×
04.07.2018
218.016.6a9f

Результат интеллектуальной деятельности: Датчик пульсовой волны

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицинской технике. Датчик пульсовой волны содержит кремниевую микроканальную мембрану (1) с диэлектрическим слоем (2) на поверхности, камеру (5), упругие мембраны (6), электроды (3). Камера заполнена рабочей жидкостью (8) и соединена с возможностью формирования внутренних полостей камеры и перемещения рабочей жидкости (8) между внутренними полостями камеры с кремниевой микроканальной мембраной (1). Камера (5) снабжена упругими мембранами (6) для возможности перемещения рабочей жидкости (8) между внутренними полостями камеры при механическом воздействии, по крайней мере, на одну из них. Во внутренних полостях камеры (5) расположено по электроду (3). В отношении электродов обеспечено появление разности электрических потенциалов при движении рабочей жидкости через микроканалы и разделении электрических зарядов между торцевыми поверхностями кремниевой микроканальной мембраны. Достигается высокая чувствительность датчика при неинвазивном способе применения и без электронной обработки измеряемого сигнала. 4 з.п. ф-лы, 7 ил.

Техническое решение относится к медицинской технике, преимущественно к оперативной диагностической аппаратуре, и может быть использовано для неинвазивного измерения пульсовой волны человека.

Существующие в настоящее время механические датчики пульсовой волны функционируют на основе регистрации движения стенок кровеносных сосудов, обусловленного выбросом порций крови в артерии при сердечных сокращениях. Наиболее широко используются датчики с пьезоэлектрическими измерителями, например, такие, какие представлены в описаниях к охранным документам (патент США №5551437 на изобретение «Sensor for measuring blood pressure», автор В. МПК А61В 5/02, опубл. 03.09.1996; патент РФ №2402977 на изобретение «Измеритель пульсовой активности», авторов Т.И. Булдаковой, Е.С. Кузьменко, С.И. Суятинова, О.Ю. Торгашевой, МПК А61В 5/022, опубл. 10.11.2010).

Как правило, вышеуказанные датчики помимо узла механических смещений элементов и преобразования их в электрический сигнал содержат узел электронной обработки этого сигнала. Подобные устройства достаточно сложны, требуют соблюдения определенных условий, в которых они могут обеспечивать достоверность диагностики. Эти датчики зачастую неудобны для проведения оперативной диагностики, потребность в которой возникает в экстренных ситуациях. В связи с этим существует техническая проблема в разработке датчиков, достаточно простых в реализации, надежных в диагностике и удобных для использования в экстренных случаях.

Известен датчик пульсовой волны, сущность которого раскрыта в описании к патенту РФ №2403861 на изобретение «Датчик пульсовой волны» авторов В.Ф. Романовского, А.М. Романовской, А.В. Романовского, С.М. Семенова, В.М. Гаврилова, Л.Н. Винокурова, МПК А61В 5/02, опубл. 20.11.2010. Указанный датчик содержит полый корпус с отверстием, пелот с контактной поверхностью, шарнирно установленный в отверстии с возможностью угловых смещений относительно корпуса, связанный с пелотом и корпусом преобразователь угловых смещений пелота в электрический сигнал пьезоэлектрическими стержнями, соединенный с электронным формирователем выходного сигнала.

Приведенным датчиком не решается техническая проблема разработки датчиков пульсовой волны, достаточно простых в реализации, с надежной диагностикой при использовании в экстренных случаях.

Недостатком представленного датчика пульсовой волны является то, что для обеспечения высокой чувствительности датчика необходима электронная обработка исходного электрического сигнала.

Из известных датчиков пульсовой волны наиболее близким к заявляемому является датчик, представленный в работе I. Dendo «А Micro-Dimensional Tip Streaming Potential Pressure Sensor», опубликованной в Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology 14(1), 151-152 (1992). Датчик содержит рабочую жидкость, электроды, стеклянный фильтр и пипетку. Рабочей жидкостью заполнена стеклянная пипетка с оттянутым заостренным открытым концом, имеющим узкий канал. Внутри пипетки расположен стеклянный фильтр, размещенный между двух металлических проволочных электродов. При введении острия датчика в кровеносный сосуд под действием пульсовой волны появляется измеряемая разность потенциалов на электродах.

Приведенным датчиком не решается техническая проблема разработки датчиков пульсовой волны, одновременно простых в реализации, надежных в диагностике и удобных для использования в экстренных случаях.

Основным недостатком известного датчика пульсовой волны является его конструкция, рассчитанная только на инвазивный способ применения. При использовании датчика с подобной конструкцией величину измеряемого электрического сигнала обеспечивает только небольшой объем рабочей жидкости, перемещающейся по узкому каналу заостренного открытого конца пипетки. Эта особенность является причиной того, что известный датчик обладает недостаточно высокой чувствительностью.

Предлагаемым датчиком пульсовой волны решается техническая проблема разработки датчиков в комплексе - простых в реализации, надежных в диагностике и удобных для использования в экстренных случаях.

Техническим результатом изобретения является достижение высокой чувствительности датчика при неинвазивном способе применения и без электронной обработки измеряемого сигнала.

Технический результат достигается датчиком пульсовой волны, содержащим электроды, при этом рабочей жидкостью заполнена камера, с которой соединена с возможностью формирования внутренних полостей камеры и перемещения рабочей жидкости между внутренними полостями камеры кремниевая микроканальная мембрана с диэлектрическим слоем на поверхности, камера снабжена упругими мембранами для возможности перемещения рабочей жидкости между внутренними полостями камеры при механическом воздействии, по крайней мере, на одну из них, во внутренних полостях камеры расположено по электроду, в отношении которых обеспечено появление разности электрических потенциалов при движении рабочей жидкости через микроканалы и разделении электрических зарядов между торцевыми поверхностями кремниевой микроканальной мембраны.

В датчике камера выполнена из двух частей, каждая из которых соединена с кремниевой микроканальной мембраной с диэлектрическим слоем на поверхности, каждая из которых снабжена упругой мембраной.

В датчике с внешней стороны одна из упругих мембран снабжена упором. В датчике каждый из электродов выполнен металлическим в виде нанесенной пленки на торцевую часть поверхности кремниевой микроканальной мембраны с диэлектрическим слоем на поверхности или прикладываемого к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности.

Сущность технического решения поясняется нижеследующим описанием и прилагаемыми фигурами.

На Фиг. 1 схематично в поперечном сечении представлен датчик пульсовой волны с металлическими электродами в виде нанесенной пленки на торцевые части поверхности кремниевой микроканальной мембраны с диэлектрическим слоем на поверхности, где: 1 - кремниевая микроканальная мембрана; 2 - диэлектрический слой; 3 - металлический электрод в виде пленки; 5 - камера, 6 - упругая мембрана, 8 - рабочая жидкость.

На Фиг. 2 схематично в поперечном сечении представлен датчик пульсовой волны с металлическими электродами в виде нанесенной пленки на торцевые части поверхности кремниевой микроканальной мембраны с диэлектрическим слоем на поверхности, а также с упором на внешней стороне одной из упругих мембран, где: 1 - кремниевая микроканальная мембрана; 2 - диэлектрический слой; 3 - металлический электрод в виде пленки; 5 - камера; 6 - упругая мембрана; 7 - упор; 8 - рабочая жидкость.

На Фиг. 3 схематично в поперечном сечении представлен датчик пульсовой волны с выполнением одного металлического электрода в виде нанесенной пленки на торцевую часть кремниевой микроканальной мембраны с диэлектрическим слоем на поверхности с одной стороны и с выполнением второго металлического электрода, прикладываемого с другой стороны к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности, где: 1 - кремниевая микроканальная мембрана; 2 - диэлектрический слой; 3 - металлический электрод в виде пленки; 4 - металлический электрод, прикладываемый к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности; 5 - камера; 6 - упругая мембрана; 8 - рабочая жидкость.

На Фиг. 4 схематично в поперечном сечении представлен датчик пульсовой волны с выполнением одного металлического электрода в виде нанесенной пленки на торцевую часть кремниевой микроканальной мембраны с диэлектрическим слоем на поверхности с одной стороны и с выполнением второго металлического электрода, прикладываемого с другой стороны к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности, а также с выполнением на упругой мембране упора, где: 1 - кремниевая микроканальная мембрана; 2 - диэлектрический слой; 3 - металлический электрод в виде пленки; 4 - металлический электрод, прикладываемый к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности; 5 - камера; 6 - упругая мембрана; 7 - упор; 8 - рабочая жидкость.

На Фиг. 5 схематично в поперечном сечении представлен датчик пульсовой волны с металлическими электродами, прикладываемыми к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности, где: 1 - кремниевая микроканальная мембрана; 2 - диэлектрический слой; 4 - металлический электрод, прикладываемый к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности; 5 - камера; 6 - упругая мембрана; 8 - рабочая жидкость.

На Фиг. 6 схематично в поперечном сечении представлен датчик пульсовой волны с металлическими электродами, прикладываемыми к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности, а также с упором на упругой мембране, где: 1 - кремниевая микроканальная мембрана; 2 - диэлектрический слой; 4 - металлический электрод, прикладываемый к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности; 5 - камера; 6 - упругая мембрана; 7 - упор; 8 - рабочая жидкость.

На Фиг. 7 представлены результаты неинвазивного измерения пульсовой волны с помощью предлагаемого датчика на плечевой артерии человека в виде записи изменения регистрируемого электрического сигнала от времени.

Достижение технического результата базируется на использовании в датчике (см. Фиг. 1-6) кремниевой микроканальной мембраны 1, целиком покрытой диэлектрическим слоем 2, например, двуокиси кремния. Кремниевая микроканальная мембрана 1 с диэлектрическим слоем 2 выполняет функцию чувствительного элемента датчика, формируя электрический отклик на пульсовую волну преобразованием механического параметра - поперечного колебательно-волнового движения стенки кровеносного сосуда - в электрический параметр - разность потенциалов на электродах, которыми снабжена кремниевая микроканальная мембрана 1.

Для выполнения указанной функции предлагаемый датчик пульсовой волны в общем случае содержит: кремниевую микроканальную мембрану 1 с диэлектрическим слоем 2 на поверхности, электроды, камеру 5, упругие мембраны 6, рабочую жидкость 8. Кроме того, в целях реализации указанной функции обеспечено следующее.

Камера 5 заполнена рабочей жидкостью 8. Камера 5 соединена с возможностью формирования внутренних полостей камеры 5 и перемещения рабочей жидкости 8 между внутренними полостями камеры 5 с кремниевой микроканальной мембраной 1 с диэлектрическим слоем 2 на поверхности. Камера 5 снабжена упругими мембранами 6 для возможности перемещения рабочей жидкости 8 между внутренними полостями камеры 5 при механическом воздействии, по крайней мере, на одну из них. Во внутренних полостях камеры 5 расположено по электроду к кремниевой микроканальной мембране 1 с диэлектрическим слоем 2 на поверхности.

Соединение камеры 5 с кремниевой микроканальной мембраной 1 с диэлектрическим слоем 2 на поверхности выполнено герметичным. Камера 5 снабжена упругими мембранами 6 с образованием герметично замкнутого объема, заполненного рабочей жидкостью 8. Поверхность кремниевой микроканальной мембраны 1 целиком покрыта диэлектрическим слоем 2.

Предлагаемый датчик пульсовой волны может иметь нижеследующие особенности его выполнения (см. Фиг. 1-6).

Камера 5 выполнена из двух частей, каждая из которых соединена с кремниевой микроканальной мембраной 1 с диэлектрическим слоем 2 на поверхности. Каждая из частей камеры 5 (см. Фиг. 1-6) снабжена упругой мембраной 6. Соединения частей камеры 5 с кремниевой микроканальной мембраной 1 с диэлектрическим слоем 2 на поверхности герметичны. Каждая из упругих мембран 6 выполнена с герметичной установкой.

В датчике одна из упругих мембран 6 снабжена упором 7 (см. Фиг. 2, 4, 6).

Поверхность кремниевой микроканальной мембраны 1 целиком покрыта диэлектрическим слоем 2, например двуокиси кремния. Обе торцевые части поверхности кремниевой микроканальной мембраны 1 снабжены металлическими электродами в виде нанесенной пленки, жестко связанной с поверхностями (см. Фиг. 1 и 2). Диэлектрический слой 2 электрически изолирует металлические электроды в виде пленки 3 от кремниевой микроканальной мембраны 1.

В датчике металлические электроды могут быть реализованы другим вариантом (см. Фиг. 3 и 4). Один электрод выполнен металлическим электродом в виде пленки 3, нанесенной на одну из торцевых поверхностей кремниевой микроканальной мембраны 1 с диэлектрическим слоем 2. Второй электрод выполнен как металлический электрод 4, прикладываемый к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности и не имеющий жесткой связи с другой торцевой поверхностью кремниевой микроканальной мембраны 1 с диэлектрическим слоем 2.

Кроме того, возможен третий вариант реализации электродов (см. Фиг. 5 и 6). Металлические электроды выполнены как металлические электроды 4, прикладываемые к кремниевой микроканальной мембране с диэлектрическим слоем на поверхности и не имеющие жесткой связи с торцевыми поверхностями кремниевой микроканальной мембраны 1 с диэлектрическим слоем 2.

Таким образом, в отношении электродов обеспечено появление разности электрических потенциалов при движении рабочей жидкости через микроканалы и разделении электрических зарядов между торцевыми поверхностями кремниевой микроканальной мембраны.

Функционирование предлагаемого датчика пульсовой волны осуществляется следующим способом.

Для измерения пульсовой волны датчик устанавливают упругой мембраной 6 или упором 7, если упругая мембрана 6 снабжена упором 7, на поверхности тела человека непосредственно в местах выхода артерий. При прохождении пульсовой волны поперечные колебания стенки кровеносного сосуда передаются упругой мембране 6 и от нее - рабочей жидкости 8, перемещение которой из одной внутренней полости камеры 5 в другую внутреннюю полость камеры 5 происходит через кремниевую микроканальную мембрану 1 с диэлектрическим слоем 2 на ее поверхности. В результате появляется электрический потенциал на металлических электродах.

Наличие на поверхности кремниевой микроканальной мембраны 1 диэлектрического слоя 2, например, двуокиси кремния, обеспечивает образование двойного электрического слоя внутри микроканалов, заполненных рабочей жидкостью 8, например, водой. При движении рабочей жидкости 8 через микроканалы происходит разделение электрических зарядов между торцевыми поверхностями кремниевой микроканальной мембраны 1, что сопровождается появлением разности электрических потенциалов на электродах.

При прохождении пульсовой волны разность потенциалов регистрируется в виде сигнала, изменяющегося со временем (см. Фиг. 7). На Фиг. 7 представлен типичный сигнал пульсовой волны на плечевой артерии человека с максимальной выходной разностью электрических потенциалов 60 мВ.

Предлагаемый датчик пульсовой волны с чувствительным элементом в виде кремниевой микроканальной мембраны 1 с диэлектрическим слоем 2 на поверхности обеспечивает чувствительность от 20 до 80 мВ/кПа, что на порядок больше чувствительности известного датчика, выбранного в качестве прототипа, которым достигается чувствительность лишь 3,75 мВ/кПа.


Датчик пульсовой волны
Датчик пульсовой волны
Датчик пульсовой волны
Датчик пульсовой волны
Источник поступления информации: Роспатент

Показаны записи 1-10 из 60.
10.09.2013
№216.012.68a4

Заливной криостат для приемника инфракрасного излучения

Изобретение относится к конструктивным элементам регистрирующей техники. Криостат содержит корпус с входным окном, рабочую камеру с охлаждаемой платформой, заливной узел криостатирования охлаждаемой платформы в виде баллона для сжиженного газа, дренажную трубку для выхода паров выкипающего...
Тип: Изобретение
Номер охранного документа: 0002492435
Дата охранного документа: 10.09.2013
27.10.2013
№216.012.7b51

Способ изготовления структуры кремний-на-изоляторе

Изобретение относится к полупроводниковой технологии и может быть использовано для изготовления приборных структур. В способе изготовления структуры кремний-на-изоляторе в аморфный изолирующий слой SiO подложки кремния осуществляют имплантацию ионов легко диффундирующей примеси, удаляющей...
Тип: Изобретение
Номер охранного документа: 0002497231
Дата охранного документа: 27.10.2013
10.11.2013
№216.012.8009

Способ изготовления структуры полупроводник-на-изоляторе

Изобретение относится к полупроводниковой технологии. В аморфный изолирующий слой SiO подложки Si осуществляют имплантацию ионов легко сегрегирующей примеси, способной формировать нанокристаллы в объеме слоя SiO-Si или Ge. Получают область локализации имплантированной примеси. Режимы...
Тип: Изобретение
Номер охранного документа: 0002498450
Дата охранного документа: 10.11.2013
10.11.2013
№216.012.800f

Устройство считывания с временной задержкой и накоплением сигналов с многоэлементных фотоприемников инфракрасного излучения

Устройство считывания с временной задержкой и накоплением сигналов с многоэлементных фотоприемников инфракрасного излучения относится к области интегральной микроэлектроники и предназначено для систем обработки оптической информации. Устройство содержит m каналов считывания. Каждый канал...
Тип: Изобретение
Номер охранного документа: 0002498456
Дата охранного документа: 10.11.2013
10.12.2013
№216.012.8a6a

Способ измерения диффузионной длины неосновных носителей заряда в полупроводниках и тестовая структура для его осуществления

Изобретение относится к области полупроводниковой фотоэлектроники - инфракрасным (ИК) фотодетекторам - и может быть использовано для контроля технологического процесса и материала. Способ измерения диффузионной длины неосновных носителей заряда в полупроводниках заключается в том, что в...
Тип: Изобретение
Номер охранного документа: 0002501116
Дата охранного документа: 10.12.2013
10.03.2014
№216.012.aa9c

Способ формирования граней чипа для мозаичных фотоприемных модулей

Изобретение относится к полупроводниковой технологии и предназначено для сборки мозаичных фотоприемных модулей. В способе формирования граней чипа для мозаичных фотоприемных модулей наносят защитное покрытие на планарную сторону приборной пластины, после чего, используя лазер, производят...
Тип: Изобретение
Номер охранного документа: 0002509391
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b349

Способ получения слоя фторографена

Изобретение относится к нанотехнологии и предназначено для использования при создании современных тонкопленочных полупроводниковых приборов и структур наноэлектроники. В способе получения слоя фторографена от объемного графита отделяют слой требуемой толщины и размещают его на подложке. Затем...
Тип: Изобретение
Номер охранного документа: 0002511613
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb37

Датчик магнитного поля и способ его изготовления

Изобретение может быть использовано для создания миниатюрных датчиков для трехосевой магнитометрии. Датчик магнитного поля содержит сенсорные узлы, реализованные на использовании эффекта Холла, которые выполнены в составе криволинейной оболочки с системой слоев. В системе слоев присутствуют...
Тип: Изобретение
Номер охранного документа: 0002513655
Дата охранного документа: 20.04.2014
20.05.2014
№216.012.c6a5

Канальная матрица и способ ее изготовления

Изобретение предназначено для использования в мембранных нанотехнологиях для производства управляемых микро- и нанофлюидных фильтров, биосенсорных устройств, приборов медицинской диагностики. Сущность изобретения: в канальной матрице помимо пластины монокристаллического кремния дырочного типа с...
Тип: Изобретение
Номер охранного документа: 0002516612
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c744

Резистивный флэш элемент памяти

Изобретение относится к вычислительной технике. Технический результат заключается в достижении воспроизводимости окна гистерезиса резистивного элемента памяти. Резистивный флэш элемент памяти содержит полупроводниковую подложку с выполненным на ее рабочей поверхности проводящим электродом, на...
Тип: Изобретение
Номер охранного документа: 0002516771
Дата охранного документа: 20.05.2014
Показаны записи 1-10 из 11.
27.04.2013
№216.012.3b4c

Способ неразрушающего контроля узлов тележек железнодорожных вагонов и устройство для его реализации

Использование: для неразрушающего контроля узлов тележек железнодорожных вагонов. Сущность: заключается в том, что размещают на поверхности контролируемого объекта источники акустических колебаний, вводят акустические колебания в контролируемый объект, принимают и регистрируют затухающие...
Тип: Изобретение
Номер охранного документа: 0002480741
Дата охранного документа: 27.04.2013
10.11.2013
№216.012.7d7c

Детонатор с электронным замедлением для ударно-волновой трубки (увт)

Изобретение относится к области высокоточных систем взрывания, детонаторам с электронной задержкой и может быть использовано в составе неэлектрических систем взрывания, систем инициирования на основе ударно-волновых трубок (УВТ), при инициировании систем взрывания для производства взрывных...
Тип: Изобретение
Номер охранного документа: 0002497797
Дата охранного документа: 10.11.2013
20.05.2014
№216.012.c6a5

Канальная матрица и способ ее изготовления

Изобретение предназначено для использования в мембранных нанотехнологиях для производства управляемых микро- и нанофлюидных фильтров, биосенсорных устройств, приборов медицинской диагностики. Сущность изобретения: в канальной матрице помимо пластины монокристаллического кремния дырочного типа с...
Тип: Изобретение
Номер охранного документа: 0002516612
Дата охранного документа: 20.05.2014
20.06.2014
№216.012.d34e

Способ получения структурированной поверхности полупроводников

Изобретение относится к области полупроводниковой технологии и может быть использовано при изготовлении наноструктур. Способ получения структурированной поверхности полупроводников, заключающийся в том, что на поверхности полупроводниковой пластины выращивают защитный слой, на который наносят...
Тип: Изобретение
Номер охранного документа: 0002519865
Дата охранного документа: 20.06.2014
20.02.2015
№216.013.2b9f

Способ вихретокового контроля медной катанки и устройство для его реализации

Изобретение относится к способам и устройствам для бесконтактного диагностического контроля качества медной катанки в процессе ее производства и может быть использовано в других отраслях промышленности. Сущность изобретения заключается в том, что в продольно перемещающемся со скоростью V (м/с)...
Тип: Изобретение
Номер охранного документа: 0002542624
Дата охранного документа: 20.02.2015
25.08.2017
№217.015.af24

Способ вихретокового контроля электропроводящих объектов и устройство для его реализации

Изобретение относится к бесконтактному контролю качества объектов из электропроводящих материалов при производстве и эксплуатации. Сущность: способ основан на том, что в электропроводящем объекте постоянным магнитным полем возбуждают вихревой ток и сканируют электропроводящий объект...
Тип: Изобретение
Номер охранного документа: 0002610931
Дата охранного документа: 17.02.2017
25.08.2017
№217.015.bd02

Устройство для усиления сигнала от ячейки матричного фотоприёмника

Изобретение относится к области полупроводниковой, органической и гибридной оптоэлектроники и может быть использовано в системах обработки оптической информации. Техническим результатом изобретения является реализация возможности монолитного изготовления линеек и матриц органических...
Тип: Изобретение
Номер охранного документа: 0002616222
Дата охранного документа: 13.04.2017
10.05.2018
№218.016.4b35

Способ вихретокового контроля протяжённых электропроводящих объектов и устройство для его реализации

Группа изобретений относится к способам и устройствам для бесконтактного контроля качества протяженных объектов из электропроводящих материалов при производстве и эксплуатации, а также в других отраслях промышленности, где требуется контроль протяженных электропроводящих объектов бесконтактным...
Тип: Изобретение
Номер охранного документа: 0002651618
Дата охранного документа: 23.04.2018
09.05.2019
№219.017.4d64

Способ ионизации атомарных или молекулярных потоков и устройство для его осуществления

Изобретение относится к электронике и может быть использовано для ионизации атомарных или молекулярных потоков и формирования ионных пучков в полупроводниковой технологии в области молекулярно-лучевой эпитаксии. Способ ионизации включает многократную бомбардировку атомов или молекул ускоренными...
Тип: Изобретение
Номер охранного документа: 0002370849
Дата охранного документа: 20.10.2009
19.06.2019
№219.017.896e

Способ получения канальной матрицы

Изобретение предназначено для использования в мембранных нанотехнологиях для производства нанофлюидных фильтров, биосенсорных устройств, приборов медицинской диагностики. Сущность изобретения: в способе получения канальной матрицы после анодного травления пластины монокристаллического кремния...
Тип: Изобретение
Номер охранного документа: 0002428763
Дата охранного документа: 10.09.2011
+ добавить свой РИД