×
04.07.2018
218.016.6a4b

Результат интеллектуальной деятельности: Сверхпрочная высокомарганцевая сталь, полученная за счет комбинирования механизмов упрочнения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области материалов с ультрамелкозернистой (УМЗ) структурой, а именно к сталям, которые могут быть использованы в автомобильной промышленности, атомной энергетике, при разработке микроэлектромеханических систем. Ультрамелкозернистая высокомарганцевая сталь обладает пределом текучести более 2 ГПа при относительном удлинении не менее 5%. Сталь содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес.%, марганец более 15 вес.% и алюминий не более 2 вес.%, остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нм, а на границах зерен присутствуют зернограничные сегрегации атомов (С, Mn). Ультрамелкозернистая высокомарганцевая сталь обладает повышенными прочностными свойствами за счет комбинирования механизмов упрочнения. 5 ил., 1 табл.

Изобретение относится к области материалов с ультрамелкозернистой (УМЗ) структурой и повышенными механическими свойствами, конкретно к сталям, которые могут быть использованы во многих отраслях промышленности, в частности автомобильной, в атомной энергетике, при разработке микроэлектромеханических систем.

Известно, что в установлении свойств конкретного материала, таких как прочность, пластичность, усталость, стойкость к коррозии, ключевую роль играет микроструктура, которая в зависимости от способа обработки может иметь различные фазовый состав, размер и форму зерен, разориентацию их границ, плотность дислокаций и других дефектов кристаллической решетки и др. [Штремель М.А. Прочность сплавов. М.: Металлургия, 1982. Ч. 1: Дефекты решетки. 280 с.; Штремель М.А. Прочность сплавов. 4.2. Деформация. М., МИСиС, 1997, 527 с.]. Формирование ультрамелкозернистых структур, содержащих преимущественно большеугловые границы, позволяет достичь уникального сочетания прочности, пластичности, усталостной долговечности в металлах и сплавах [Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.].

Известны статьи, в которых опубликованы результаты исследований структуры TWIP стали в образцах, подвергшихся интенсивной пластической деформации кручением под высоким давлением. Так, в статье «Mariana S. Matoso, Roberto В. Figueiredo, Megumi Kawasaki, Dagoberto B. Santosa and Terence G. Langdond. Processing a twinning-induced plasticity steel by high-pressure torsion // Scripta Materialia 67 (2012) 649-652» показано, что структура характеризуется выраженным двойникованием на ранних стадиях деформации, присутствует мартенсит. В статье «Х.Н. An, Q.Y. Lin, G. Sha, M.X. Huang, S.P. Ringer, Y.T, Zhu, X.Z. Liao. Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion // Acta Materialia 109 (2016) 300e313» показана микроструктурная эволюция и измельчение зерна стали в процессе деформации.

Известна ультрамелкозернистая двухфазная сталь (CN 102618802, МПК C21D 1/26, C21D 8/02, опубл. 01.08.2012 г.), имеющая химический состав в массовых процентах: (13,5~14,5)% Сг, (6,1~6,9)% Ni, (2,3~2,7)% Mn, (0,33~0,37)% Si, (0,60~0,90)% меди, (0,01-0,03)% С, (0,021~0,025)% В, (0,60~0,90)% Mo, Р<0,02%, S<0,04%, остальное - Fe, с ультрамелкозернистой микроструктурой, состоящей из распределенных в случайной ориентации зерен, диаметр зерен 500~2000 нм, микроструктура каждого зерна характеризуется наличием аустенита и мартенсита, предел текучести при комнатной температуре составляет 1100~1600 МПа, прочность на разрыв 1200~1850 МПа, удлинение от 10 до 20%.

В известных аналогах не достигаются высокие показатели прочности стали.

Задачей изобретения является разработка ультрамелкозернистой высокомарганцевой стали, обладающей повышенными прочностными свойствами за счет комбинирования механизмов упрочнения.

Технический результат - повышение прочности (по сравнению с крупнозернистыми аналогами и сталями, полученными стандартными термическими обработками) при пределе текучести более 2 ГПа и относительном удлинении не менее 5%.

Поставленная задача решается тем, что ультрамелкозернистая высокомарганцевая сталь, обладающая пределом текучести более 2 ГПа при относительном удлинении не менее 5%, содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес.% и марганец более 15 вес.%, алюминий не более 2 вес.%, остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм, с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нанометров, а на границах зерен присутствуют зернограничные сегрегации атомов (С, Mn).

Технический результат достигается благодаря следующему.

Повышение прочности стали обусловлено, во-первых, очень маленьким размером зерна (менее 200 нм) в структуре материала, что обеспечивает увеличение напряжения течения при пластической деформации согласно известному соотношению Холла-Петча [Большие пластические деформации и разрушение металлов. Рыбин В.В. М.: Металлургия, 1986, 224 с.]. Значительное повышение прочности достигается также тем, что именно большеугловые границы зерен в сравнении с малоугловыми и специальными границами обеспечивают наибольший вклад в упрочнение [Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007. - 398 с.]. Полученная наноструктура стали обеспечивает высокий уровень прочностных свойств также за счет наличия нанодвойников толщиной до 15 нанометров и зернограничных сегрегации атомов (С, Mn) на границах зерен. Это обусловлено тем, что дополнительные двойниковые границы, а также наличие неоднородных сегрегации на границах зерен выступают препятствием при движении дислокаций, поэтому необходимо дополнительное напряжение для генерации и движения дислокаций, что повышает предел текучести, соответственно, прочности.

Предложенное комбинирование механизмов упрочнения, а именно измельчение зерна до размеров менее 200 нм, наличие нанодвойников и зернограничных сегрегаций примесных атомов в структуре обеспечивает повышенную механическую прочность ултрамелкозернистой высокомарганцевой стали.

Описанные выше структурные изменения материала в процессе обработки достигаются особенностями получения стали при указанных температурно-скоростных режимах.

Сущность изобретения поясняют изображения микроструктуры заявляемой сверхпрочной высокомарганцевой стали после интенсивной пластической деформации кручением при 300°С, где:

на фиг. 1, 2 - светлопольное изображение микроструктуры стали, показано, что размер зерна составляет менее 200 нм, зерна равноосные, структура однородна;

на фиг. 2, кроме того, показано наличие двойников в структуре;

на фиг. 3 - темнопольное изображение микроструктуры стали, показан размер зерна менее 200 нм, зерна равноосные, структура однородна;

на фиг. 4 в темнопольном изображении показано наличие двойников в структуре;

на фиг. 5 показано изображение, полученное методом атомно-зондовой томографии, представляющее собой 3D реконструкцию распределения атомов в ультрамелкозернистой высокомарганцевой стали, видны зернограничные сегрегации примесных атомов (С, Mn), отмеченные цифрами #1-4, имеющие более насыщенный цвет.

Ультамелкозернистую высокомарганцевую сталь получают следующим образом.

В качестве заготовки используют диск из высокомарганцевой стали 0.6С-18Mn-2А1 диаметром 10 мм и толщиной 2,5 мм. Осуществляют обработку интенсивной пластической деформацией кручением на бойках Бриджмена при температуре 300°С, гидростатическом давлении 6 ГПа, со скоростью 0,2 об/мин, суммарная степень деформации е=6,5. Деформацию осуществляют сначала в канавке глубиной 0,9 мм в количестве 9 оборотов, при последнем (десятом) обороте используют канавку 0,6 мм. Характеристики полученной стали и особенности структуры отражены в таблице.

Из таблицы видно, что полученная сталь обладает повышенными характеристиками прочности при сохранении достаточной пластичности. В результате формирования ультрамелкозернистой структуры с размером аустенитных зерен 45 нм внутри зерен наблюдались двойники толщиной 3 нм, а границы зерен были декорированы сегрегациями углерода и марганца (см. фото). В результате формирования подобной структуры за счет комбинации нескольких упрочняющих механизмов предел прочности возрос до 2120 МПа.

Таким образом, разработанная ультрамелкозернистая высокомарганцевая сталь обладает повышенными прочностными свойствами за счет комбинирования механизмов упрочнения.

Ультрамелкозернистая высокомарганцевая сталь, обладающая пределом текучести более 2 ГПа при относительном удлинении не менее 5%, отличающаяся тем, что она содержит в качестве стабилизаторов аустенита углерод в количестве более 0,5 вес.%, марганец более 15 вес.% и алюминий не более 2 вес.%, остальное – железо, при этом имеет структуру, состоящую из равноосных аустенитных зерен размером менее 200 нм с преимущественно большеугловыми разориентировками границ, причем в теле зерен присутствуют нанодвойники толщиной до 15 нм, а на границах зерен присутствуют зернограничные сегрегации атомов (С, Mn).
Сверхпрочная высокомарганцевая сталь, полученная за счет комбинирования механизмов упрочнения
Сверхпрочная высокомарганцевая сталь, полученная за счет комбинирования механизмов упрочнения
Источник поступления информации: Роспатент

Показаны записи 21-22 из 22.
15.10.2019
№219.017.d56d

Состав для ингибирования отложения солей

Изобретение относится к составам для предотвращения неорганических отложений кальция и бария, которые могут быть использованы в нефтяной промышленности, в частности, в скважинах и на скважинном оборудовании, в системе сбора, подготовки и транспорта нефти. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002702784
Дата охранного документа: 11.10.2019
29.02.2020
№220.018.0797

Способ электрополирования детали

Изобретение относится к технологии электрополирования поверхности деталей из железохромоникелевых, титановых и никелевых сплавов и может быть использовано для повышения эксплуатационных характеристик лопаток турбомашин. Способ включает электролитно-плазменное полирование путем погружения детали...
Тип: Изобретение
Номер охранного документа: 0002715398
Дата охранного документа: 27.02.2020
Показаны записи 21-29 из 29.
22.09.2018
№218.016.890e

Термостойкий проводниковый ультрамелкозернистый алюминиевый сплав и способ его получения

Изобретение относится к области цветной металлургии и электротехники, в частности к сплавам на основе алюминия, и может быть использовано при производстве изделий электротехнического назначения, таких как проводники круглого и квадратного сечения, токопроводящие элементы в виде проволоки,...
Тип: Изобретение
Номер охранного документа: 0002667271
Дата охранного документа: 18.09.2018
25.01.2019
№219.016.b3d9

Способ обработки магниевого сплава системы mg-y-nd-zr методом равноканального углового прессования

Изобретение относится к области металлургии, в частности к термомеханической обработке сплавов на основе магния, и может быть использовано в авиастроении, ракетной технике, в конструкциях автомобилей, хорошая биосовместимость позволяет использовать магниевые сплавы в медицине. Способ...
Тип: Изобретение
Номер охранного документа: 0002678111
Дата охранного документа: 23.01.2019
20.02.2019
№219.016.bf40

Способ штамповки заготовок из наноструктурных титановых сплавов

Изобретение относится к области обработки металлов давлением и может быть использовано, например, в авиационной промышленности при изготовлении деталей из титановых сплавов, преимущественно лопаток. Производят предварительную и окончательную штамповку наноструктурных заготовок из титановых...
Тип: Изобретение
Номер охранного документа: 0002382686
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3069

Способ изготовления кумулятивных облицовок

Изобретение относится к перфорационной технике при прострелочно-взрывных работах в нефтедобыче. Способ включает получение исходной заготовки из медного прутка, ее деформирование с образованием заданной формы и низкотемпературный отжиг полученной заготовки. Медный пруток подвергают интенсивной...
Тип: Изобретение
Номер охранного документа: 0002362111
Дата охранного документа: 20.07.2009
23.04.2019
№219.017.369c

Способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы

Изобретение относится к области деформационно-термической обработки сплавов титан-никель с эффектом памяти формы и может быть использовано в машиностроении, медицине и технике. Способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы включает...
Тип: Изобретение
Номер охранного документа: 0002685622
Дата охранного документа: 22.04.2019
25.04.2019
№219.017.3b08

Способ изготовления электроконтактного провода для высокоскоростного железнодорожного транспорта

Изобретение относится к способам изготовления электроконтактного провода из термоупрочняемого сплава на основе меди. Способ включает подачу сплава в кристаллизатор, кристаллизацию сплава в виде непрерывнолитой заготовки, деформацию упомянутой заготовки на катанку, закалку, старение при...
Тип: Изобретение
Номер охранного документа: 0002685842
Дата охранного документа: 23.04.2019
18.05.2019
№219.017.5906

Способ деформационной обработки металлической заготовки в виде прутка

Изобретение относится к деформационной обработке металлов с изменением их физико-механических свойств, в частности к деформационной обработке длинномерных заготовок в виде прутка. Способ включает подачу заготовки в рабочий канал, образованный между вращающимся диском и неподвижной...
Тип: Изобретение
Номер охранного документа: 0002417857
Дата охранного документа: 10.05.2011
10.07.2019
№219.017.b0ed

Способ обработки низкоуглеродистых сталей

Изобретение относится к области обработки низкоуглеродистых сталей и может быть использовано для изготовления крепежных деталей, проволоки, ответственных элементов строительных конструкций. Способ включает равноканальное угловое прессование при пересечении каналов под углом 90° по маршруту B с...
Тип: Изобретение
Номер охранного документа: 0002443786
Дата охранного документа: 27.02.2012
24.11.2019
№219.017.e5bc

Способ штамповки заготовок с ультрамелкозернистой структурой из двухфазных титановых сплавов

Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок из титановых двухфазных сплавов. Заготовку подвергают термической обработке для получения дуплексной структуры с объемной долей зерен первичной α-фазы не более 30%. Затем пластически...
Тип: Изобретение
Номер охранного документа: 0002707006
Дата охранного документа: 21.11.2019
+ добавить свой РИД