способов, например, последний, может быть принят за прототип.

Недостатком прототипа является невозможность исследования каверны ПХГ с помощью ультразвукового сканирующего звуколокатора непосредственно через НКТ.

Техническим результатом, получаемым от применения изобретения, является устранение недостатка прототипа, т.е. получение возможности исследования каверны ПХГ через НКТ.

Данный технический результат достигается тем, что в известном способе исследования каверны подземного хранилища газа с установленной в ней насосно-компрессорной трубой с помощью ультразвукового сканирующего звуколокатора, заключающемся в лоцировании ультразвуковыми зондирующими импульсами стенок исследуемой каверны в горизонтальных и наклонных плоскостях на различных глубинах каверны, заполненной рабочей жидкостью, и последующем измерении времен распространения зондирующими импульсами двойного расстояния от стенок каверны до приемо-передающего электроакустического преобразователя звуколокатора, по которым определяют геометрические размеры и форму каверны, лоцирование каверны в горизонтальных плоскостях проводят через насосно-компрессорную трубу, а в наклонных плоскостях - при выходе преобразователя звуколокатора из трубы, при этом при лоцировании каверны в горизонтальных плоскостях длительность зондирующих импульсов задается не превышающей двух периодов несущей частоты F=C/2d, а амплитуда собственных колебаний электроакустического преобразователя - меньшей амплитуды зондирующих импульсов, где С - скорость продольных колебаний в материале трубы, d - толщина стенки трубы.

Несущая частота зондирующего импульса задается равной F=250-600 кГц.

В качестве электроакустического преобразователя используют преобразователь из композитной керамики.

При выходе преобразователя звуколокатора из трубы проводят дополнительное лоцирование каверны в горизонтальных плоскостях.

При лоцировании ультразвуковыми зондирующими импульсами стенок исследуемой каверны в горизонтальных плоскостях одновременно измеряют скорость звука на лоцированной глубине каверны, а при лоцировании в наклонных плоскостях скорость звука по направлению лоцирования определяют аналитически по результатам измерения скорости звука в горизонтальных плоскостях.

Изобретение поясняется чертежом (Фиг. 1), на котором представлена схема реализации способа.

Способ реализуется в каверне 1 ПХГ с установленной в ней НКТ 2.

В каверну 1 через НКТ 2 опускается ультразвуковой сканирующий звуколокатор 3, содержащий, как в прототипе, вращающуюся часть 4 и поворотную часть 5. Вращающаяся часть 4 соединяется со штангой 6 звуколокатора через шарнир 7, а поворотная часть 5 с вращающейся частью 4 соединяются через шарнир 8.

На поворотной части 5 с двух сторон установлены приемо-передающие ультразвуковые преобразователи 9, 10.

Внутри поворотной части 5, сообщающейся с рабочей жидкостью каверны 1, расположены передающий и приемный ультразвуковые преобразователи 11, 12.

Преобразователи 11, 12 расположены на известном расстоянии друг от друга примерно на одном уровне с преобразователями 9, 10.

Звуколокатор включает в себя также перестраиваемый по частоте звуковой генератор, блок обработки информации, управляемые двигатели для вращения части 4 и поворота части 5, блоки управления и позиционирования. Все эти блоки на чертеже не показаны и выполнены по аналогии с прототипом.

Реализация способа основана на том, что частота F радиального резонанса НКТ равна F=C/2d, где С - скорость продольных колебаний в материале трубы (стали); d - толщина стенки трубы [журнал «Каротажник», №4 - 2009, с. 98-108].

Обычно толщина стенки трубы равна 5-12 мм, поэтому F=250÷600 кГц. Чтобы проводить измерения одним преобразователем через НКТ с различными толщинами d стенок необходимо возбуждать акустический импульс, имеющий ширину частотного спектра близкую к F. Такую ширину частотного спектра излучения можно достигнуть в акустическом импульсе, например, с несущей частотой 400 кГц и длительностью 1,5-2,0 периода.

Кроме того, амплитуда собственных колебаний электроакустического преобразователя должна быть гораздо меньше амплитуды сигнала ревебрации, чтобы имелась возможность приема отраженного от стенки каверны зондирующего сигнала вне импульса, отраженного от стенки трубы.

Этим условиям удовлетворяют электроакустические преобразователи, активные элементы которых выполнены из композитной керамики, например метаниобат свинцовой.

Способ реализуется следующим образом.

Предварительно подбирают частоту и амплитуду зондирующих импульсов, удовлетворяющих заявленным в формуле изобретения условиям.

В этом случае зондирование каверны 1 ПХГ будет проводиться через НКТ 2 в так называемых окнах прозрачности НКТ 2 по частоте ультразвука.

На каждом уровне лоцирования в горизонтальной плоскости одновременно измеряют скорость звука в жидкости с помощью преобразователей 11, 12 (стрелками показано направление распространения ультразвуковых импульсов в горизонтальных и наклонных плоскостях).

При выходе поворотной части 5 из НКТ 2 проводится лоцирование данной части каверны в наклонных плоскостях. При этом скорость звука в жидкости определяется аналитически по результатам измерения скоростей звука в горизонтальных плоскостях.

Лоцирование купольной части каверны проводится в горизонтальных плоскостях через НКТ 2 и уточняется при лоцировании в наклонных плоскостях.

Таким образом, достигается поставленный технический результат.


Способ исследования геометрических параметров каверны подземного хранилища газа
Способ исследования геометрических параметров каверны подземного хранилища газа
Источник поступления информации: Роспатент

Показаны записи 51-60 из 100.
09.06.2018
№218.016.5c6a

Аппаратура для контроля защитного изоляционного покрытия технологических и магистральных трубопроводов

Использование: для обнаружения дефектов изоляционного покрытия технологических или магистральных трубопроводов или иных изделий, расположенных в труднодоступных местах. Сущность изобретения заключается в том, что аппаратура для контроля защитного изоляционного покрытия технологических или...
Тип: Изобретение
Номер охранного документа: 0002655991
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5c70

Аппаратура для обнаружения дефектов трубопроводов

Использование: для неразрушающего контроля технического состояния трубопроводов акустическим способом. Сущность изобретения заключается в том, что аппаратура для обнаружения дефектов трубопроводов содержит кольцевую приемо-передающую акустическую систему, выполненную в виде антенных решеток...
Тип: Изобретение
Номер охранного документа: 0002655982
Дата охранного документа: 30.05.2018
09.06.2018
№218.016.5c72

Способ ультразвукового эхо-импульсного неразрушающего контроля трубопроводов и аппаратура для его осуществления

Использование: для обнаружения различных дефектов в трубопроводах и других объектах методом направленных акустических волн. Сущность изобретения заключается в том, что при дефектоскопии последовательно используется два типа зондирующих акустических волн: продольные, распространяющиеся вдоль...
Тип: Изобретение
Номер охранного документа: 0002655983
Дата охранного документа: 30.05.2018
05.07.2018
№218.016.6bf5

Способ производства сжиженного природного газа

Изобретение относится к газоперерабатывающей отрасли промышленности. Посредством фильтра проводят очистку природного газа от механических примесей и капельной жидкости. Затем в мембранном блоке проводят предварительную осушку газа. Пермеат направляют в трубопровод низкого давления. Газ после...
Тип: Изобретение
Номер охранного документа: 0002659870
Дата охранного документа: 04.07.2018
08.07.2018
№218.016.6e13

Способ определения формы и размеров каверны подземных хранилищ газа, создаваемых в отложениях каменной соли, и звуколокатор для реализации способа

Изобретения относятся к метрологии, в частности к средствам контроля формы и размеров подземных хранилищ газа. Звуколокатор содержит узел контроля высоты h положения звуколокатора и цилиндрический корпус, состоящий из трех последовательно установленных частей. Центральная часть выполнена с...
Тип: Изобретение
Номер охранного документа: 0002660400
Дата охранного документа: 06.07.2018
09.08.2018
№218.016.79ef

Битумно-полимерная грунтовка

Изобретение относится к составам битумно-полимерных грунтовок для защиты от коррозии стальных трубопроводов, металлических резервуаров и нефтехранилищ промышленно-гражданского строительства. Битумно-полимерная грунтовка содержит мастику битумно-полимерную, фенолформальдегидную смолу,...
Тип: Изобретение
Номер охранного документа: 0002663134
Дата охранного документа: 01.08.2018
14.11.2018
№218.016.9d13

Способ комплексной переработки остатка атмосферной дистилляции газового конденсата и установка для его осуществления

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов под давлением водорода в присутствии гетерогенных наноразмерных катализаторов и может быть...
Тип: Изобретение
Номер охранного документа: 0002672254
Дата охранного документа: 13.11.2018
07.12.2018
№218.016.a458

Способ гидроконверсии остатка атмосферной дистилляции газового конденсата

Изобретение относится к способам переработки тяжелого углеводородного сырья с чрезвычайно высоким содержанием парафино-нафтеновых углеводородов и низким содержанием нативных смол и асфальтенов и может быть использовано при переработке остатка атмосферной дистилляции газового конденсата АОГК. В...
Тип: Изобретение
Номер охранного документа: 0002674160
Дата охранного документа: 05.12.2018
09.12.2018
№218.016.a52f

Буферная жидкость

Изобретение относится к области крепления скважин, а именно к буферным жидкостям для очистки скважин. Технический результат - получение стабильной утяжеленной буферной жидкости на углеводородной основе, обладающей высокой моющей способностью и пониженным показателем фильтрации, позволяющей...
Тип: Изобретение
Номер охранного документа: 0002674348
Дата охранного документа: 07.12.2018
15.12.2018
№218.016.a7fe

Аппарат и способ получения водородсодержащего газа

Изобретение относится к аппарату и способу получения водородсодержащего газа. Способ включает в себя подачу парометановой смеси в межтрубное пространство коаксиального смесителя, установленного на верхнем корпусе реактора. Далее подвод паровоздушной смеси в центральную трубу, а также подвод...
Тип: Изобретение
Номер охранного документа: 0002674971
Дата охранного документа: 13.12.2018
Показаны записи 31-36 из 36.
22.06.2019
№219.017.8e42

Способ оценки фазового состояния углеводородных флюидов в поровом пространстве коллекторов нефтегазоконденсатных месторождений комплексом нейронных методов

Использование: для геофизических исследований нейтронными методами обсаженных нефтегазоконденсатных скважин (НГКС), а именно для оценки фазового состояния легких углеводородов в поровом пространстве коллекторов. Сущность изобретения заключается в том, что применяют нейтрон-нейтронный каротаж по...
Тип: Изобретение
Номер охранного документа: 0002692088
Дата охранного документа: 21.06.2019
03.07.2019
№219.017.a3e8

Способ определения минерализации пластовой жидкости в обсаженных нефтегазовых скважинах на основе стационарных нейтронных методов

Изобретение относится к нефтегазодобывающей промышленности, к методам нейтронного каротажа для определения минерализации скважинной жидкости по химическим элементам с аномальным поглощением нейтронов, с целью определения геологических параметров разрезов обсаженных нефтегазовых скважин....
Тип: Изобретение
Номер охранного документа: 0002693102
Дата охранного документа: 01.07.2019
17.10.2019
№219.017.d724

Способ контроля герметичности муфтовых соединений эксплуатационной колонны и выявления за ней интервалов скоплений газа в действующих газовых скважинах стационарными нейтронными методами

Изобретение относится к газодобывающей отрасли и может быть использовано для контроля герметичности муфтовых соединений эксплуатационных колонн (ЭК) в действующих газовых скважинах, а также для выявления интервалов скоплений газа за ЭК с использованием многозондового нейтронного каротажа....
Тип: Изобретение
Номер охранного документа: 0002703051
Дата охранного документа: 15.10.2019
27.12.2019
№219.017.f2e2

Метод нейтронной цементометрии для диагностики заполнения облегченным цементным камнем заколонного пространства нефтегазовых скважин (варианты)

Изобретение относится к нефтегазодобывающей промышленности, в частности к средствам контроля состояния цементного камня за обсадной колонной нефтегазовых скважин и качества цементирования. Технический результат заключается в повышении достоверности результатов исследований скважин нейтронными...
Тип: Изобретение
Номер охранного документа: 0002710225
Дата охранного документа: 25.12.2019
27.05.2020
№220.018.20df

Система вентиляции перегонных тоннелей между станциями метрополитена в режиме дымоудаления при пожаре на перегоне

Изобретение относится к вентиляции и может быть использовано для системы основной (тоннельной) вентиляции метрополитена. Технический результат заключается в обеспечении эффективного дымоудаления из перегонов при пожаре. Система вентиляции перегонных тоннелей между станциями метрополитена в...
Тип: Изобретение
Номер охранного документа: 0002721990
Дата охранного документа: 25.05.2020
20.04.2023
№223.018.4b5b

Способ оценки газонасыщенности галитизированных коллекторов газовых скважин в процессе проведения нейтрон-нейтронного каротажа

Изобретение относится к области ядерно-физических методов исследований газовых скважин, к способам оценки газонасыщенности коллекторов, поровое пространство которых, наряду с газом, содержит галит (соль). Заявлен способ оценки газонасыщенности галитизированных коллекторов путем регистрации и...
Тип: Изобретение
Номер охранного документа: 0002766063
Дата охранного документа: 07.02.2022
+ добавить свой РИД