×
06.07.2018
218.016.6ce9

Результат интеллектуальной деятельности: Способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота

Вид РИД

Изобретение

Аннотация: Изобретение относится к области неорганической химии и касается способа получения наночастиц магнетита (FeO), эпитаксиально выращенных на наночастицах золота, которые могут быть использованы в магнитно-резонансной томографии в качестве контрастного агента, в магнитной сепарации, магнитной гипертермии, адресной доставке лекарств при помощи внешнего магнитного поля. Способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, включает нагрев до 120°С в атмосфере инертного газа при перемешивании смеси дифенилового эфира, олеиновой кислоты, олеиламина и 1,2-гексадекандиола, введение в смесь пентакарбонила железа, выдерживание полученной смеси с последующим введением раствора, содержащего смесь тригидрата золотохлористоводородной кислоты и олеиламина в дифениловом эфире, предварительно выдержанного в атмосфере инертного газа, повторный нагрев при температуре 250-260°С, выдерживание нагретой смеси при температуре 250-260°С в течение 25-30 мин, ее последующее охлаждение до комнатной температуры, проводимые в атмосфере инертного газа, выдерживание смеси в присутствии воздуха, добавление в смесь одноатомного спирта и отделение наночастиц магнетита центрифугированием. Строение полученных наночастиц напоминает гантель, в которой наночастица магнетита химически связана с наночастицей золота. Предложенный способ позволяет получать наночастицы магнетита диаметром 4±1 нм, эпитаксиально выращенные на наночастицах золота диаметром 2±1 нм, что позволяет им проникать внутрь самих клеток и их ядер. 3 пр.

Изобретение относится к области неорганической химии и касается способа получения наночастиц магнетита (Fe3O4) эпитаксиально выращенных на наночастицах золота, которые могут быть использованы в магнитно-резонансной томографии в качестве контрастного агента, в магнитной сепарации, магнитной гипертермии, адресной доставке лекарств при помощи внешнего магнитного поля и т.д. Строение таких наночастиц напоминает гантель, в которой наночастица магнетита химически связана с наночастицей золота.

Известен способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, включающий нагрев до 110°С смеси 0,5 ммоль олеиновой кислоты, 0,5 ммоль олеиламина, 0,1 ммоль коллоидной дисперсии золота, 1 ммоль олеата железа и 5 мл октадецена, выдерживание смеси при этой температуре в течение 20 мин, последующий нагрев смеси до 310°С, ее выдерживание при этой температуре в течение 30 мин, охлаждение смеси до комнатной температуры и отделение наночастиц магнетита путем добавления в смесь этанола и центрифугирования полученной смеси (Lin F., Doong R. Bifunctional Au-Fe3O4 Heterostructures for Magnetically Recyclable Catalysis of Nitrophenol Reduction // J. Phys. Chem. C, 2011. V. 115, P. 6591-6598). Данный способ имеет такие признаки, совпадающие с существенными признаками предлагаемого технического решения, как введение в реакционную систему олеиновой кислоты, олеиламина, органического соединения железа, поэтапный нагрев реакционной смеси в атмосфере инертного газа, выдерживание нагретой смеси, охлаждение смеси до комнатной температуры, добавление в смесь одноатомного спирта и отделение наночастиц центрифугированием.

Известен способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, включающий выдерживание в атмосфере аргона при комнатной температуре в течение 1 ч смеси 0,15 мл пентакарбонила железа, 0,18 г ацетата золота, 0,1 мл олеиновой кислоты, 0,1 мл олеиламина, 350 мг 1,2-гексадекандиола и 20 мл дибензилового эфира, нагрев смеси до 250°С в течение 45 мин, выдерживание смеси при этой температуре в течение 1 ч, последующее охлаждение смеси до комнатной температуры и отделение наночастиц магнетита путем добавления в смесь этанола и центрифугирования полученной смеси (Kostevsek N., Locatelli Е., Garrovo С. et al. One-Step Synthesis and Surface Functionalization of Dumbbell-Like Gold-Iron Oxide Nanoparticles. A Chitosan-Based Nanotheranostic System // Chem. Commun., 2016. V. 52, P. 378-381). Данный способ имеет такие признаки, совпадающие с существенными признаками предлагаемого технического решения, как введение в реакционную систему олеиновой кислоты, олеиламина, 1,2-гексадекандиола, пентакарбонила железа и соединения золота, нагрев реакционной смеси в атмосфере инертного газа, выдерживание нагретой смеси и ее охлаждение до комнатной температуры, добавление в смесь одноатомного спирта и отделение наночастиц центрифугированием.

Наиболее близким к заявляемому является известный способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, включающий нагрев до 120°С в атмосфере инертного газа - азота при перемешивании смеси 20 мл высококипящего органического растворителя - 1-октадецена, 6 ммоль олеиновой кислоты, 6 ммоль олеиламина и 10 ммоль 1,2-гексадекандиола с последующим введением вначале 0,3 мл (2 ммоль) пентакарбонила железа, выдерживание полученной смеси с последующим введением раствора, содержащего смесь 40 мг (0,1 ммоль) тригидрата золотохлористоводородной кислоты и 0,5 мл (1,5 ммоль) олеиламина в 5 мл 1-октадецена, предварительно выдержанного в атмосфере азота, повторный нагрев полученной смеси от 120°С до 310°С, выдерживание нагретой смеси в течение 45 мин, ее последующее охлаждение до комнатной температуры, проводимые в атмосфере инертного газа, выдерживание смеси в присутствии воздуха в течение 1 ч, добавление в смесь 40 мл одноатомного спирта - изопропанола и отделение наночастиц магнетита центрифугированием (Yu Н., Chen М., Rice P.M. et al. Dumbbelllike Bifunctional Au-Fe3O4 Nanoparticles // Nano Lett, 2005. V. 5 (2), P. 379-382 - прототип).

Недостатком известного способа является то, что он дает возможность получать наночастицы магнетита, эпитаксиально выращенные на наночастицах золота, имеющие средний диаметр 14 нанометров (нм) со стандартным отклонением в пределах 12%, которые способны проникать во внутриклеточное пространство, но из-за своих относительно больших размеров не способны проходить внутрь ядра и/или органелл клеток.

Задача изобретения заключается в разработке способа получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, лишенного вышеуказанного недостатка.

Технический результат изобретения заключается в снижении до 4±1 нм диаметра наночастиц магнетита, эпитаксиально выращенных на наночастицах золота диаметром 2±1 нм. Такой размер наночастиц и дальнейшее связывание с их поверхностью различных специально подобранных органических соединений, выполняющих функцию векторов для прохождения через мембраны клетки и ее органелл, позволяет наночастицам проникать как внутрь самих клеток, так и внутрь ее органелл, таких как ядро и/или митохондрии. В качестве такого вектора может быть использован, например, низкомолекулярный лиганд простатического специфического мембранного антигена для проникновения внутрь клеток аденокарциномы предстательной железы человека (Machulkin А.Е., Ivanenkov Y.A., Aladinskaya A.V. et al. Small-molecule PSMA ligands. Current state, SAR and perspectives // J Drug Target, 2016. V. 24, P. 679-693) или пептиды, содержащие сигнал ядерной локализации - NLS-пептиды (Gupta В., Levchenko T.S., Torchilin V.P. Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides // Adv. Drug Deliv. Rev. 2005, V. 57 (4), P. 637-651) для доставки наночастиц в ядро клеток, соответственно. При этом может происходить избирательная сорбция одного из векторов на наночастицах магнетита, а другого - на связанных с магнетитом наночастицах золота. Следует отметить, что при использовании только частиц магнетита малого диаметра (4±1 нм), химически не связанных с наночастицами золота, невозможно осуществить избирательное проникновение наночастиц магнетита либо в клетку, либо в ее органеллы.

Предварительно были проведены эксперименты с различными способами получения наночастиц магнетита, эпитаксиально выращенными на наночастицах золота, которые показали, что указанный результат достигается в том случае, когда в известном способе получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, включающем нагрев до 120°С в атмосфере инертного газа при перемешивании смеси высококипящего органического растворителя, олеиновой кислоты, олеиламина и 1,2-гексадекандиола, введение в смесь пентакарбонила железа, выдерживание полученной смеси с последующим введением раствора, содержащего смесь тригидрата золотохлористоводородной кислоты и олеиламина в высококипящем органическом растворителе, предварительно выдержанного в атмосфере инертного газа, повторный нагрев и выдерживание нагретой смеси и ее последующее охлаждение до комнатной температуры, проводимые в атмосфере инертного газа, выдерживание смеси в присутствии воздуха, добавление в смесь одноатомного спирта и отделение наночастиц магнетита центрифугированием, в качестве высококипящего органического растворителя используют дифениловый эфир, и повторный нагрев смеси в атмосфере инертного газа проводят при температуре 250-260°С, и выдерживание смеси при 250-260°С осуществляют в течение 25-30 мин.

Предлагаемый способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, является новым и не описан в патентной и научно-технической литературе.

В предлагаемом способе в качестве высококипящего органического растворителя используют дифениловый эфир. Экспериментально было показано, что при использовании в предлагаемом способе вместо дифенилового эфира других высококипящих органических растворителей, например, таких, как 1-октадецен или дибензиловый эфир, образуются наночастицы магнетита существенно большего размера (7-14 нм), которые после их модификации способны проникать во внутриклеточное пространство, но из-за своих относительно больших размеров не способны проходить внутрь ядра и/или митохондрий клеток.

В предложенном техническом решении смесь, содержащую дифениловый эфир, олеиновую кислоту, олеиламин и 1,2-гексадекандиол, помещают в трехгорлую круглодонную колбу, снабженную обратным холодильником, высокотемпературным термометром, системой для подачи инертного газа и магнитным телом для перемешивания. При этом количества введенных олеиновой кислоты, олеиламина, 1,2-гексадекандиола и дифенилового эфира могут варьироваться и составлять, например, 1,5-2,5 мл, 1,5-2,5 мл, 2,1-3,1 г и 18-22 мл, соответственно. Затем подают ток инертного газа, под колбой размещают электрическую нагревательную плитку с функцией магнитного перемешивания, включают плитку и осуществляют нагрев содержимого колбы до 120°С в атмосфере любого инертного газа, например, такого, как аргон, азот и т.д. При этом продолжительность нагрева может варьироваться и составлять, например, 30-90 мин. Затем в колбу вводят жидкий пентакарбонил железа в количестве, например, 0,25-0,30 мл. Следует отметить, что и эту стадию синтеза необходимо проводить в атмосфере инертного газа. Пентакарбонил железа вводят одноразово, и после его введения реакционную смесь выдерживают в атмосфере инертного газа в течение определенного времени, например, в течение 3-5 мин.

После выдерживания реакционной смеси туда вводят смесь тригидрата золотохлористоводородной кислоты и олеиламина в дифениловом эфире, предварительно выдержанную в атмосфере любого инертного газа. При этом количества введенных тригидрата золотохлористоводородной кислоты, олеиламина и дифенилового эфира могут быть различными и составлять, например, 38,0-42,0 мг, 0,4-0,6 мл и 4,9-5,1 мл, соответственно. При реализации способа происходит как термическое разложение пентакарбонила железа с образованием наночастиц магнетита, так и восстановление тригидрата золотохлористоводородной кислоты 1,2-гексадекандиолом с образованием наночастиц золота. Ввиду того, что эти процессы протекают с различной скоростью, при осуществлении способа вначале вводят в реакционную смесь 1,2-гексадекандиол и пентакарбонил железа, проводят частичное термическое разложение пентакарбонила железа, и только затем, спустя, например, 3-5 мин, в реакционную систему вводят раствор, содержащий смесь тригидрата золотохлористоводородной кислоты и олеиламина в дифениловом эфире. Введение на первом этапе синтеза 1,2-гексадекандиола, не принимающего участия в реакции термического разложения пентакарбонила железа, обусловлено тем, что 1,2-гексадекандиол является твердым и достаточно труднорастворимым соединением, и ему требуется определенное время и температура для полного растворения в реакционной системе. После введения раствора тригидрата золотохлористоводородной кислоты и олеиламина реакционную смесь повторно нагревают от 120°С до 250-260°С и выдерживают нагретую смесь при этой температуре в течение 25-30 мин. Следует отметить, что данную стадию синтеза также проводят в атмосфере любого инертного газа.

При необходимости получения более значительных количеств наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, количество каждого из используемых реагентов должно быть пропорционально увеличено.

В предлагаемом способе после выдерживания реакционной смеси ее охлаждают до комнатной температуры в атмосфере инертного газа и выдерживают при комнатной температуре в присутствии воздуха в течение определенного времени, например, в течение 30-60 мин.

Если любую из вышеперечисленных стадий синтеза вообще не проводить или проводить в других условиях, чем указано выше, то технический результат изобретения не достигается.

После выдерживания реакционной смеси при комнатной температуре туда вводят одноатомный спирт, в качестве которого можно использовать, например, метанол, этанол, изопропанол и т.д., необходимый для эффективного выпадения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, в осадок в ходе центрифугирования полученной смеси. При этом количество вводимого одноатомного спирта может варьироваться и составлять, например, 150-200% от объема полученной реакционной смеси. Также возможно использовать смесь одноатомных спиртов.

Полученные наночастицы магнетита, эпитаксиально выращенные на наночастицах золота, можно хранить при комнатной или при пониженной температуре в герметично закрытой емкости в сухом виде без ухудшения их эксплуатационных свойств в течение длительного времени, например, в течение года. При этом хранение целесообразно осуществлять в инертной атмосфере в отсутствие влаги.

Методом рентгенофазового анализа было доказано, что в предложенном способе действительно образуются наночастицы с кристаллической структурой магнетита, эпитаксиально выращенные на наночастицах золота. Размер и распределение по размерам наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, были исследованы методом просвечивающей электронной микроскопии. При этом было показано, что каждая сферическая частица магнетита, имеющая диаметр 4±1 нм, соединена с одной сферической частицей золота, имеющей диаметр 2±1 нм. Магнитные свойства полученных наночастиц были исследованы на приборе Вибромагнетометр VSM-250.

После связывания с поверхностью полученных наночастиц различных органических соединений, выполняющих функцию векторов для прохождения через мембраны клетки и ее органелл, проникновение модифицированных наночастиц в клетку и ее органеллы было доказано с использованием метода просвечивающей электронной микроскопии.

Преимущества предлагаемого способа иллюстрируют следующие примеры.

Пример 1.

В трехгорлую круглодонную колбу, снабженную обратным холодильником, высокотемпературным термометром, системой для подачи инертного газа и магнитным телом для перемешивания, помещают 20 мл (126 ммоль) дифенилового эфира, 1,9 мл (2 ммоль) олеиновой кислоты, 2,0 мл (2 ммоль) олеиламина и 2,6 г (10 ммоль) 1,2-гексадекандиола. Затем подают ток аргона, под колбой размещают электрическую нагревательную плитку с функцией магнитного перемешивания, включают плитку и осуществляют нагрев в течение 30 мин содержимого колбы до 120°С при постоянном перемешивании с последующим введением вначале 0,28 мл (2 ммоль) пентакарбонила железа, затем, через 3 мин, раствора, содержащего смесь 40 мг (0,1 ммоль) тригидрата золотохлористоводородной кислоты и 0,5 мл (1,5 ммоль) олеиламина в 5 мл дифенилового эфира, предварительно выдержанного в атмосфере аргона. Затем полученную смесь повторно нагревают от 120°С до 250°С, выдерживают в течение 25 мин при 250°С, после чего охлаждают до комнатной температуры, причем все стадии синтеза проводят в атмосфере аргона. Охлажденную смесь выдерживают при комнатной температуре в присутствии воздуха в течение 30 мин, добавляют в смесь 45 мл одноатомного спирта - изопропанола и отделяют наночастицы магнетита, эпитаксиально выращенные на наночастицах золота, центрифугированием. Отделенные наночастицы сушат до постоянной массы. Получают 45 мг порошка наночастиц. Полученные наночастицы хранят в герметично закрытой емкости в атмосфере аргона в отсутствие влаги при комнатной температуре. В этих условиях наночастицы сохраняют свои эксплуатационные свойства в течение года.

Методом просвечивающей электронной микроскопии было показано, что строение полученных наночастиц напоминает гантель, в которой каждая наночастица магнетита, имеющая сферическую форму и диаметр 4 нм, связана со сферической наночастицей золота диаметром 2 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 55 Ам2/кг.

Пример 2.

В трехгорлую круглодонную колбу, снабженную обратным холодильником, высокотемпературным термометром, системой для подачи инертного газа и магнитным телом для перемешивания, помещают 22 мл (139 ммоль) дифенилового эфира, 2,5 мл (7,9 ммоль) олеиновой кислоты, 2,5 мл (7,5 ммоль) олеиламина и 3,1 г (12 ммоль) 1,2-гексадекандиола. Подают ток азота, под колбой размещают электрическую нагревательную плитку с функцией магнитного перемешивания, включают плитку и осуществляют нагрев в течение 90 мин содержимого колбы до 120°С при постоянном перемешивании с последующим введением вначале 0,30 мл (2,1 ммоль) пентакарбонила железа, затем, через 5 мин, раствора, содержащего смесь 42 мг (0,11 ммоль) тригидрата золотохлористоводородной кислоты и 0,6 мл (1,8 ммоль) олеиламина в 5,1 мл дифенилового эфира, предварительно выдержанного в атмосфере азота. Затем полученную смесь повторно нагревают от 120°С до 260°С, выдерживают в течение 30 мин при этой температуре, после чего охлаждают до комнатной температуры, причем все стадии синтеза проводят в атмосфере азота. Охлажденную смесь выдерживают при комнатной температуре в присутствии воздуха в течение 45 мин, добавляют в нее 35 мл одноатомного спирта - метанола и отделяют наночастицы магнетита, эпитаксиально выращенные на наночастицах золота, центрифугированием. Отделенные наночастицы сушат до постоянной массы. Получают 48 мг порошка наночастиц. Полученные наночастицы хранят в герметично закрытой емкости в атмосфере азота в отсутствие влаги при комнатной температуре. В этих условиях наночастицы сохраняют свои эксплуатационные свойства в течение года.

Методом просвечивающей электронной микроскопии было показано, что строение полученных наночастиц напоминает гантель, в которой каждая наночастица магнетита, имеющая сферическую форму и диаметр 5 нм, связана со сферической наночастицей золота диаметром 3 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 59 Ам2/кг.

Пример 3.

В трехгорлую круглодонную колбу, снабженную обратным холодильником, высокотемпературным термометром, системой для подачи инертного газа и магнитным телом для перемешивания, помещают 18 мл (113 ммоль) дифенилового эфира, 1,5 мл (4,7 ммоль) олеиновой кислоты, 1,5 мл (4,5 ммоль) олеиламина и 2,1 г (8 ммоль) 1,2-гексадекандиола. Подают ток аргона, под колбой размещают электрическую нагревательную плитку с функцией магнитного перемешивания, включают плитку и осуществляют нагрев в течение 60 мин содержимого колбы до 120°С при постоянном перемешивании с последующим введением вначале 0,25 мл (1,8 ммоль) пентакарбонила железа, затем, через 4 мин, раствора, содержащего смесь 38 мг (0,09 ммоль) тригидрата золотохлористоводородной кислоты и 0,4 мл (1,2 ммоль) олеиламина в 4,9 мл дифенилового эфира, предварительно выдержанного в атмосфере аргона. Затем полученную смесь повторно нагревают от 120°С до 255°С, выдерживают в течение 28 мин при этой температуре, после чего охлаждают до комнатной температуры, причем все стадии синтеза проводят в атмосфере аргона. Охлажденную смесь выдерживают при комнатной температуре в присутствии воздуха в течение 45 мин, добавляют в смесь 40 мл одноатомного спирта - этанола и отделяют наночастицы магнетита, эпитаксиально выращенные на наночастицах золота, центрифугированием. Отделенные наночастицы сушат до постоянной массы. Получают 40 мг порошка наночастиц. Полученные наночастицы хранят в герметично закрытой емкости в атмосфере аргона в отсутствие влаги при комнатной температуре. В этих условиях наночастицы сохраняют свои эксплуатационные свойства в течение года.

Методом просвечивающей электронной микроскопии было показано, что строение полученных наночастиц напоминает гантель, в которой каждая наночастица магнетита, имеющая сферическую форму и диаметр 3 нм, связана со сферической наночастицей золота диаметром 1 нм. С помощью прибора Вибромагнетометр VSM-250 было показано, что у полученных кристаллов намагниченность насыщения равна 47 Ам2/кг.

Таким образом, из приведенных примеров видно, что предложенный способ действительно позволяет получать наночастицы магнетита диаметром 4±1 нм, эпитаксиально выращенные на наночастицах золота диаметром 2±1 нм.

Способ получения наночастиц магнетита, эпитаксиально выращенных на наночастицах золота, включающий нагрев до 120°С в атмосфере инертного газа при перемешивании смеси высококипящего органического растворителя, олеиновой кислоты, олеиламина и 1,2-гексадекандиола, введение в смесь пентакарбонила железа, выдерживание полученной смеси с последующим введением раствора, содержащего смесь тригидрата золотохлористоводородной кислоты и олеиламина в высококипящем органическом растворителе, предварительно выдержанного в атмосфере инертного газа, повторный нагрев и выдерживание нагретой смеси и ее последующее охлаждение до комнатной температуры, проводимые в атмосфере инертного газа, выдерживание смеси в присутствии воздуха, добавление в смесь одноатомного спирта и отделение наночастиц магнетита центрифугированием, отличающийся тем, что в качестве высококипящего органического растворителя используют дифениловый эфир, и повторный нагрев смеси в атмосфере инертного газа проводят при температуре 250-260°С, и выдерживание смеси при 250-260°С осуществляют в течение 25-30 мин.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 322.
20.04.2016
№216.015.35ff

Акустический способ контроля качества и процесса формирования ледопородных ограждений при сооружении подземных объектов

Изобретение относится к области геоакустики и может быть использовано для неразрушающего контроля качества и процесса формирования ледопородных ограждений. Сущность: по глубине замораживающих скважин (4, 5) размещают акустические преобразователи (6, 7) для приема импульсов акустической эмиссии,...
Тип: Изобретение
Номер охранного документа: 0002581188
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.36a9

Способ извлечения скандия из красного шлама производства глинозема

Изобретение относится к металлургии редких металлов, а именно к извлечению скандия из красного шлама, который является отходом производства глинозема. Способ включает выщелачивание скандия раствором серной кислоты при нагревании в течение 2 часов и фильтрацию пульпы. Выщелачивание скандия из...
Тип: Изобретение
Номер охранного документа: 0002581327
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.3813

Способ интенсификации сорбции благородных металлов с помощью нанодисперсного сорбента

Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом...
Тип: Изобретение
Номер охранного документа: 0002582838
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38b0

Двухпроводной дифференциальный магнитоимпедансный датчик

Изобретение относится к измерительной технике и представляет собой двухпроводной дифференциальный магнитоимпедансный датчик. Датчик содержит два магнитоимпедансных детектора, изготовленных по бескаркасной намоточной технологии, т.е. детектирующие катушки детекторов намотаны непосредственно на...
Тип: Изобретение
Номер охранного документа: 0002582488
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3ad5

Емкостная моп диодная ячейка фотоприемника-детектора излучений

Изобретение относится к полупроводниковым координатным детекторам ионизирующих частиц. В емкостной МОП диодной ячейке фотоприемника-детектора излучений применена новая электрическая схема, в которой используются усилительный обогащенный p-МОП транзистор, конденсатор, p-i-n-диод, поликремниевые...
Тип: Изобретение
Номер охранного документа: 0002583955
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3cdc

Биполярная ячейка координатного фотоприемника - детектора излучений

Изобретение относится к полупроводниковым координатным детекторам радиационных частиц. Изобретение обеспечивает повышение эффективности регистрации оптических и глубоко проникающих излучений и повышение быстродействия детектора излучений. Биполярная ячейка координатного фотоприемника -...
Тип: Изобретение
Номер охранного документа: 0002583857
Дата охранного документа: 10.05.2016
20.05.2016
№216.015.3fca

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая, в том числе в биоактивных средах, свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии конструкционных сталей и предназначено для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке сжиженных газов. Сталь содержит, в мас.%: С - 0,05-0,07, Cr - 18,0-20,0, Ni - 5,0-7,0, Μn - 9,0-11,0, Mo - 1,4-1,8,...
Тип: Изобретение
Номер охранного документа: 0002584315
Дата охранного документа: 20.05.2016
27.05.2016
№216.015.43d8

Способ обработки низколегированных медных сплавов

Изобретение относится к области обработки специальных проводниковых сплавов, в частности к получению низколегированных медных сплавов, и может быть использовано в электротехнике для изготовления электродов сварочных машин, контактных проводов для электрофицированного транспорта, коллекторных...
Тип: Изобретение
Номер охранного документа: 0002585606
Дата охранного документа: 27.05.2016
27.05.2016
№216.015.43ed

Литейная форма для центробежной заливки крупногабаритных фасонных отливок сложной формы из жаропрочных и химически активных сплавов

Изобретение может быть использовано при получении крупногабаритных литых деталей летательных аппаратов и атомной техники, работающих под действием высоких нагрузок. Литейная форма содержит металлический поддон с центрирующим устройством, графитовые закладные элементы и формообразующие...
Тип: Изобретение
Номер охранного документа: 0002585604
Дата охранного документа: 27.05.2016
10.06.2016
№216.015.45a4

Электропривод

Изобретение относится к электротехнике, в частности к электроприводу переменного тока с режимом динамического торможения асинхронного двигателя. При отказе механического тормоза при аварийной остановке применяется электрический тормоз - электропривод переходит в режим регулируемого...
Тип: Изобретение
Номер охранного документа: 0002586630
Дата охранного документа: 10.06.2016
Показаны записи 11-20 из 41.
16.06.2018
№218.016.631b

Лекарственный препарат для лечения рака молочной железы

Изобретение относится к фармацевтической промышленности и может быть использовано для терапии рака молочной железы в виде препарата для внутривенного введения без какого-либо внешнего воздействия (нагревания, действия магнитного поля и т.д.). Лекарственный препарат для лечения рака молочной...
Тип: Изобретение
Номер охранного документа: 0002657545
Дата охранного документа: 14.06.2018
05.07.2018
№218.016.6c03

Способ получения препарата на основе магнитных наночастиц (мнч) оксида железа для мрт-диагностики новообразований

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения препарата для МРТ-диагностики опухолевых заболеваний, включающий приготовление раствора ацетилацетоната железа (III) в бензиловом спирте с концентрацией 75-200 г/л с последующим нагревом в токе...
Тип: Изобретение
Номер охранного документа: 0002659949
Дата охранного документа: 04.07.2018
17.08.2018
№218.016.7c51

Способ получения кластеров из наночастиц магнетита

Изобретение может быть использовано в биомедицине. Способ получения кластеров из наночастиц магнетита включает нагревание раствора соединения железа в высококипящем органическом растворителе в атмосфере инертного газа в присутствии 1,2-гексадекандиола и органической кислоты и последующее...
Тип: Изобретение
Номер охранного документа: 0002664062
Дата охранного документа: 14.08.2018
03.10.2018
№218.016.8ddf

Способ получения кристаллов магнетита

Изобретение относится к технологии получения кристаллов магнетита (FeO), которые могут найти применение в качестве контрастных агентов, средств доставки лекарств, при магнитной гипертермии. Способ получения кристаллов магнетита включает смешение октадецена с олеатом железа (III) или...
Тип: Изобретение
Номер охранного документа: 0002668440
Дата охранного документа: 01.10.2018
19.10.2018
№218.016.9468

Фотосенсибилизатор для лечения рака предстательной железы и способ его получения

Настоящее изобретение относится к фотосенсибилизатору для фотодинамической терапии рака предстательной железы. Фотосенсибилизатор имеет структурную формулу (1) где в качестве R может выступать водород (Н), натрий (Na), калий (К), С-С - алкил, в качестве R может выступать соединение общей...
Тип: Изобретение
Номер охранного документа: 0002670087
Дата охранного документа: 18.10.2018
28.11.2018
№218.016.a192

Устройство для исследования воздействия комбинированного магнитного поля на кинетику биохимических процессов в биологических системах, содержащих магнитные наночастицы

Изобретение относится к области исследования или анализа материалов. Устройство для исследования биохимических систем, содержащих магнитные наночастицы, включает два независимых источника питания, один из которых соединен с генератором, который в свою очередь соединен через модулятор и...
Тип: Изобретение
Номер охранного документа: 0002673337
Дата охранного документа: 26.11.2018
22.03.2019
№219.016.ec58

Способ получения диспироиндолинонов

Изобретение относится к области органической химии, а именно к способу получения диспироиндолинонов общей формулы 1, где X - S или О; R1 выбран из группы, включающей водород, фенил, фенил, замещенный 1-2 заместителями, выбранными из атома галогена (фтор, хлор, бром), гидрокси-, низшей...
Тип: Изобретение
Номер охранного документа: 0002682678
Дата охранного документа: 20.03.2019
09.05.2019
№219.017.4a3c

Способ получения стержневых наночастиц магнетита

Изобретение может быть использовано в биомедицине для диагностики и терапии злокачественных новообразований. Способ получения стержневидных наночастиц магнетита включает подготовку водной суспензии прекурсора, представляющего собой стержневидные наночастицы акагенита, в который добавляют...
Тип: Изобретение
Номер охранного документа: 0002686931
Дата охранного документа: 06.05.2019
09.05.2019
№219.017.50af

Ингибиторы теломеразы и способ их получения

Изобретение относится к новым координационным соединениям производным имидазол-4-она, ингибирующим теломеразу, общей формулы где заместитель А выбран из группы, включающей арильные заместители, конденсированные арильные заместители, циклопентил, циклогексил, алифатические заместители,...
Тип: Изобретение
Номер охранного документа: 0002468030
Дата охранного документа: 27.11.2012
30.05.2019
№219.017.6b6d

Способ получения модифицированных кристаллов магнетита

Изобретение относится к способу получения модифицированных кристаллов магнетита (FeO), содержащих на поверхности смесь липидов, и может быть использовано в фармацевтической промышленности. Предложенный способ получения модифицированных кристаллов магнетита включает смешение 138 мас.ч....
Тип: Изобретение
Номер охранного документа: 0002689392
Дата охранного документа: 28.05.2019
+ добавить свой РИД