×
01.07.2018
218.016.693f

СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СУЛЬФИДНОЙ И/ИЛИ МЕРКАПТИДНОЙ СЕРЫ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002659269
Дата охранного документа
29.06.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение может быть использовано для окислительного обезвреживания водных технологических конденсатов и/или сернисто-щелочных стоков, загрязненных токсичной сульфидной и/или меркаптидной серой, поступающих с предприятий нефтяной, газовой, химической, целлюлозно-бумажной, металлургической промышленности и кожевенного производства. Способ очистки сточных вод от сульфидной и/или меркаптидной серы включает их окисление кислородом воздуха в присутствии гетерогенного катализатора окисления сернистых соединений на полимерном носителе. Окисление сульфидной и/или меркаптидной серы в стоках ведут в присутствии углеводородного растворителя, в качестве которого используют бензиновую, и/или керосиновую, и/или дизельную фракции или смеси на их основе. В качестве катализатора используют высокоактивный гетерогенный катализатор окисления сернистых соединений КСМ-Х. Окисление ведут при объемном соотношении углеводородной фракции к очищаемому стоку 1:(1÷10), предпочтительно 1:2, при температуре от 20 до 80С, избыточном давлении воздуха от 0,1 до 1,0 МПа, при рН окисляемых стоков ниже 9. Установка для очистки сточных вод от сульфидной и/или меркаптидной серы включает подогреватель стоков 1, реактор окисления 3 в виде колонны, заполненной катализатором КСМ-Х и снабженной диспергатором, сепаратор 4 отработанного воздуха, отстойник 5, насос 7 для подачи углеводородной фракции в реактор окисления 3, емкость хранения 6 углеводородной фракции, компрессор 2 для подачи воздуха в реактор окисления 3. Изобретение позволяет ускорить реакции окисления сульфидной и/или меркаптидной серы в стоках и повысить глубину очистки стоков от токсичных сульфидов и меркаптидов, устранить выделения элементной серы при обезвреживании стоков с pH ниже 9,0. 2 н.п. ф-лы, 1 ил., 15 пр.
Реферат Свернуть Развернуть

Изобретение предназначено для окислительного обезвреживания водных технологических конденсатов (ТК) и/или сернисто-щелочных стоков (СЩС), загрязненных токсичной сульфидной и/или меркаптидной серой, поступающих с предприятий нефтяной, газовой, химической, целлюлозно-бумажной, металлургической промышленности и кожевенного производства,

Известны способы окисления сульфидов и меркаптидов в присутствии катализаторов на основе глиняного носителя с разными активными добавками. Например, способ в присутствии катализатора для окисления сернистых соединений, содержащий в качестве каталитически активного компонента пиритный огарок (33-37 мас.%), введенный в глиняную массу [1], или катализатор, содержащий в качестве активного компонента композицию пиритного огарка (10-15 мас.%) с оксидом хрома (VI) 3-5; оксидом меди 5-10; оксидом ванадия (V) 3-5; нефтяным коксом 7-10; оксидом цинка 5-10 на глиняном носителе [2].

Недостатком указанных способов является низкая стабильность катализаторов из-за использования в качестве носителя глины, подверженной щелочному гидролизу в процессе окисления сульфидов и меркаптидов натрия в СЩС.

Известен также способ окисления сернистых соединений в присутствии катализатора, содержащего в качестве активного компонента оксиды и/или гидроксиды, и/или шпинели металлов переменной валентности на полимерном носителе - полиэтилене, полипропилене, полистироле или др. полимере, отличающегося дополнительным содержанием в нем модифицирующей добавки - органического основания, и/или гетерополикислоты, и/или углеродсодержащего материала, содержащий 15-50% активного компонента, 0,5-20,0% модифицирующей добавки и носитель - остальное [3].

К недостаткам этого способа относится неэффективная форма исполнения катализатора - в виде шарообразных гранул, значительно снижающая геометрическую поверхность и свободный объем катализатора, т.е. долю реакционного раствора в единице объема реактора, обуславливая увеличение объема очистных сооружений и размера капитальных и эксплуатационных затрат на проведение очистки, а также его низкую активность.

Известен также способ жидкофазного окисления сернистых соединений в присутствии водорастворимого сульфата железа в качестве катализатора [4]. Общим недостатком этого способа является ограничение области его применения только для разбавленных растворов, низкая эффективность и сложность отделения осадка катализатора (сульфида и гидроксида железа), образующегося после окислительного обезвреживания стока.

Для окислительного обезвреживания стоков используют также катализатор УВКО, представляющий собой углеродно-волокнистую ткань с активным компонентом [5], который для придания устойчивой формы и улучшения массообмена сворачивают в рулон совместно с металлической сеткой Рабица, играющей роль каркаса, и монтируют вертикально несколькими слоями по высоте колонного реактора. Его недостатком является относительно низкая активность при окислении меркаптидов, приводящая к повышенному содержанию меркаптанов в отработанном воздухе при обезвреживании меркаптидсодержащих СЩС и загрязнению атмосферы [6].

Известен также способ жидкофазного окисления сульфидов и меркаптидов в водно-щелочной среде [7], проводимый в присутствии гетерогенного катализатора, представляющего собой углеродную ткань, пропитанную фталоцианином кобальта или его производными в количестве 0,001-1 мас.% [8] - для повышения активности катализатора в реакции окисления меркаптидов в СЩС. Недостатком данного катализатора является его низкая стабильность вследствие непрерывного уноса окисляемыми стоками водорастворимых солей фталоцианина с углеродной ткани, приводящего к необходимости постоянной пропитки углеродного носителя этими солями и загрязнению ими очищаемых СЩС.

Общим недостатком катализаторов на углеродном носителе (УВКО или углеродной ткани) является преимущественное образование элементной серы при окислении сульфидов в водных ТК, имеющих значения pH ниже 9,0, что приводит к уносу серы с отработанным воздухом и забивке ею шлемовой линии с необходимостью ее периодической отпарки, приводящую к ускоренной коррозии и забивке используемого оборудования.

Наиболее близким к заявляемому способу является процесс окислительного обезвреживания СЩС и водных ТК [6], проводимый при температуре 78-80°C и расходе воздуха 30-40 м33 стоков в присутствии гетерогенного катализатора КС-2, содержащего фталоцианин кобальта или его водонерастворимое производное на полипропиленовом носителе [9], выполненного в виде удобных в эксплуатации насадочных элементов с развитой геометрической поверхностью, загружаемых в окислительный реактор, где катализатор выполняет одновременно роль насадки, способствующей улучшению массообмена между окисляемым водно-щелочным раствором и воздухом.

Недостатком данного способа является низкая активность катализатора КС-2 при окислении сульфидной серы, а также возможность образования при окислении водных ТК с pH ниже 9 элементной серы наряду с тиосульфатами и сульфатами.

Целью изобретения является ускорение реакции окисления сульфидной и/или меркаптидной серы в стоках и исключение выделения элементной серы при обезвреживании водных конденсатов с низким значением pH, вызывающей загрязнение и дезактивацию поверхности гидрофобного катализатора, забивку и коррозию оборудования.

Согласно изобретению поставленная цель достигается тем, что cпособ очистки сточных вод от сульфидной и/или меркаптидной серы осуществляют окислением сточных вод кислородом воздуха в присутствии гетерогенного катализатора окисления сернистых соединений на полимерном носителе, в качестве катализатора для окисления сульфидной и/или меркаптидной серы в стоках используется высокоактивный гетерогенный катализатор окисления сернистых соединений на полипропиленовом носителе [10], в состав которого входит дихлорфталоцианин кобальта и оксиды металлов переменной валентности (далее по тексту катализатор КСМ-Х), а процесс окислительного обезвреживания стоков (ТК и СЩС) проводят в присутствии углеводородного растворителя, не растворимого в водной среде, в качестве которого используют бензиновую и/или керосиновую и/или дизельную фракцию, либо смеси на их основе. При этом окисление сульфидной и/или меркаптидной серы в стоках ведут при объемном соотношении углеводородной фракции к очищаемому стоку 1:(1÷10), предпочтительно 1:2, при температуре от 20 до 80°C и избыточном давлении воздуха от 0,1 до 1,0 МПа, при которых исключается выделение элементной серы в очищаемый сток при значении рН окисляемых стоков ниже 9.

Конечными продуктами окисления сульфидов в стоках по предлагаемому способу являются тиосульфаты и сульфаты, а продуктами окисления меркаптидов - диалкилди-сульфиды и алкилтиосульфонаты.

Для реализации разработанного способа очистки по настоящему изобретению применяется установка, которая включает подогреватель стоков, реактор окисления в виде колонны, заполненной катализатором КСМ-Х и снабженной диспергатором, сепаратор отработанного воздуха, отстойник, насос для подачи углеводородной фракции в реактор окисления, емкость хранения углеводородной фракции, компрессор для подачи воздуха в реактор окисления. Реактор окисления снабжен распределительным устройством в виде диспергатора для смешения водных стоков с углеводородной фракцией и воздухом, который выполнен с возможностью обеспечения прямоточной схемы движения «воздух-углеводородная фракция-сточная вода».

Техническим результатом использования изобретения является ускорение реакций окисления сульфидной и меркаптидной серы и повышение глубины очистки стоков от токсичных сульфидов и меркаптидов, отсутствие выделения элементной серы при обезвреживании стоков с pH ниже 9,0.

Отличительным признаком предлагаемого способа от прототипа является использование катализатора КСМ-Х совместно с углеводородной фракцией.

Указанный отличительный признак предлагаемого способа определяет его новизну и изобретательский уровень в сравнении с известными способами, так как использование углеводородной фракции совместно с катализатором КСМ-Х при обезвреживании сернистых соединений в сточных водах в литературе не описано и оно позволяет повысить эффективность процесса локального окислительно-каталитического обезвреживания стоков (ПОКОС), снизить капитальные и эксплуатационные затраты за счет уменьшения объемов катализатора и оборудования, необходимых для осуществление процесса ПОКОС.

Кроме того, введение углеводородного растворителя в реактор окисления стоков дает возможность извлечения из окисленных стоков органических дисульфидов, образующихся при окислении меркаптидов и имеющих неприятный запах, приводя к снижению содержания общей серы, ХПК и БПК, а также к дезодорации окисленных стоков.

Объемное соотношение углеводородной фракции к окисляемым сточным водам с сульфидными и/или меркаптидными соединениями равно 1:(1÷10).

Сущность предлагаемого изобретения иллюстрируется следующими примерами.

Пример 1. Водный технологический конденсат (ТК) с рН=10 с содержанием в нем сульфидной серы 0,1 мас. % в количестве 0,5 м3/ч при температуре 20°C и избыточном давлении 0,5 МПа подают на установку очистки, включающую подогреватель, реактор окисления, сепаратор отработанного воздуха, отстойник, насос для подачи углеводородной фракции в реактор окисления, емкость хранения углеводородной фракции и компрессор для подачи воздуха в реактор окисления, схема которой представлена на фиг. 1. Насыщенный сульфидами водный ТК с давлением 0,5 МПа подогревается в теплообменнике 1 до 60°C. Перед подачей в реактор 3 через распределительное устройство водный ТК смешивается с дизельной фракцией, поступающей из емкости хранения 6 насосом 7 с расходом 0,25 м3/ч и с расчетным количеством воздуха, подаваемым из компрессора 2.

В реакторе 3 при температуре до 60°C и избыточном давлении до 0,5 МПа в присутствии 0,9 м3 катализатора КСМ-Х происходит окисление сульфидной серы в ТК до тиосульфатов и сульфатов. Окисленный водный ТК совместно с углеводородной фракцией и отработанным воздухом с верха реактора 3 направляется в сепаратор 4 для выделения отработанного воздуха. С верха сепаратора 4 отработанный воздух направляется в трубу рассеивания или в печь на прокалку, а водный раствор ТК с углеводородной фракцией с низа сепаратора 4 направляется в отстойник 5 для отделения от углеводородов. Отстоявшийся от углеводородной фракции водный ТК с низа отстойника 5 направляется в промышленную канализацию, а углеводородная фракция с верха отстойника 5 в емкость хранения 6.

Содержание сульфидной серы в растворе до и после окисления определяют потенциометрически по ГОСТ 22985-90. Анализ окисленного водного ТК показал, что остаточное содержание сульфидной серы в растворе составляет 0,001 мас.%. При этом степень конверсии сульфида натрия составляет 99,0%. Сульфид натрия окисляется в тиосульфат и сульфат натрия в соотношении примерно 4:1.

Пример 2. По примеру 1 без подачи дизельной фракции. Содержание сульфидной серы в очищенном водном ТК составило 0,06 мас.%.

Пример 3. По примеру 1 с подачей 0,5 м3/ч дизельной фракции. Содержание сульфидной серы в очищенном водном ТК составило 0,001 мас.%.

Пример 4. По примеру 1 с подачей 0,05 м3/ч дизельной фракции. Содержание сульфидной серы в очищенном водном ТК составило 0,04 мас.%.

Пример 5. По примеру 1 с подачей 0,25 м3/ч керосиновой фракции. Содержание сульфидной серы в очищенном водном ТК составило 0,001 мас.%.

Пример 6. По примеру 1 с подачей 0,25 м3/ч бензиновой фракции. Содержание сульфидной серы в очищенном водном ТК составило 0,001 мас.%.

Пример 7. По примеру 1 с подачей 0,25 м3/ч дизельной фракции при температуре 20°C. Содержание сульфидной серы в очищенном водном ТК составило 0,04 мас.%.

Пример 8. По примеру 1 с подачей 0,25 м3/ч дизельной фракции при температуре 40°C. Содержание сульфидной серы в очищенном водном ТК составило 0,015 мас.%.

Пример 9. По примеру 1 с подачей 0,25 м3/ч дизельной фракции при температуре 80°C. Содержание сульфидной серы в очищенном водном ТК составило 0,001 мас.%.

Пример 10. По примеру 1 с подачей 0,25 м3/ч дизельной фракции при давлении 0,1 МПа. Содержание сульфидной серы в очищенном водном ТК составило 0,025 мас.%.

Пример 11. По примеру 1 с подачей 0,25 м3/ч дизельной фракции при давлении 1,0 МПа. Содержание сульфидной серы в очищенном водном ТК составило 0,0 мас.%.

Пример 12. (по прототипу).

Сернисто-щелочные стоки с содержанием в них сульфидной серы 0,63 мас.% и меркаптидной серы 0,74 мас.% в количестве 100,0 см3 окислялись 60 мин при температуре 60°C молекулярным кислородом в кинетическом режиме. Количество катализатора КС-2 18 г на 100 см3 реактора. Катализатор для равномерного распределения по высоте и обеспечения гидродинамических условий упаковывали в металлическую сетку Панченкова.

Анализ окисленных сернисто-щелочных стоков показал, что степень конверсии сульфида натрия составляет 99,0%, а степень конверсии меркаптидной серы 96%.

Пример 13. По примеру 12 с заменой 18 г катализатора КС-2 на 18 г катализатора КСМ-Х с 50-ю мл дизельного топлива. Анализ окисленного щелочного раствора показал, что степень конверсии сульфида натрия в СЩС после 30-ти мин окисления составляет 99,0%, степень конверсии меркаптидной серы - 98,5%.

Пример 14. По примеру 12 при обезвреживании водного ТК с содержанием сульфидной серы 0,04 мас.% и pH=8,5. Анализ окисленного водного ТК показал, что степень конверсии сульфидной серы после 10-ти мин окисления составляет 99,0%. Визуально наблюдается помутнение раствора за счет образования элементной серы.

Пример 15. По примеру 14 с заменой 18 г катализатора КС-2 на 18 г катализатора КСМ-Х с 50-ю мл дизельного топлива. Анализ окисленного водного ТК показал, что степень конверсии сульфидной серы после 5-ти мин окисления составляет 99,0%. Выделение из раствора элементной серы не наблюдается.

Таким образом, приведенные примеры 1-11, 13 и 15 подтверждают эффективность и промышленную применимость заявленного способа и достижение глубокой степени очистки сточных вод от сульфидной и/или меркаптидной серы. Результаты очистки по предлагаемому изобретению двукратно превосходят скорость окисления в сравнении с прототипом, при этом по предлагаемому способу при pH стоков ниже 9 не наблюдается выделение элементной серы.

Источники информации

1. Патент RU №2089287, опубл. 10.09.1997 г. // Кочеткова Р.П., Кочетков А.Ю., Панфилова И.В., Коваленко Н.А., Боровский В.М., Куимов С.В., Бабиков А.Ф., Яскин В.П., Ан Е.Д., Глазырин В.В., Зайкова P.M., Семилетко С.В., Шапкин С.В., Тихонов Г.П.

2. Патент RU №2059428, опубл. 10.05.1996 г. // Кочеткова Р.П., Кочетков А.Ю., Коваленко Н.А., Боровский В.М., Куимов С.В., Глазырин В.В., Зайкова P.M., Бабиков А.Ф., Яскин В.П.

3. Патент RU №2255805, опубл. 10.07.2005 г. // Кочеткова Р.П., Кочетков А.Ю., Коваленко Н.А., патентообладатель Кочетков А.Ю.

4. Патент RU №2425798, опубл. 10.08.2011 г. // Иванов A.M., Агеева Е.В.

5. А.Ф. Вильданов, А.И. Луговской, И.А. Архиреева, П.М. Ващенко, С.А. Логинов, Н.Р. Аюпова, A.M. Мазгаров. Новый катализатор процесса очистки сернисто-щелочных сточных вод. Химия и технология топлив и масел. №10, 1990, с. 32.

6. А.Г. Ахмадуллина, Б.В. Кижаев, И.К. Хрущева, Н.М. Абрамова, Г.М. Нургалиева, А.Т. Бекбулатова, А.С Шабаева. Опыт промышленной эксплуатации гетерогенных катализаторов в процессах окислительного обезвреживания сернисто-щелочных стоков и водных технологических конденсатов. Нефтепереработка и нефтехимия, №2, 1993, с. 19.

7. Патент RU №2144039, опубл. 10.01.2000 г., Аким Э.Л., Никитин Я.В., Зорин И.Ф., Трясцина Н.П., Борисенкова С.А., Калия О.Л., Будницкий Г.А.

8. Патент SU №1497830, опубл. 30.08.1991 г. // Вильданов А.Ф., Мазгаров A.M., Фахриев A.M., Архиреева И.А., Комлева Т.И., Фомин В.А., Ермаков Р.Д., Борисенкова С.А., Сергеев В.П., Харламов А.И., Кириллова Н.В.

9. А.С. №1041142, опубл. 28.08.1980 г. // A.M. Мазгаров, А.Г. Ахмадуллина, М.И. Альянов, В.В. Калачева, И.К. Хрущева, Г.М. Нургалеева, Г.А. Остроумова и А.Ф. Вильданов.

10. Патент RU №2529500, опубл. 05.08.2014 г. // Ахмадуллин P.M., Ахмадуллина А.Г., Агаджанян С.И.


СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СУЛЬФИДНОЙ И/ИЛИ МЕРКАПТИДНОЙ СЕРЫ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
СПОСОБ ОЧИСТКИ СТОЧНЫХ ВОД ОТ СУЛЬФИДНОЙ И/ИЛИ МЕРКАПТИДНОЙ СЕРЫ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 13.
27.09.2014
№216.012.f8af

Катализатор для окисления сернистых соединений

Изобретение относится к производству гетерогенных катализаторов для жидкофазного окисления сернистых соединений, а именно к катализатору окисления сернистых соединений на полимерном носителе из полиэтилена низкого давления (ПЭНД) или полипропилена. Катализатор содержит фталоцианин кобальта...
Тип: Изобретение
Номер охранного документа: 0002529500
Дата охранного документа: 27.09.2014
10.02.2015
№216.013.21dc

Способ очистки легкого углеводородного сырья от карбонилсульфида

Изобретение относится к области очистки углеводородов от сернистых соединений и может быть использовано в нефтяной, газовой и нефтехимической отраслях промышленности. Изобретение касается способа очистки легкого углеводородного сырья от карбонилсульфида путем его разложения в углеводороде...
Тип: Изобретение
Номер охранного документа: 0002540121
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5203

Способ получения полихинонов

Изобретение относится к способу получения полихинона окислительным дегидрированием исходного мономера: гидрохинона, и/или бензохинона, и/или хингидрона, и/или пирокатехина, и/или их смесей в присутствии мягкого дегидрирующего агента, пространственно замещенного дифенохинона общей формулы (1) с...
Тип: Изобретение
Номер охранного документа: 0002552516
Дата охранного документа: 10.06.2015
13.01.2017
№217.015.8780

Способ демеркаптанизации углеводородного сырья

Изобретение относится к способу щелочной демеркаптанизации углеводородного сырья с последующей окислительно-каталитической регенерацией насыщенного меркаптидами щелочного агента либо непосредственным окислением содержащихся в углеводородном сырье меркаптанов кислородом воздуха в присутствии...
Тип: Изобретение
Номер охранного документа: 0002603635
Дата охранного документа: 27.11.2016
04.04.2018
№218.016.30da

Катализатор для жидкофазного окисления сульфида натрия

Настоящее изобретение относится к катализатору жидкофазного окисления сульфида натрия в водной среде и может быть использовано в газовой, нефтеперерабатывающей, нефтяной, химической, кожевенной и других отраслях промышленности при обезвреживании сточных вод, содержащих неорганические сульфиды....
Тип: Изобретение
Номер охранного документа: 0002644779
Дата охранного документа: 14.02.2018
10.05.2018
№218.016.3a7f

Способ совместного получения полихинонов и этиленбисфенола

Настоящее изобретение относится к способу получения полихинона и этиленбисфенола общей формулы (3), являющегося эффективным антиоксидантом для синтетических каучуков, полиолефинов и масел. Способ включает окисление мономеров: гидрохинона, и/или бензохинона, и/или хингидрона, и/или...
Тип: Изобретение
Номер охранного документа: 0002647591
Дата охранного документа: 16.03.2018
29.05.2018
№218.016.5468

Способ кормления животных и птицы

Изобретение относится к сельскому хозяйству, а именно к кормопроизводству, и может быть использовано в птицеводстве и животноводстве в качестве добавки к рациону при кормлении животных и птиц. Способ кормления, включающий дачу комбикорма со стабилизирующей добавкой. В качестве стабилизирующей...
Тип: Изобретение
Номер охранного документа: 0002654095
Дата охранного документа: 16.05.2018
28.08.2018
№218.016.8008

Новое химическое соединение бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)фосфонат

Изобретение относится к новому соединению, которое может быть использовано в качестве антиоксиданта при стабилизации каучуков и смазочных масел, бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)-фосфонат формулы: Технический результат - получено новое химическое соединение, являющееся эффективным...
Тип: Изобретение
Номер охранного документа: 0002665039
Дата охранного документа: 27.08.2018
18.01.2019
№219.016.b160

Новые металлокомплексные соединения олигопирокатехина и способ получения катализаторов окисления сернистых соединений на их основе

Изобретение относится к новым химическим соединениям - олигопирокатехолатам металлов переменной валентности формулы (I), где Me - двухвалентный переходный металл в ряду Cu, Со, Fe, Mn, Ni, n=5÷15. Также предложен катализатор окисления сернистых соединений на полимерном носителе, содержащий...
Тип: Изобретение
Номер охранного документа: 0002677226
Дата охранного документа: 16.01.2019
23.02.2019
№219.016.c70d

Способ регенеративной очистки углеводородного сырья от кислых примесей

Изобретение относится к способам очистки бензиновых, керосиновых, дизельных фракций, легких нефтей и газоконденсатов от кислых примесей и может быть использовано в нефтеперерабатывающей, нефтедобывающей и нефтехимической отраслях промышленности. В описанном способе щелочной очистки...
Тип: Изобретение
Номер охранного документа: 0002680522
Дата охранного документа: 22.02.2019
Показаны записи 1-10 из 13.
27.09.2014
№216.012.f8af

Катализатор для окисления сернистых соединений

Изобретение относится к производству гетерогенных катализаторов для жидкофазного окисления сернистых соединений, а именно к катализатору окисления сернистых соединений на полимерном носителе из полиэтилена низкого давления (ПЭНД) или полипропилена. Катализатор содержит фталоцианин кобальта...
Тип: Изобретение
Номер охранного документа: 0002529500
Дата охранного документа: 27.09.2014
10.02.2015
№216.013.21dc

Способ очистки легкого углеводородного сырья от карбонилсульфида

Изобретение относится к области очистки углеводородов от сернистых соединений и может быть использовано в нефтяной, газовой и нефтехимической отраслях промышленности. Изобретение касается способа очистки легкого углеводородного сырья от карбонилсульфида путем его разложения в углеводороде...
Тип: Изобретение
Номер охранного документа: 0002540121
Дата охранного документа: 10.02.2015
10.06.2015
№216.013.5203

Способ получения полихинонов

Изобретение относится к способу получения полихинона окислительным дегидрированием исходного мономера: гидрохинона, и/или бензохинона, и/или хингидрона, и/или пирокатехина, и/или их смесей в присутствии мягкого дегидрирующего агента, пространственно замещенного дифенохинона общей формулы (1) с...
Тип: Изобретение
Номер охранного документа: 0002552516
Дата охранного документа: 10.06.2015
13.01.2017
№217.015.8780

Способ демеркаптанизации углеводородного сырья

Изобретение относится к способу щелочной демеркаптанизации углеводородного сырья с последующей окислительно-каталитической регенерацией насыщенного меркаптидами щелочного агента либо непосредственным окислением содержащихся в углеводородном сырье меркаптанов кислородом воздуха в присутствии...
Тип: Изобретение
Номер охранного документа: 0002603635
Дата охранного документа: 27.11.2016
04.04.2018
№218.016.30da

Катализатор для жидкофазного окисления сульфида натрия

Настоящее изобретение относится к катализатору жидкофазного окисления сульфида натрия в водной среде и может быть использовано в газовой, нефтеперерабатывающей, нефтяной, химической, кожевенной и других отраслях промышленности при обезвреживании сточных вод, содержащих неорганические сульфиды....
Тип: Изобретение
Номер охранного документа: 0002644779
Дата охранного документа: 14.02.2018
10.05.2018
№218.016.3a7f

Способ совместного получения полихинонов и этиленбисфенола

Настоящее изобретение относится к способу получения полихинона и этиленбисфенола общей формулы (3), являющегося эффективным антиоксидантом для синтетических каучуков, полиолефинов и масел. Способ включает окисление мономеров: гидрохинона, и/или бензохинона, и/или хингидрона, и/или...
Тип: Изобретение
Номер охранного документа: 0002647591
Дата охранного документа: 16.03.2018
29.05.2018
№218.016.5468

Способ кормления животных и птицы

Изобретение относится к сельскому хозяйству, а именно к кормопроизводству, и может быть использовано в птицеводстве и животноводстве в качестве добавки к рациону при кормлении животных и птиц. Способ кормления, включающий дачу комбикорма со стабилизирующей добавкой. В качестве стабилизирующей...
Тип: Изобретение
Номер охранного документа: 0002654095
Дата охранного документа: 16.05.2018
28.08.2018
№218.016.8008

Новое химическое соединение бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)фосфонат

Изобретение относится к новому соединению, которое может быть использовано в качестве антиоксиданта при стабилизации каучуков и смазочных масел, бис(3,5-ди-трет-бутил-4-гидроксифенил)пропил)-фосфонат формулы: Технический результат - получено новое химическое соединение, являющееся эффективным...
Тип: Изобретение
Номер охранного документа: 0002665039
Дата охранного документа: 27.08.2018
18.01.2019
№219.016.b160

Новые металлокомплексные соединения олигопирокатехина и способ получения катализаторов окисления сернистых соединений на их основе

Изобретение относится к новым химическим соединениям - олигопирокатехолатам металлов переменной валентности формулы (I), где Me - двухвалентный переходный металл в ряду Cu, Со, Fe, Mn, Ni, n=5÷15. Также предложен катализатор окисления сернистых соединений на полимерном носителе, содержащий...
Тип: Изобретение
Номер охранного документа: 0002677226
Дата охранного документа: 16.01.2019
23.02.2019
№219.016.c70d

Способ регенеративной очистки углеводородного сырья от кислых примесей

Изобретение относится к способам очистки бензиновых, керосиновых, дизельных фракций, легких нефтей и газоконденсатов от кислых примесей и может быть использовано в нефтеперерабатывающей, нефтедобывающей и нефтехимической отраслях промышленности. В описанном способе щелочной очистки...
Тип: Изобретение
Номер охранного документа: 0002680522
Дата охранного документа: 22.02.2019
+ добавить свой РИД